首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) and NO donors exhibit actions that are not entirely mediated by soluble guanylate cyclase (sGC). The site of NO release may influence the involvement of sGC-independent effects. Here we use spermine NONOate (SPER/NO) to release NO extracellularly, compared with other NO donors. Isolated rat femoral arteries were perfused luminally and perfusion pressure monitored. Vessels were contracted with phenylephrine (2-14 microM) in the presence of an NO synthase inhibitor (N(omega)-nitro-L-arginine methyl ester; 20 microM). Vasodilator responses to NO donors were assessed before and after perfusion of an sGC inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; ODQ; 20 microM), NO scavengers (hemoglobin; Hb & hydroquinone; HQ), and a superoxide generator (duroquinone; DQ). ODQ (20 microM) abolished the vasodilator responses to glyceryl trinitrate (10(-8) - 10(-3) M), and sodium nitroprusside (10(-8) - 10(-4) M), which release NO intracellularly. ODQ (20 microM) attenuated, but failed to abolish, the vasodilator responses to SPER/NO (10(-6) - 10(-3) M). ODQ abolished responses to S-nitrosoglutathione and S-nitroso-N-valeryl-D-penicillamine (10(-8) - 10(-4) M), but a small residual vasodilatation remained in response to 10(-3) M. In the presence of ODQ, the remaining vasodilatation to SPER/NO was all but abolished by scavengers of extracellular NO (Hb; 10 microM, HQ; 100 microM). Superoxide generation (DQ; 100 microM) also attenuated ODQ-resistant vasodilatation. The data suggest that, in rat femoral arteries, NO donors that are capable of releasing extracellular NO cause vasodilatation that is only partially mediated by sGC. Lack of augmentation of sGC-independent effects by superoxide suggests that they are not mediated by peroxynitrite.  相似文献   

2.
1. We have investigated the possibility that nitric oxide (NO) and soluble guanylyl cyclase, an enzyme that synthesizes guanosine 3':5'-cyclic monophosphate (cyclic GMP) in response to NO, contributes to plasticity of synaptic transmission in the rat isolated superior cervical ganglion (SCG). 2. Exposure of ganglia to the NO donor, nitroprusside, caused a concentration-dependent accumulation of cyclic GMP which was augmented in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine. The compound, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a selective inhibitor of soluble guanylyl cyclase, completely blocked this cyclic GMP response. 3. As assessed by extracellular recording, nitroprusside (100 microM) and another NO donor, S-nitrosoglutathione (30 microM) increased the efficacy of ganglionic synaptic transmission in response to electrical stimulation of the preganglionic nerve, an effect that was reversible and which could be replicated by the cyclic GMP analogue, 8-bromo-cyclic GMP. Ganglionic depolarizations resulting from stimulation of nicotinic receptors with carbachol were not increased by nitroprusside. The potentiating actions of the NO donors on synaptic transmission, but not that of 8-bromo-cyclic GMP, were inhibited by ODQ. 4. Brief tetanic stimulation of the preganglionic nerve resulted in a long-term potentiation (LTP) of synaptic transmission that was unaffected by ODQ, either in the absence or presence of the NO synthase inhibitor, NG-nitro-L-arginine (L-NOARG, 100 microM). A lack of influence of L-NOARG was confirmed in intracellular recordings of LTP of the excitatory postsynaptic potential. Furthermore, under conditions where tetanically-induced LTP was saturated, nitroprusside was still able to potentiate synaptic transmission, as judged from extracellular recording. 5. We conclude that NO is capable of potentiating ganglionic neurotransmission and this effect is mediated through the stimulation of soluble guanylyl cyclase and the accumulation of cyclic GMP. However, this potentiation is distinct from LTP of nicotinic synaptic transmission, in which neither NO nor soluble guanylyl cyclase appear to participate.  相似文献   

3.
1. Nitric oxide (NO) is known to stimulate soluble guanylyl cyclase, thereby eliciting an elevation of guanosine 3':5'-cyclic monophosphate (cyclic GMP) in target cells. Recently, a selective inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), has been identified and characterized in vitro. We have investigated the in vivo effects of ODQ on the glutamate receptor/NO/ cyclic GMP pathway by monitoring extracellular cyclic GMP during microdialysis of the cerebellum or the hippocampus of freely-moving adult rats. 2. Intracerebellar administration of ODQ (1-100 microM) via the microdialysis probe inhibited, in a concentration-dependent manner, the basal extracellular level of cyclic GMP. The maximal inhibition, measured after a 20 min perfusion with 100 microM ODQ, amounted to 80% and persisted unchanged as long as ODQ was perfused. When ODQ was removed from the perfusion stream after 20 min, the levels of cyclic GMP started to recover, suggesting reversibility of guanylyl cyclase inhibition by ODQ. 3. The cyclic GMP response evoked in the cerebellum by NMDA (200 microM) or by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA; 100 microM) was largely attenuated by 100 microM ODQ. The pattern of the inhibition curves suggests competition for guanylyl cyclase between ODQ and the NO generated by NMDA or AMPA receptor activation. 4. ODQ (100 microM) prevented the elevation of extracellular cyclic GMP levels provoked by intracerebellar infusion of the NO generator S-nitroso-N-acetylpenicillamine (SNAP; 1 mM). The inhibition of the SNAP effect was rapidly relieved when ODQ was removed from the perfusion fluid. However, ODQ (100 microM) was unable to affect the cyclic GMP response elicited by 5 mM SNAP, in keeping with the proposed idea that ODQ binds to the "NO receptor' in a reversible and competitive manner. 5. Infusion of ODQ (10, 100 or 300 microM) into the hippocampus of freely-moving rats diminished the basal extracellular level of cyclic GMP. The maximal inhibition amounted to 50% and was produced by 100 microM ODQ. 6. The cyclic GMP response observed when 1 mM SNAP was perfused in the hippocampus, similar in percentage terms to that seen in cerebellum, was dramatically reduced during co-infusion of 100 microM ODQ. 7. ODQ appears to act in vivo as a selective, reversible and possibly competitive inhibitor of the soluble guanylyl cyclase targeted by NO. This enzyme may generate most (about 80%) of the cyclic GMP found under basal conditions in the extracellular space of the cerebellum. In the hippocampus, about 50% of the basal cyclic GMP does not seem to originate from the ODQ-sensitive soluble guanylyl cyclase.  相似文献   

4.
1. The effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase (sGC), were investigated in aortic rings and ventricular cardiomyocytes from rats. The production of cyclic GMP was stimulated by NO.-donors or carbachol. Additionally, the effects of ODQ were studied in cytosolic extracts from both tissues in which the cyclic GMP production was stimulated by S-nitroso-N-acetylpenicillamine (SNAP). 2. In endothelium-intact aortic rings, SNAP (100 microM), 2,2'-(hydroxynitrosohydrazino)bis-ethana-mine (DETA NONOate; 100 microM), or carbachol (10 microM) increased cyclic GMP levels about 4 fold. These effects were abolished by ODQ (50 microM). 3. In cardiomyocytes, SNAP (100 microM), DETA NONOate (100 microM), or carbachol (10 microM) increased cyclic GMP levels about 2 fold. These effects were not affected by ODQ (50 microM). 4. In cytosolic extracts from aortic rings and cardiomyocytes, SNAP (100 microM) induced about 50 fold increases in cyclic GMP levels. ODQ (50 microM) reduced these effects by about 50%. 5. In extracts from cardiomyocytes, increases by SNAP (100 microM) of cyclic GMP levels were attenuated by myoglobin dependent on concentration: at 300 microM myoglobin, SNAP (100 microM) increased cyclic GMP levels only 3 fold. Inhibitory effects of ODQ (50 microM) were abolished by 300 microM myoglobin. 6. It is suggested that both NO. and ODQ can bind to myoglobin which, at high concentrations. can diminish their effects on sGC. Such a scavenger function of myoglobin could explain why NO. and ODQ exert only minor effects in cardiomyocytes (with high myoglobin content) but strong effects in aortic tissue (virtually devoid of myoglobin).  相似文献   

5.
1. We developed a novel method to isolate nonpigmented epithelial (NPE) cells from porcine eyes in order to examine Na,K-ATPase responses to nitric oxide (NO) donors specifically in the epithelium. 2. Cells were treated with NO donors and other test compounds for 20 min prior to Na,K-ATPase activity measurement. 3. NO donors, sodium nitroprusside (SNP, 1 microM-1 mM), sodium azide (100 nM-1 microM) and S-nitroso-N-acetylpenicillamine (1 microM-1 mM) caused significant concentration-dependent inhibition of Na,K-ATPase activity. Detection of nitrite in the medium of L-arginine and SNP-treated NPE confirmed NO generation. 4. Concentration-dependent inhibition of Na,K-ATPase was also obtained by L-arginine (1-3 mM), a physiological precursor of NO and 8p-CPT-cGMP (1-100 microM), a cell permeable analog of cGMP. The L-arginine effect was abolished when the NO synthesizing enzyme, NO-synthase, was inhibited by L-NAME (100 microM). 5. The inhibitory effect of SNP or sodium azide on Na,K-ATPase activity was suppressed by soluble guanylate cyclase (sGC) inhibitors, ODQ (10 microM) or methylene blue (10 microM). 6. The inhibitory effect of 8p-CPT-cGMP on Na,K-ATPase was abolished by protein kinase G (PKG) inhibitors, H-8 (1 microM) and H-9 (20 microM), but not by the protein kinase A (PKA) inhibitor H-89 (100 nM). H-8 and H-9 partially suppressed the inhibitory effect of SNP on Na,K-ATPase. 7. Taken together the results indicate that Na,K-ATPase inhibition response to NO donors involves activation of sGC, generation of cGMP and activation of PKG. These findings suggest that Na,K-ATPase inhibition in NPE may contribute to the ability of NO donors to reduce aqueous humor secretion.  相似文献   

6.
1. In isolated endothelium-intact or denuded rabbit corpus cavernosum preconstricted with phenylephrine, KMUP-1 (0.001 - 10 microM) caused a concentration-dependent relaxation. 2. This relaxation of KMUP-1 was attenuated by endothelium removed, high K(+) and pretreatments with a soluble guanylyl cyclase (sGC) inhibitor ODQ (1 microM), a NOS inhibitor L-NAME (100 microM), a K(+) channel blocker TEA (10 mM), a K(ATP) channel blocker glibenclamide (1 microM), a voltage-dependent K(+) channel blocker 4-AP (100 microM) and Ca(2+)-dependent K(+) channel blockers apamin (1 microM) and charybdotoxin (ChTX, 0.1 microM). 3. The relaxant responses of KMUP-1 (0.01, 0.05, 0.1 microM) together with a PDE inhibitor IBMX (0.5 microM) had additive actions on rabbit corpus cavernosum smooth muscle (CCSM). 4. KMUP-1 (0.01 - 10 microM) induced increase of intracellular cyclic GMP level in the primary cell culture of rabbit CCSM. This increase in cyclic GMP content was abolished in the presence of ODQ (10 microM). 5. Both KMUP-1 and sildenafil at 0.2, 0.4, 0.6 mg kg(-1) caused increases of intracavernous pressure (ICP) and duration of tumescene (DT) in a dose-dependent manner. These in vivo activities of ICP for sildenafil and KMUP-1 are consistent with those of in vitro effects of cyclic GMP. 6. KMUP-1 has the following merits: (1) inhibition of PDE or cyclic GMP breakdown, (2) stimulation of NO/sGC/cyclic GMP pathway, and (3) subsequent stimulation of K(+) channels, in rabbit CCSM. We suggest that these merits play prominent roles in KMUP-1-induced CCSM relaxation-associated increases of ICP and penile erection.  相似文献   

7.
Tetanic stimulation of the sciatic nerve produces spinal long-term potentiation (LTP) of C-fiber evoked field potentials, which is NMDA dependent and may be the substrate of inflammation- or nerve injury-produced central sensitization. Glial glutamate transporter GLT-1 has been considered as an important regulator of excitatory synaptic transmission and nociception. In the present study, we investigated the effects of GLT-1 on the spinal LTP and Fos expression induced by tetanically sciatic stimulation. Intrathecal administration of dihydrokainate (DHK), a GLT-1 selective inhibitor, partially inhibited (0.1 mM) or completely blocked (3.0 mM) the spinal LTP, which may be related to an accumulation of extracellular glutamate. Intrathecal DHK (3.0 mM) also suppressed tetanic stimulation-induced spinal Fos expression. Double immunofluorescence showed no Fos expression in glial fibrillary acidic protein (GFAP)-positive cells, and the cell DNA fragment study failed to detect a significant apoptosis of spinal neurons. These results suggest that disruption of GLT-1 may be associated with the inhibition of functional activation of spinal neurons expressing Fos, but not with glutamate excitotoxicity. In conclusion, glial GLT-1 may play an important role in tetanically sciatic stimulation-induced LTP of spinal nociceptive neurons via the regulation of extracellular levels of glutamate to an appropriate concentration.  相似文献   

8.
1. We examined the role of the NO/cyclic GMP (cyclic GMP) pathway in nitric oxide (NO)- and vasoactive intestinal peptide (VIP)-induced relaxation of feline lower oesophageal sphincter (LES). Furthermore, it was studied whether methylene blue, LY83583 and ODQ, which are soluble guanylate cyclase (sGC) inhibitors, could inhibit NO-induced relaxation. 2. The nitric oxide synthase (NOS) inhibitor, N omega-nitro-L-arginine (L-NNA) had no effect in sodium nitropruside (SNP)-induced relaxation, but 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1)-induced relaxation was decreased by the pretreatment of L-NNA, which showed that SIN-1, not SNP, could activate NOS to cause relaxation. Methylene blue and LY83583 did not inhibit the relaxation by SNP and SIN-1. However, the more specific sGC inhibitor ODQ blocked the relaxation induced by NO donors. 3. To identify the relationship of NOS, sGC and adenylate cyclase in VIP-induced relaxation, tissue were pretreated with L-NNA and ODQ and SQ22536. These inhibitors produced significant inhibition of this response to VIP. The adenylyl cyclase inhibitor SQ 22536 also inhibited relaxation by VIP. 4. In conclusion, our data showed that SNP- and SIN-1-induced relaxation was mediated by sGC. Of sGC inhibitors, methylene blue and LY83583 were not adequate for the examination of NO donor-induced feline LES smooth muscle relaxation. VIP also caused relaxation by the pathway involving NO and cGMP and cAMP.  相似文献   

9.
1. Certain heterocyclic N-oxides are vasodilators and inhibitors of platelet aggregation. The pharmacological activity of the furoxan derivative condensed with pyridazine di-N-oxide 4,7-dimethyl-1,2, 5-oxadiazolo[3,4-d]pyridazine 1,5,6-trioxide (FPTO) and the corresponding furazan (FPDO) was studied. 2. FPTO reacted with thiols generating nitrite (NO), S-nitrosoglutathione and hydroxylamine (nitroxyl) and converted oxyHb to metHb. FPDO did not generate detectable amounts of NO-like species but reacted with thiols and oxyHb. 3. FPTO and FPDO haem-dependently stimulated the activity of soluble guanylate cyclase (sGC) and this stimulation was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and by 0.1 mM dithiothreitol. 4. FPTO relaxed noradrenaline-precontracted aortic rings and its concentration-response curve was biphasic (pIC(50)=9. 03+/-0.13 and 5.85+/-0.06). FPDO was significantly less potent vasodilator (pIC(50)=5.19+/-0.14). The vasorelaxant activity of FPTO and FPDO was inhibited by ODQ. oxyHb significantly inhibited only FPTO-dependent relaxation. 5. FPTO and FPDO were equipotent inhibitors of ADP-induced platelet aggregation (IC(50)=0.63+/-0.15 and 0.49+/-0. 05 microM, respectively). The antiplatelet activity of FPTO (but not FPDO) was partially suppressed by oxyHb. The antiaggregatory effects of FPTO and FPDO were only partially blocked by sGC inhibitors. 6. FPTO and FPDO (10 - 20 microM) significantly increased cyclic GMP levels in aortic rings and platelets and this increase was blocked by ODQ. 7. Thus, FPTO can generate NO and, like FPDO, reacts with thiols and haem. The vasorelaxant activity of FPTO and FPDO is sGC-dependent and a predominant role is played by NO at FPTO concentrations below 1 microM. On the contrary, inhibition of platelet aggregation is only partially related to sGC activation.  相似文献   

10.
In the human umbilical artery (HUA) pre-contracted with the thromboxane mimetic U46619 or with 5-hydroxytryptamine (5-HT), (and pretreated with indomethacin (3 microM) to suppress the synthesis of prostanoids), authentic nitric oxide (NO) evoked concentration-dependent relaxation (pEC(50) 7.05 and 5.99, respectively). In contrast, sodium nitroprusside (SNP) induced relaxation only in U46619 pre-contracted HUA (pEC(50) 6.52). At high (>300 mmHg) vs low (<55 mmHg) oxygen tension the dose-response curves to NO- and SNP-induced relaxations were biphasic and shifted leftward. Preincubation of the arterial rings with the soluble guanylyl cyclase (sGC) inhibitor 1H[1,2,4]oxadiazolo[4, 3-a]quinoxalin-1-one (ODQ; 10 microM) shifted the concentration-response curve to NO, reduced the maximal relaxation response to NO (E(max) 71%) and to SNP (E(max) 10%). Pre-exposure of HUA rings to high extracellular K(+) (50 mM) reduced E(max) relaxation responses to NO (36%) and SNP (1%). Pretreatment of the HUA with the K(+) channel inhibitors, tetraethylammonium (TEA, 1 mM), 4-aminopyridine (4-AP, 0.5 mM), charybdotoxin (0.1 microM) or iberiotoxin (0.1 microM) increased the pEC(30) for NO and SNP and changed the shape of the dose-response curves from biphasic to monophasic. Pre-incubation of HUA rings with TEA (1 mM), 4-AP (0.5 mM) and ODQ (10 microM) significantly reduced the NO-induced maximal relaxation (E(max) 26%) but not the pEC(50) (5.60). These data indicate that SNP-induced relaxation in the HUA is primarily mediated via sGC-cyclic GMP whereas NO-induced relaxation also involves the activation of K(V) and K(Ca) channels and a cyclic GMP/K(+) channel-independent mechanism(s).  相似文献   

11.
The prefrontal cortex (PFC) is believed to play an important role in the cognitive impairments observed in schizophrenia and has also been shown to be involved in the modulation of prepulse inhibition (PPI), a measure of preattentive information processing that is impaired in schizophrenic individuals. Phencyclidine (PCP), a noncompetitive inhibitor of the NMDA receptor, exerts psychotomimetic effects in humans, disrupts PPI, and causes hypofrontality in rodents and monkeys. We have previously demonstrated that interfering with the production of nitric oxide (NO) can prevent a wide range of PCP-induced behavioral deficits, including PPI disruption. In the present study, the role of NO signaling for the behavioral and biochemical effects of PCP was further investigated. Dialysate from the medial PFC of mice receiving systemic treatment with PCP and/or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 40 mg/kg), was analyzed for cGMP content. Furthermore, a specific inhibitor of NO-sensitive soluble guanylyl cyclase (sGC), 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ, 0.01-1 mM), was administered into the medial PFC of mice in combination with systemic injections of PCP, followed by PPI and locomotor activity testing. PCP (5 mg/kg) caused an increase in prefrontal cGMP that could be attenuated by pretreatment with the NO synthase inhibitor, L-NAME. Moreover, bilateral microinjection of the sGC inhibitor, ODQ, into the medial PFC of mice attenuated the disruption of PPI, but not the hyperlocomotion, caused by PCP. The present study shows that NO/sGC/cGMP signaling pathway in the medial PFC is involved in specific behavioral effects of PCP that may have relevance for the disabling cognitive dysfunction found in patients with schizophrenia.  相似文献   

12.
Soluble guanylyl cyclase (sGC) is an important effector for nitric oxide (NO). It acts by increasing intracellular cyclic GMP (cGMP) levels to mediate numerous biological functions. Recently, 1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ) was identified as a novel and selective inhibitor of this enzyme. Therefore, ODQ may represent an important pharmacological tool for differentiating cGMP-mediated from cGMP-independent effects of NO. In the present study, we examined the inhibitory action of ODQ both functionally and biochemically. In phenylephrine-preconstricted, endothelium-intact, isolated aortic rings from the rat, ODQ, in a concentration-dependent manner, increased contractile tone and inhibited relaxations to authentic NO with maximal effects at 3 microM. Pretreatment of vascular rings with ODQ induced a parallel, 2-log-order shift to the right of the concentration-response curves (CRCs) to histamine, ATP, NO, the NO-donors S-nitrosoglutathione, S-nitroso-N-acetyl-D,L-penicillamine, and spermine NONOate [N-[4-[1-(3-amino propyl)-2-hydroxy-2-nitroso hydrazino]butyl]-1, 3-propane diamine], and the direct sGC-stimulant [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole] YC-1 but did not affect relaxations induced by papaverine and atriopeptin II. Moreover, the rightward shift of the CRCs to Angeli's salt, peroxynitrite, and linsidomine was similar to that of NO. These results suggested that ODQ is specific for sGC. Furthermore, they indicate that NO can cause vasorelaxation independent of cGMP. Three interesting exceptions were observed to the otherwise rather uniform inhibitory effect of ODQ: the responses to acetylcholine, glycerol trinitrate, and sodium nitroprusside. The latter two agents are known to require metabolic activation, possibly by cytochrome P-450-type proteins. The 3- to 5-log-order rightward shift of their CRCs suggests that, in addition to sGC, ODQ may interfere with heme proteins involved in the bioactivation of these NO donors and the mechanism of vasorelaxation mediated by acetylcholine. In support of this notion, ODQ inhibited hepatic microsomal NO production from both glycerol trinitrate and sodium nitroprusside as well as NO synthase activity in aortic homogenates. The latter effect seemed to require biotransformation of ODQ. Collectively, these data reveal that ODQ interferes with various heme protein-dependent processes in vascular and hepatic tissue and lacks specificity for sGC.  相似文献   

13.
1. We compared the effects of inhibiting nitric oxide synthase (NOS), soluble guanylate cyclase (sGC) and K+ channel activation on dilator responses to acetylcholine (ACh) in rat resistance (hindquarters) and conduit arteries (thoracic aorta). 2. In rat perfused hindquarters, the NO synthase inhibitor N omega-nitro-L-arginine (L-NNA; 1 mmol/L) partially inhibited the ACh-induced dilatation and the combination of L-NNA + haemoglobin (Hb; 20 mumol/L), a NO scavenger, did not further affect the response. Exposure to high K+ (30 mmol/L) also inhibited the response to ACh and this response was further reduced by L-NNA + high K+. Surprisingly, when applied alone 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of sGC, did not affect responses to ACh, whereas treatment with ODQ + high K+ markedly impaired dilatation. 3. In aortic rings precontracted with phenylephrine (PE; 0.01-1 mumol/L), the maximum relaxation to ACh was significantly reduced by L-NNA (0.1 mmol/L) and further inhibited by L-NNA + Hb (20 mumol/L). At 10 mumol/L, ODQ alone inhibited the maximum relaxation to ACh, which was further reduced by ODQ + high K+ (30 mmol/L). High K+ caused a smaller but significant inhibition of ACh-induced relaxation. 4. These results suggest that NO and cGMP play a relatively greater role in ACh-induced dilatation of the aorta compared with the hindquarters resistance vasculature and are consistent with the hypothesis that a non-NO endothelium-derived hyperpolarizing factor (endothelium-derived hyperpolarizing factor; EDHF) makes a relatively greater contribution to dilatation of resistance vessels than in conduit arteries. The data suggest that when sGC is inhibited, a compensatory mechanism involving K+ channel opening by NO can largely maintain ACh-induced vasodilator responses of resistance vessels. Furthermore, when NO synthesis is blocked, a non-NO EDHF may play a role in ACh-induced dilatation of the resistance vasculature.  相似文献   

14.
We hypothesized that sildenafil, inhibitor of phosphodiesterase-5 (PDE-5), interacts with the nitric oxide (NO)-cGMP pathway in the cerebral arteries and shows vasoactive effects. To prove it in the isolated rabbit basilar artery, we compared the effects of sildenafil with other PDE-5 inhibitors, assessed the endothelial dependence of the vasoactive responses, and used modulators of the cGMP and cAMP signaling processes. Sildenafil (10 nM-0.1 mM) induced concentration-dependent relaxations of endothelin-1 (10 nM)-precontracted basilar artery, which were partially inhibited both in endothelium-denuded arteries and in arteries precontracted by depolarization with KCl (50 mM). Endothelin-1 (1 pM-30 nM) induced concentration-dependent contractions that were inhibited by sildenafil (0.1-100 microM). Zaprinast (10 nM-0.1 mM) and MBCQ (1 nM-0.1 mM), PDE-5 inhibitors, induced concentration-dependent relaxations with lower and higher potency than sildenafil, respectively. Sildenafil-induced relaxation was inhibited in arteries preincubated with the NO synthase inhibitor L-NAME (0.1 mM) or the soluble guanylyl cyclase inhibitor ODQ (10 microM). Preincubation with sildenafil (0.1 microM) enhanced the relaxations induced by acetylcholine (0.1 nM-0.1 mM) and the NO donor sodium nitroprusside (0.1 nM-0.1 mM), but not those induced by the cell-permeable cGMP analogue 8-Br-cGMP (1 nM-0.1 mM) and the adenylyl cyclase activator forskolin (0.1 nM-10 microM). These results show that sildenafil has vasoactive effects in isolated cerebral arteries. By enhancing the NO-cGMP signaling pathway in the cerebrovascular wall, sildenafil induces vasodilation, prevents vasoconstriction, and potentiates the effect of other NO-dependent vasodilators.  相似文献   

15.
The nitric oxide (NO) receptor, soluble guanylyl cyclase (sGC), is commonly manipulated pharmacologically in two ways. Inhibition of activity is achieved using 1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-l-one (ODQ) which oxidizes the haem prosthetic group to which NO binds, while the compound 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1) is considered an 'allosteric' activator. Knowledge of how these agents function and interact in a normal cellular environment is limited. These issues were addressed using rat cerebellar cells. Inhibition by ODQ was not simply competitive with NO. The rate of onset was ODQ concentration-dependent and developed in two kinetic phases. Recovery from inhibition occurred with a half-time of approximately 5 min. YC-1 slowed the rate at which sGC deactivated on removal of NO by 45 fold, consistent with YC-1 increasing the potency of NO for sGC. YC-1 also enhanced the maximal response to NO by 2 fold. Furthermore, when added to cells in which sGC was 90% desensitized, YC-1 abruptly enhanced sGC activity to a degree that indicated partial reversal of desensitization. After pre-exposure to YC-1, sGC became resistant to inhibition by ODQ. In addition, YC-1 rapidly reversed inhibition by ODQ in cells and for purified sGC, suggesting that YC-1 either increases the NO affinity of the oxidized sGC haem or reverses haem oxidation. It is concluded that the actions of ODQ and YC-1 on sGC are broadly similar in cells and purified preparations. Additionally, YC-1 transiently reverses sGC desensitization in cells. It is hypothesized that YC-1 has multiple actions on sGC, and thereby both modifies the NO binding site and enhances agonist efficacy.  相似文献   

16.
1. KMUP-1 (1, 3, 5 mg kg(-1), i.v.), a xanthine derivative, produced dose-dependent sustained hypotensive and short-acting bradycardiac effects in anaesthetized rats. This hypotensive effect was inhibited by pretreatment with glibenclamide (5 mg kg(-1), i.v.). 2. In endothelium-intact or denuded aortic rings preconstricted with phenylephrine, KMUP-1 caused a concentration-dependent relaxation. This relaxation was reduced by endothelium removal, the presence of NOS inhibitor L-NAME (100 microM) and sGC inhibitors methylene blue (10 microM) and ODQ (1 microM). 3. The vasorelaxant effects of KMUP-1 was attenuated by pretreatment with various K(+) channel blockers TEA (10 mM), glibenclamide (1 microM), 4-AP (100 microM), apamin (1 microM) and charybdotoxin (ChTX, 0.1 microM). 4. Increased extracellular potassium levels (30 - 80 mM) caused a concentration-related reduction of KMUP-1-induced vasorelaxations. Preincubation with KMUP-1 (1, 10, 100 nM) increased the ACh-induced maximal vasorelaxations mediated by endogenous NO release, and enhanced the potency of exogenous NO-donor SNP. 5. The vasorelaxant responses of KMUP-1 (0.01, 0.05, 0.1 microM) together with a PDE inhibitor IBMX (0.5 microM) had an additive action. Additionally, KMUP-1 (100 microM) affected cyclic GMP metabolism since it inhibited the activity of PDE in human platelets. 6. KMUP-1 induced a dose-related increase in intracellular cyclic GMP levels in rat A10 vascular smooth muscle (VSM) cells, but not cyclic AMP. The increase in cyclic GMP content of KMUP-1 (0.1 - 100 microM) was almost completely abolished in the presence of methylene blue (10 microM), ODQ (10 microM), and L-NAME (100 microM). 7. In conclusion, these results indicate that KMUP-1 possesses the following merits: (1) stimulation of NO/sGC/cyclic GMP pathway and subsequent elevation of cyclic GMP, (2) K(+) channels opening, and (3) inhibition of PDE or cyclic GMP breakdown. Increased cyclic GMP display a prominent role in KMUP-1-induced VSM relaxations.  相似文献   

17.
Soluble guanylyl cyclase (sGC) is a target enzyme for endogenous nitric oxide (NO), and it converts GTP to cyclic GMP (guanosine 3',5'-cyclic monophosphate) as part of a cascade that results in physiological processes such as smooth muscle relaxation, neurotransmission, and inhibition of platelet aggregation. Here we examine a representative of the novel class sCG activators, A-778935 ((+/-)-cis-3-[2-(2,2-dimethyl-propylsulfanyl)-pyridin-3-yl]-N-(3-hydroxy-cyclohexyl)-acrylamide). A-778935 activated sGC synergistically with sodium nitroprusside (SNP) over a wide range of concentration, inducing up to 420-fold activation. A specific inhibitor of sGC, ODQ (1H-[1,2,4]-oxadiazolo[4,3-alpha]quinoxalin-1-one), did not block basal sGC activity, but competitively inhibited the activation by A-778935. A-778935, with or without SNP, did not activate heme-deficient sGC, indicating that the activation of sGC by A-778935 is fully heme-dependent. A-778935 increased intracellular cGMP level dose-dependently in smooth muscle cells. In the presence of 1 microM SNP, a lower concentration of A-778935 increased cGMP than A-778935 alone, and the cGMP concentration reached the same level at 100 microM of A-778935. A-778935 relaxed cavernosum tissue strips in a dose-dependent manner; and in the presence of 1 microM SNP, A-778935 relaxed the strips more potently, shifting the dose-response curve to the left. This novel activator of sGC may have potential efficacy for the treatment of a variety of disorders associated with reduced NO signaling.  相似文献   

18.
1. The mediators of non-adrenergic, non-cholinergic (NANC) inhibitory junction potentials (i.j.ps) in the circular smooth muscle cells of the hamster ileum were studied. 2. Electrical field stimulation (EFS; 0.5 ms duration, 15 V) of the intramural nerves with a train of five pulses at 20 Hz evoked a rapidly developing hyperpolarization (fast i.j.p.) followed by a sustained hyperpolarization (slow i.j.p.). 3. NG-nitro-L-arginine methyl ester (L-NAME; 50 - 200 microM) and NG-nitro-L-arginine (L-NNA; 50 - 200 microM), NO synthase inhibitors, inhibited or abolished the EFS-induced fast and slow NANC i.j.ps. The effects of these NO synthase inhibitors were reversed by L-arginine (5 mM) but not by D-arginine (5 mM). 4. Exogenously applied nitric oxide (NO; 1 - 100 microM) induced concentration-dependent hyperpolarizations. 5. Oxyhaemoglobin (5 - 50 microM), NO scavenger, inhibited only the slow i.j.p., and the NO-induced hyperpolarization. 6. 1H-[1,2,4]oxadiazolo[4, 3-a]quinoxaline-1-one (ODQ; 10 microM) and cystamine (10 mM), guanylate cyclase inhibitors, inhibited only the slow i.j.p. Zaprinast (100 microM), a phosphodiesterase type V inhibitor, enhanced the amplitude and duration of the slow i.j.p. 7. Apamin (100 nM), a small conductance Ca2+-activated K+ channel blocker, inhibited only the slow i.j.p., and NO-induced hyperpolarization. A high concentration of 8-bromoguanosine 3':5'-cyclic monophosphate (8-bromo-cGMP; 1 mM)-induced membrane hyperpolarization which was blocked by apamin. 8. These results suggest that NO, or a related compound, may be the inhibitory transmitter underlying the apamin-sensitive NANC slow i.j.p. and cyclic GMP mediates the slow i. j.p. in the hamster ileum. It is also likely that NO, without involvement of guanylate cyclase is associated with the fast i.j.p.  相似文献   

19.
Liu YL  Zhou LJ  Hu NW  Xu JT  Wu CY  Zhang T  Li YY  Liu XG 《Neuropharmacology》2007,52(3):708-715
Compelling evidence has shown that in hippocampus tumor necrosis factor alpha (TNF-alpha) at pathological concentration inhibits long-term potentiation (LTP), a synaptic model of learning and memory. In the present work we investigated the role of TNF-alpha in LTP of C-fiber evoked field potentials in spinal dorsal horn, which is relevant to pathological pain. We showed that spinal application of TNF-alpha affected neither basal synaptic transmission mediated by C-fibers nor spinal LTP of C-fiber evoked field potentials induced by tetanic stimulation in intact rats. However, in rats with neuropathic pain, produced by either lumbar 5 ventral root transection (L5 VRT) or spared nerve injury (SNI), spinal application of TNF-alpha induced LTP of C-fiber evoked field potentials. Spinal application of JNK inhibitor (SP600125) or p38 MAPK inhibitor (SB203580) did not affect the spinal LTP induced by tetanic stimulation in intact rats, but completely blocked LTP induced by TNF-alpha in L5 VRT rats. NF-kappa B (NF-kappaB) inhibitor (PDTC) also blocked LTP induced by TNF-alpha. These results suggest that TNF-alpha and its downstream molecules may have no acute effect on spinal synaptic transmission in intact animals and induce LTP in rats with neuropathic pain produced by nerve injury.  相似文献   

20.
In rat pulmonary artery pre-contracted with phenylephrine, the mechanisms of relaxation to the nitric oxide (NO) donor, spermine NONOate, were investigated. Responses to spermine NONOate were only partially blocked by the soluble guanylate cyclase inhibitor, ODQ (1H:-[1,2,4]Oxadiazolo-[4,3,-a]quinoxalin-1-one) at concentrations up to 30 microM. Ten microM ODQ gave maximal inhibition. Endothelium removal had no effect on the potency of spermine NONOate or its inhibition by ODQ. The protein kinase G inhibitor, Rp-8-Br-cGMPS (100 microM), caused minimal inhibition of spermine NONOate despite causing marked inhibition of glyceryl trinitrate and isosorbide dinitrate. Spermine NONOate (100 microM) caused a 35 fold increase in guanosine 3'5' cyclic monophosphate (cyclic GMP) above basal levels in pulmonary artery rings. ODQ (3 microM) abolished this cyclic GMP production but did not inhibit corresponding relaxant responses. Similar results were seen with another NONOate (MAHMA NONOate; 10 microM). ODQ-resistant relaxation to spermine NONOate (i. e. relaxation seen in the presence of 10 microM ODQ) was inhibited by potassium (80 mM), charybdotoxin (300 nM), iberiotoxin (300 nM), apamin (100 nM), ouabain (1 mM) or thapsigargin (100 nM) but not by 4-aminopyridine (3 mM), glybenclamide (10 microM) or diltiazem (10 microM). Potassium, charybdotoxin, ouabain and thapsigargin also inhibited ODQ-resistant relaxation to FK409 ((+/-)-E:-4-ethyl-2-[E:-hydroxyimino]-5-nitro-3-hexenamide). We conclude that, on rat pulmonary artery, spermine NONOate can produce cyclic GMP-independent relaxation that involves, at least in part, activation of Na(+)/K(+)-ATPase, sarco-endoplasmic reticulum Ca(2+)-ATPase and calcium-activated potassium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号