首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hanazono  Y; Chiba  S; Sasaki  K; Mano  H; Yazaki  Y; Hirai  H 《Blood》1993,81(12):3193-3196
Erythropoietin (EPO) is a hematopoietic growth factor that stimulates the proliferation and differentiation of erythroid progenitor cells. Although the EPO receptor has no kinase domain, EPO rapidly induces tyrosine phosphorylation of several proteins in EPO-responsive cells. Therefore, the receptor activation by the ligand could induce tyrosine- kinase activity of unidentified cellular protein(s). Here we show that c-fps/fes proto-oncogene product (p92c-fes), nonreceptor tyrosine kinase, is tyrosine-phosphorylated on treatment with EPO in a human erythroleukemia cell line TF-1 that is responsive to granulocyte- macrophage colony-stimulating factor, interleukin-3, and EPO. In addition, the kinase activity of p92c-fes was shown to be enhanced by treatment with EPO. Therefore, p92c-fes could be implicated in a signaling pathway triggered by EPO in human EPO-responsive cells.  相似文献   

2.
OBJECTIVE: Human blood platelets are easily available physiologic target cells for thrombopoietin (TPO). TPO up-regulates platelet aggregation and alpha-granule secretion induced by various agonists. We investigated the role of phosphatidylinositol 3-kinase (PI3K) and its association with Gab1 in TPO-mediated up-regulation of platelet function. MATERIALS AND METHODS: PI3K inhibitors (wortmannin and LY294002) and a MAP/ERK-kinase (MEK) inhibitor (PD98059) were used to investigate the role of these kinases in TPO-mediated up-regulation of platelet function. To elucidate the molecules associated with PI3K, we performed immunoprecipitation and pull-down experiments followed by immunoblotting. In vitro kinase assay also was performed to detect extracellular signal-regulated kinase (ERK) kinase activity. RESULTS: TPO up-regulated platelet alpha-granule secretion and aggregation induced by thrombin, which was dose-dependently inhibited by preincubation with wortmannin or LY294002. Immunoprecipitation and pull-down experiments revealed that regulatory subunit of PI3K, p85, was rapidly associated with tyrosine-phosphorylated Gab1 via its n- and c-terminal SH2 domains. Pretreatment of platelets with TPO dramatically augmented the thrombin-induced ERK activation, which was almost completely inhibited by LY294002. Furthermore, a MEK inhibitor, PD98059, not completely but significantly inhibited TPO-mediated up-regulation of thrombin-induced alpha-granule secretion. CONCLUSION: TPO induces the association of tyrosine-phosphorylated Gab1 with p85-PI3K. In downstream signaling, ERK is PI3K-dependently activated, which plays a critical role for TPO-mediated up-regulation of platelet function.  相似文献   

3.
In the present study we analyzed the role of phophatidylinositol-3 kinase (PI-3K) in B chronic lymphocytic leukemia (B-CLL) cells. PI-3K is activated by many stimuli and is linked to several different signaling pathways. We demonstrated that inhibition of PI-3K by a specific inhibitor, LY294002, induced apoptosis in B-CLL cells in vitro. This effect was specific for the inhibition of PI-3K because inhibition of other signaling pathways such as extracellular signaling-regulated kinase (ERK), p38, or p70S6 kinase did not affect spontaneous apoptosis. Furthermore, PI-3K was constitutively activated in freshly isolated B-CLL cells. Corresponding to enhanced apoptosis, LY294002 down-regulated expression of the antiapoptotic proteins X-linked inhibitor of apoptosis protein (XIAP) and Mcl-1. Next, we investigated which factors downstream of PI-3K were activated in B-CLL cells. We demonstrated that protein kinase B/Akt is expressed in all tested CLL samples but no activation of Akt was detected. In contrast, we observed a constitutive activation of protein kinase Cdelta (PKCdelta) in freshly isolated B-CLL cells. PKCdelta is linked to PI-3K and is phosphorylated at Thr505 in response to PI-3K activation. We further demonstrated that tyrosine phosphorylation and activity of PKCdelta were dependent on PI-3K activity in B-CLL cells. Inhibition of PKCdelta by the specific inhibitor Rottlerin strikingly enhanced apoptosis. In contrast, peripheral blood B cells of healthy donors were resistant to inhibition of PI-3K or PKCdelta. We conclude that activated PI-3K might be important in the pathogenesis of B-CLL, and survival signals might be mediated via PKCdelta. Therefore, inhibition of PI-3K or PKCdelta may be an innovative approach to treat B-CLL.  相似文献   

4.
5.
6.
The present study is designed to test whether phosphatidylinositol 3-kinase (PI3-kinase) has a role in the signaling pathway in ischemic preconditioning (PC) and whether it is proximal or distal to protein kinase C (PKC). Before 20 minutes of global ischemia, Langendorff-perfused rat hearts were perfused for 20 minutes (control); preconditioned with 4 cycles of 5-minute ischemia and 5-minute reflow (PC); treated with either wortmannin (WM) or LY 294002 (LY), each of which is a PI3-kinase inhibitor, for 5 minutes before and throughout PC; treated with 1,2-dioctanoyl-sn-glycerol (DOG), an activator of PKC for 10 minutes (DOG); treated identically to the DOG group except with WM added 10 minutes before and during perfusion with DOG; or treated with either WM or LY for 25 minutes. Recovery of left ventricular developed pressure (LVDP; percentage of initial preischemic LVDP), measured after 30 minutes of reflow, was improved by PC (72+/-2% versus 36+/-4% in control; P<0.001), and this was blocked by WM and LY (41+/-4% and 43+/-5%, respectively; P<0.05 compared with PC). DOG addition improved postischemic LVDP (67+/-6%; P<0.001 compared with control), but in contrast to its effect on PC, WM did not completely eliminate the protective effect of DOG (52+/-4%; P>0.05 compared with DOG; P<0.05 compared with control). PC induced phosphorylation of protein kinase B and translocation of PKC epsilon, and it increased NO production, and these effects were blocked by WM, which suggests a role for PI3-kinase in PC upstream of PKC and NO.  相似文献   

7.
Kitanaka  A; Ito  C; Nishigaki  H; Campana  D 《Blood》1996,88(2):590-598
The signalling pathways that arrest the cell cycle and trigger cell death are only partially known. Dimerization of CD38, a 45-kD transmembrane type II glycoprotein highly expressed in immature B cells, inhibits cell growth and causes apoptosis in normal and leukemic B-cell progenitors, but the molecular mechanisms underlying these cellular responses are unknown. In the present study, we found that CD38 ligation in the immature B-cell lines 380, REH, and RS4;11 caused rapid tyrosine phosphorylation of the protein product of the proto- oncogene c-cbl. Dimerization of CD38 was accompanied by the association of cbl with the p85 subunit of phosphatidylinositol 3-kinase (Pl 3-K), resulting in markedly increased Pl 3-K activity in antiphosphotyrosine and anti-cbl immunoprecipitates. Wortmannin and LY294002, two potent inhibitors of Pl 3-K, rescued immature B cells from CD38-mediated growth suppression. This effect was observed not only in model B-cell lines, but also in cultures of leukemic lymphoblasts from patients, and in normal bone marrow B-cell progenitors as well. Concentrations of inhibitors that reversed cellular responses to CD38 significantly decreased Pl 3-K activity. By contrast, rapamycin, a p70 S6-kinase inhibitor, did not rescue immature B cells from CD38-mediated suppression. These results suggest that Pl 3-K activity is essential for CD38-mediated inhibition of lymphopoiesis and that cbl and Pl 3-K are regulatory molecules whose activation can result in suppression of cell proliferation and apoptosis in immature lymphoid cells.  相似文献   

8.
Abstract: To evaluate the effect of IL-4 on the growth of leukemic cells from adult T-cell leukemia (ATL) patients (ATL cells) and determine whether the IL-4 autocrine mechanism is involved in the growth of ATL cells, we studied the proliferative response of ATL cells, from 11 patients, cultured in the presence or absence of IL-4 in vitro. Leukemic cells from 10 of the 11 patients examined proliferated in response to both IL-2 and IL-4 in a dose-dependent manner. The proliferative response to IL-4 was higher than that obtained with IL-2 in 8 patients. The expression of the IL-2 receptor (IL-2R) αα-chain in leukemic cells from some patients was also enhanced by IL-4. The IL-4 receptor was demonstrated by flow cytometry on the surface of ATL cells. Neither IL-4-induced proliferation of ATL cells nor IL-4-induced IL-2R expression on ATL cells was inhibited by anti-Tac or anti-IL-2 antibody and, therefore, these effects of IL-4 are considered independent of endogenous IL-2 activity. However, IL-2 and IL-4 were undetectable in the culture supernatants of ATL cells from any patient by enzyme-linked immunosorbent assay. Interferon-γ (IFN-γ) partially inhibited IL-2- or IL-4-induced proliferation of ATL cells. These results suggest that leukemic cells from ATL patients proliferate by an IL-2 or IL-4 paracrine mechanism in lymphoid tissue in vivo and that IFN-γ inhibits IL-2- or IL-4-induced proliferation of ATL cells.  相似文献   

9.
Interleukin-3 and Interleukin-4 in Childhood Brucellosis   总被引:1,自引:0,他引:1  
BACKGROUND: The Th1/Th2 cytokine balance seems to be involved in the susceptibility or resistance to Brucella infection, however the precise role of interleukins in human brucellosis has not been thoroughly explored. PATIENTS AND METHODS: The serum levels of interleukin-3 (IL-3) and interleukin-4 (IL-4) were measured by enzyme-linked immunosorbent assay (Quantikines, R&D Systems) in five children hospitalized for brucellosis and in a control group comprising ten children who were residents of the same area. RESULT: IL-4 levels were significantly increased during both the acute phase (p = 0.0036) and convalescence (p = 0.026) as compared to controls. IL-3 levels were mildly increased during the acute phase (p = 0.026) without any significant difference noted during convalescence (p = 0.271) as compared to controls. Both IL-3 and IL-4 levels were neither related to hemoglobin values, nor to red and white blood cell, neutrophil, lymphocyte and platelet counts. CONCLUSION: Serum IL-4 levels are increased in hospitalized children with symptomatic brucellosis, a finding suggestive of a Th2 response leading to severe infection.  相似文献   

10.
Interleukin-6 induces hepcidin expression through STAT3   总被引:27,自引:1,他引:26  
Wrighting DM  Andrews NC 《Blood》2006,108(9):3204-3209
  相似文献   

11.
12.
Miura  O; Nakamura  N; Quelle  FW; Witthuhn  BA; Ihle  JN; Aoki  N 《Blood》1994,84(5):1501-1507
Protein tyrosine phosphorylation has been hypothesized to play a key role in the growth signaling induced by erythropoietin (Epo), although the Epo receptor (EpoR), a member of the cytokine receptor superfamily, lacks a tyrosine kinase domain. Recently, the JAK2 tyrosine kinase was shown to be activated on Epo stimulation and to bind to the cytoplasmic domain of EpoR in vitro. To further explore the mechanisms of activation of JAK2 in EpoR-mediated signal transduction, we assessed the conditions for association of JAK2 with EpoR in vivo. Epo stimulation rapidly induced association of JAK2 with the EpoR in an interleukin 3 (IL-3)-dependent cell line transfected with the wild-type EpoR. On Epo stimulation JAK2 also associated with a truncated mutant EpoR (H-mutant), which is mitogenetically active but not tyrosine phosphorylated, indicating that association does not require receptor phosphorylation and occurs in the membrane proximal region. However, association was not detected with mutant receptors inactivated by an internal deletion or a point mutation, Trp282 to Arg, in a membrane- proximal cytoplasmic region (PB or PM4 mutant, respectively). Immune complex kinase assays of anti-EpoR immunoprecipitates also revealed that activated JAK2 associates with the EpoR in Epo-stimulated cells. By this approach, association also occurred with the mitogenically active H mutant but not with the mitogenically inactive PB or PM4 mutants. In the immune complex kinases assays, EpoR, JAK2, and a 150-kD protein were phosphorylated on tyrosine. Taken together, the results further support the hypothesis that, on Epo stimulation, JAK2 associates with the membrane-proximal cytoplasmic region of the EpoR to be activated and induces tyrosine phosphorylation of cellular substrates, including the EpoR, to transduce a growth signal.  相似文献   

13.
Dadi  H; Ke  S; Roifman  CM 《Blood》1994,84(5):1579-1586
Ligation of the interleukin-7 receptor (IL-7R) results in a rapid phosphorylation of tyrosine residues on multiple substrates. In addition, we have recently shown that the IL-7R mediates activation of phosphatidylinositol-3 (PI-3) kinase. Because PI-3 kinase activity can be immunoprecipitated with antiphosphotyrosine antibodies in most receptor systems studied, it has been examined that either PI-3 kinase or an associated protein become tyrosine-phosphorylated after ligand binding. We studied here the possibility that PI-3 kinase, which is directly linked to mitogenic responses in growth factor receptors, is tyrosine-phosphorylated after stimulation of the IL-7R. Using anti-p85 alpha or anti-p85 beta antibodies raised against the p85 subunit of PI- 3 kinase for immunoprecipitation and subsequent blotting with antiphosphotyrosine clearly shows that IL-7-stimulated human precursor cells contain both p85 alpha and p85 beta proteins phosphorylated on tyrosine residues. Specific protein tyrosine kinase inhibitors such as tyrphostin AG-490 block total cell lysate phosphorylation and tyrosine phosphorylation on p85. Similar concentrations of this inhibitor also block in vitro and in vivo PI-3 kinase activity suggesting that this enzyme activation is dependent on the phosphorylation event of p85. In addition, AG-490 blocks IL-7-mediated proliferation in a dose-dependent manner, suggesting a link between the early events of PI-3 kinase phosphorylation and activation with IL-7R-induced cell growth.  相似文献   

14.
15.
随着生活水平的提高、饮食习惯的改变以及糖尿病和代谢综合征患病率的急速上升, 非酒精性脂肪性肝病的发病率不断的升高. 最近的研究表明此病与胰岛素介导的磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI-3K)传导通路有着密切的关系, 他在非酒精性脂肪性肝病发病机制中起着关键的作. 本文就PI-3K在非酒精性脂肪性肝病中的作用机制研究现状作一综述.  相似文献   

16.
Apoptosis of human neutrophils is a crucial mechanism for the resolution of inflammation. We previously showed that insulin-like growth factor-1 (IGF1) delays spontaneous neutrophil apoptosis without influencing the secretion of cytokines by these cells. In the present study, we further addressed the role of IGF1 in regulating neutrophil survival in the presence of other factors present during inflammation, and the mechanism involved in delaying apoptosis. We show that IGF1 delays neutrophil apoptosis triggered by the agonistic anti-Fas antibody CH11 and that the effect of IGF1 is comparable in magnitude to that of the acknowledged anti-apoptotic cytokines interferon-gamma (IFNG) and granulocyte-macrophage colony-stimulating factor (GM-CSF; now known as CSF2). Furthermore, IGF1 exerted additional effects on cell survival in the presence of these cytokines. IGF1 did not affect Fas expression or activation by anti-Fas of caspase-8, but inhibited the depolarization of the mitochondrial membrane. Inhibitor studies indicate that the phosphatidylinositol-3 kinase (PI3K) pathway, but not the MEK-ERK pathway, mediates the effects of IGF1. However, in contrast to CSF2, IGF1 did not induce phosphorylation and translocation to the membrane of AKT, the canonical downstream target of PI3K. We therefore speculate that other downstream targets of PI3K are involved in the delay of neutrophil apoptosis by IGF1, possibly through stabilization of the mitochondrial membrane.  相似文献   

17.
18.
Interleukin-11 induces Th2 polarization of human CD4(+) T cells   总被引:8,自引:1,他引:8  
Exploration of the immunomodulatory activities of the multifunctional cytokine interleukin-11 (IL-11) has prompted several therapeutic applications. The immunomodulatory effects of IL-11 on human antigen-presenting cells and on T cells were investigated. IL-11 inhibited IL-12 production by activated CD14(+) monocytes, but not by mature dendritic cells (DCs) stimulated via CD40 ligation. Moreover, IL-11 did not affect either DC maturation, as demonstrated by phenotypic analysis and evaluation of cytokine production, or DC generation from progenitor cells in the presence of specific growth factors. Molecular analysis demonstrated the expression of IL-11 receptor messenger RNA in highly purified CD14(+) monocytes, CD19(+) B cells, CD8(+), and CD4(+) T cells, and CD4(+)CD45RA(+) naive T lymphocytes. In keeping with this finding, IL-11 directly prevented Th1 polarization of highly purified CD4(+)CD45RA(+) naive T cells stimulated with anti-CD3/CD28 antibodies, as demonstrated by significant increases of IL-4 and IL-5, by significantly decreased interferon-gamma production and by flow cytometry intracellular staining of cytokines. Coincubation of naive T cells with DCs, the most potent stimulators of Th1 differentiation, did not revert IL-11-mediated Th2 polarization. Furthermore, parallel experiments demonstrated that the activity of IL-11 was comparable with that induced by IL-4, the most effective Th2-polarizing cytokine. Taken together, these findings show that IL-11 inhibits Th1 polarization by exerting a direct effect on human T lymphocytes and by reducing IL-12 production by macrophages. Conversely, IL-11 does not exert any activity on DCs. This suggests that IL-11 could have therapeutic potential for diseases where Th1 responses play a dominant pathogenic role.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号