首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Human embryonic stem (hES) cell lines were first cultured using fetal mouse fibroblasts as feeder cells. To avoid feeders and to reduce the amount of xeno-components, Matrigel- and laminin-coated dishes, and conditioned mouse feeder cell medium have been used, and hES cells have also been cultured on human fetal muscle and skin, and adult Fallopian tube epithelial cells. METHODS: We used post-natal, commercially available human foreskin fibroblasts as feeder cells. Inner cell masses (ICM) were isolated from five supernumerary blastocysts, obtained as donations from couples undergoing IVF treatment. RESULTS: Two ICM showed continuous growth. One line, HS181, has been in culture for 41 weeks with a doubling time of 24-36 h. It continues to express stem cell markers alkaline phosphatase, Oct-4, stage-specific embryonic antigen (SSEA)-4 and tumour-related antigen (TRA)-1-60. The karyotype is 46,XX. Pluripotency was demonstrated by teratoma formation in immunodeficient mice. In high-density cultures, spontaneous differentiation to beating cells and neuron-like cells was seen. The second line, HS207, was cultured for 9 weeks and cryopreserved, as were samples of line HS181. Both lines began to grow after thawing. CONCLUSIONS: We used successfully human foreskin fibroblasts as feeder cells for derivation and continued undifferentiated growth of hES cells. These feeder cells are convenient for IVF units, because no fetal human tissues or tissue from operations are needed.  相似文献   

2.
Transplanted embryonic stem (ES) cells can be integrated into the retinas of adult mice as well-differentiated neuroretinal cells. However, the transplanted ES cells also have a tumorigenic activity as they have the ability for multipotent differentiation to various types of tissues. In the present study, human ES (hES) cells were transplanted into adult nude mouse retinas by intravitreal injections 20 h after intravitreal N-methyl-d-aspartate (NMDA) administration. After the transplantation of hES cells, the folate antagonist, methotrexate (MTX) was administrated in order to control the differentiation of the transplanted hES cells. Neuronal differentiation and teratogenic potential of hES cells were examined immunohistochemically 5 weeks after transplantation. The proliferative activity of transplanted cells was determined by both the mitotic index and the Ki-67 proliferative index. Disappearance of Oct-4-positive hES cells showing undifferentiated morphology was observed after intraperitoneal MTX treatment daily, for 15 days. Decreased mitotic and Ki-67 proliferative indices, and increased neuronal differentiation were detected in the surviving hES cells after the MTX treatment. These results suggest two important effects of intraperitoneal MTX treatment for hES cells transplanted into nude mouse retina: (1) MTX treatment following transplantation induces neuronal differentiation, and (2) MTX decreases proliferative activity and tumorigenic potential.  相似文献   

3.
One of the most pertinent concerns of using differentiated cells derived from human embryonic stem cells (hESC) is the presence of residual undifferentiated hESC, because they carry a risk of teratoma formation. A new cell-cell separation approach that eliminates teratoma-forming hESC in order to ensure safer cell therapy was developed. By combining antibodies (IgMs or IgGs) for the selective removal of undifferentiated hESC using magnetic activated cell sorting (MACS) followed by selective killing of residual hESC with the unique cytotoxic antibody mAb 84, the required purity of differentiated hESC can be achieved. The applicability and robustness of this separation strategy is shown here in a case study using pools of undifferentiated hESC and human fibroblast cells at different ratios (5%-50% hESC) to reflect the different scenario of contaminating hESC in a differentiated cell population. Notably, 97.2%-99.7% of the hESC were removed after the MACS step and 99.1%-100%, after the mAb 84 treatment step, which was confirmed by double-staining flow cytometry and RT-qPCR analysis. These in vitro findings were further validated in an in vivo severe combined immunodeficiency (SCID) mouse model. Importantly, we observed the absence of teratoma formation in eight out of nine SCID mice 28 weeks postinjection of cells after the MACS step, whereas teratomas were observed in all of the controls. Thus, the combination of MACS with the unique cytotoxic antibody mAb 84 constitutes an indispensible tool for successful and safe cell therapy.  相似文献   

4.
Derivation and culture of human embryonic stem cells (hESCs) without animal-derived material would be optimal for cell transplantation. We derived two new hES (HS293 and HS306) and 10 early cell lines using serum replacement (SR) medium instead of conventional fetal calf serum and human foreskin fibroblasts as feeder cells. Line HS293 has been in continuous culture, with a passage time of 5-8 days, since October 2003 and is at passage level 56. Line HS306 has been cultured since February 2004, now at passage 41. The lines express markers of pluripotent hESCs (Oct-4, SSEA-4, TRA-1-60, TRA-1-81, GCTM-2, and alkaline phosphatase). The pluripotency has been shown in embryoid bodies in vitro, and the pluripotency of line 293 has also been shown in vivo by teratoma formation in severe combined immunodeficiency/beige mice. The karyotype of HS293 is 46,XY, and that of HS306 is 46,XX. Ten more early lines have been derived under similar conditions since September 2004. We conclude that hESC lines can be successfully derived using SR medium and postnatal human fibroblasts as feeder cells. This is a step toward xeno-free conditions and facilitates the use of these cells in transplantation.  相似文献   

5.
An approach of using RFP-transfected human foreskin fibroblasts (hFS-RFP) to support the growth of GFP expressing human embryonic stem cells (hES; HS181-GFP) is reported. The two-color system was applied to detect interactions between hFS and human embryonic stem cells (hES). After overnight culture, the hES cell colonies showed a behavior of "pushing away" the underlying feeder cells. This phenomenon occurred with both a low and high density of feeders. The density of the feeder cell layer, however, influenced the growth pattern of hES cell colonies. At a high feeder cell density, the hES colonies were more pointed and aligned with the direction of the fibroblasts, whereas less dense feeder layers allowed a more rounded and flat hES colony formation. Not surprisingly, a small fraction of mitotically inactivated feeder cells reattached after passage and remained viable in the cultures for up to four subsequent passages. The prospect of using the two-color system for detection of possible fusion events between hES cells and feeder cells was assessed by screening a large number of cell cultures for double RFP/EGFP expressing cells. The results indicate that fusion events are extremely rare (<10(-6)), or alternatively that after fusion the dual expression of both EGFP and RFP is not easily detected for other reasons. In summary, a two-color system allows analysis of colony formation and also helps to identify and follow the differentiation of cells.  相似文献   

6.
Human embryonic stem cells (hESCs) provide a renewable source of a variety of cell types with the potential for use in both scientific research and clinical cell-based therapy. Several hESC lines have previously been isolated and characterized, however, the majority of these lines were generated in the presence of animal serum and animal-derived feeder cells. Therefore, the exposure of the hESC to animal products may have induced phenotypic and/or genomic changes in the hESC lines not characteristic of normal hESC. Moreover, those hESC lines exposed to animal components may not be used for therapeutic applications due to the risk of graft rejection and pathogenic transmission from animal sources. In this study, we characterized six new hESC lines derived from human blastocysts under minimal-animal component conditions and cultured with human fetal lung fibroblasts. The hESC lines retained the ability to self-renew, are karytopically normal, and express stage-specific embryonic antigen-3 (SSEA-3), SSEA-4, TRA-1-60, and TRA-1-81, but not SSEA-1, markers of pluripotent hESC. In addition, we show that telomerase activity decreased in each of the hESC lines following differentiation into embryoid bodies, albeit to different degrees. Finally, we demonstrate that the hESC lines are capable of differentiating into the three embryonic germ layers in vitro and form complex teratomas in vivo. This suggests that the hESC lines described here are valuable models for both future in vitro and in vivo studies, which may aid in the progression toward clinical-grade cell therapy.  相似文献   

7.
Our current knowledge of how human tissues grow and develop is limited. We need to increase our understanding of tissue formation if we are to fully realize the potential of stem cells as a source of material for research into health and disease and possible therapeutic applications. Transplanted pluripotent human embryonic stem cells (hESCs) provide a potential system to model and investigate cell differentiation in humans. hESCs transplanted into immune-deficient mice form complex teratomas consisting of a range of differentiated somatic tissues, some of which appear highly organized and resemble structures normally identified in the embryo and adult. Analysis of such tumors may provide a unique opportunity to study organogenesis and lead to novel approaches in bioengineering and the growth of functioning structures composed of a range of alternative cell types. However, little has been done to characterize the developmental potential of hESCs after transplantation. This concise review presents evidence for the ability of hESCs to differentiate in vivo and highlights some of the prominent questions that need to be addressed if transplantation is to be used as a research tool to study hESC differentiation.  相似文献   

8.
Here we describe the first report of three human embryonic stem cell (hESC) clones, hES 3.1, 3.2, and 3.3, derived from the parent line hES3 by sorting of single-cell preparations by flow cytometry. The viability of single-cell preparations before and after cell sorting remained >98%. The hESC were selected by size gating and forward-angle light scatter and were dispersed directly as single cell/ well into 96-well plates containing human fetal fibroblasts as feeder layers. Single stem cell dispersion into 96-well plates was confirmed by using cells from a hES3 line that constitutively expressed green fluorescence protein (eGFP) under similar conditions of flow cytometry. Three clones were obtained from the parent line hES3 -- hES3.1, 3.2, and 3.3 -- and they have been in continuous culture for more than 1 year. The cloning efficiency was less than <0.5%. These hESC clones show normal stem cell characteristics, such as undifferentiated growth, high nucleocytoplasmic ratio, the same karyotype as that of the parent line (46 XX), stem cell surface markers (i.e., SSEA3, SSEA4, OCT4, TRA-1-60, and TRA-1-81), and gene expression for pluripotency (Oct-4 and nanog). They all formed embryoid bodies in suspension cultures, and after seeding in culture plates they showed pluripotency in vitro by forming cell lineages derived from all three germ layers as indicated by expression of the ectodermal marker nestin, the mesodermal marker renin, and the endodermal markers alpha-fetoprotein and GATA6. All clones showed normal expression of alkaline phosphatase activity, a marker of in vitro pluripotency. When hESC clones (1-2 x 10(6) total) were injected into nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice under the kidney capsule, all formed teratomas within 6-8 weeks. Analysis of the stem cell surface marker TRA-1-160 by flow cytometry showed nonsignificant (p < 0.05) differences between the clones and the parent line. The clones also differed in their expression of genes, with only one, hES 3.2, expressing the endodermal markers, i.e., alpha-fetoprotein and GATA6. The ability to produce clones from a parent hESC line rapidly by FACS sorting will help provide a homogeneous population of cells for achieving uniformed lineage specifications for future transplantation therapies and biomedical research.  相似文献   

9.
Sacrococcygeal teratomas (SCTs) are benign tumours of the newborn with absolute indication for surgery directly after birth. We recently described the presence of stem cells positive for the stem cell markers nanog and Oct4 in SCTs. Here we report the isolation of three stem cell lines from three different SCTs. Cells were propagated in mesenchymal or in embryonic stem cell medium. Non‐clonal homogeneous stem cell lines were obtained after two to three passages and characterized in vitro by immunocytochemistry, RT‐PCR, western blot, FACS analysis, and metaphase spreads. The differentiation potential was tested in vitro and in vivo. The isolated cell lines, which we refer to as human sacrococcygeal teratoma stem cells (hSctSCs), express nanog, Oct4 and stella, and are negative for malignancy markers alpha‐fetoprotein and carcinoembryonic antigen. They can be induced in vitro to express neuronal, osteogenic, and chondrogenic traits. After grafting in vivo, spontaneous integration into the neural crest of the chick embryo and teratoma formation in the nude mouse were obtained. Our results indicate that SCTs are derived from remnants of the epiblast‐derived primitive streak, which in the human embryo normally regresses but forms teratomas in children affected with SCT. The hSctSCs therefore may be comparable to mouse epiblast‐derived stem cells (EpiSCs) and share characteristic features with human embryonic stem (hES) cells. Thus, SCT tissue obtained after surgery appears to be a novel source for the generation of human stem cells without the ethical implications associated with hES cells. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

10.
11.
12.
Human embryonic stem (hES) cells are important research toolsin studies of the physiology of early tissue differentiation.In addition, prospects are high regarding the use of these cellsfor successful cell transplantation. However, one concern hasbeen that cultivation of these cells over many passages mightinduce chromosomal changes. It is thus important to investigatethese cell lines, and check that a normal chromosomal contentis retained even during long-term in vitro culture. Comparativegenomic hybridization (CGH) was used to analyse three hES celllines derived in our laboratory and cultured continuously for30–42 weeks, comprising 35–39 cell passages. CGHcould be successfully performed in 48 out of a total of 50 isolatedsingle cells (96%). All three lines (HS181, HS235 and HS237)were shown to have a normal chromosomal content when analysedby both single cell CGH and by karyotyping up to passages 39,39 and 35 respectively. No aneuploidies or larger deletionsor amplifications were detected, and they were female (46,XX).However, HS237 was reanalysed at passage 61, and at that pointan aberrant X chromosome was detected by karyotyping. The aberrationwas confirmed and characterized by single cell CGH and fluorescencein situ hybridization analysis, 46,X,idic(X)(q21). Thus, chromosomalaberrations may occur over time in stem cell lines, and continuousanalysis of these cells during cultivation is crucial. Singlecell CGH is a method that can be used for continuous analysisof the hES cell lines during cultivation, in order to detectchromosome imbalance.  相似文献   

13.
14.
The use of human embryonic stem (hES) cells in genotoxicity screening can potentially overcome the deficiencies associated with using immortalized cell lines, primary explanted somatic cells, and live animal models. Hence this study sought to compare the responses of hES cells and primary explanted somatic cells (IMR-90 cells, human fetal lung fibroblasts) to genotoxic stress, to evaluate whether hES cells can accurately reflect the normal physiology of human somatic cells. The effects of mitomycin C (MMC) on the chromosomal stability of hESC and IMR-90 was assayed and compared by fluorescence in situ hybridization (FISH) with telomere-specific peptide nucleic acid and multicolor (m) FISH techniques. The results showed that, the percentage of aberrant cells increased from 6% in the untreated control to 57.5% at the higher dose of 0.06 microg/ml MMC (9.6-fold increase) group in the case of IMR-90 cells, whereas hES cells displayed a corresponding increase from 6% to 28% (4.6-fold increase). Telomere FISH ascertained that the main types of damage induced by MMC are chromosomal breaks and the loss of telomeric signals. No fusions were observed in all samples analyzed. This was further confirmed by mFISH, which showed that fusions and translocations were not the type of aberration induced by MMC, with no such aberrations being observed in all samples analyzed. Hence, hES cells of the H1 line are apparently more resistant to MMC-induced DNA damage, as compared to the IMR-90 cells. These results highlight possible intrinsic differences in response to damaging agents between hES cells and normal somatic cells.  相似文献   

15.
Human embryonic stem (hES) cells have the ability to self-renew while maintaining their pluripotency. The ability of stem cells to self-renew expansively is essential in both development and maintenance of adult tissues. ES cell lines were first generated from mouse blastocysts, these lines provided much needed information regarding ES cell propagation, growth factor dependence, and marker expression. However, the application potential of murine models is restricted in value because many differences between mouse and human ES cells have since been identified. The process of hES cells self-renewal appears to be regulated by many different pathways; however, the molecular mechanisms enabling this process are not fully characterized. Further defining these mechanisms will enable growth of hES cells under defined conditions and aid controlled differentiation of cells into specified lineages, in turn providing cells suitable for therapeutic applications. This review provides a summary of the mechanisms known to control self-renewal and pluripotency in hES cells.  相似文献   

16.
Long-term cultures of human embryonic stem (hES) cells require a feeder layer for maintaining cells in an undifferentiated state and increasing karyotype stability. In routine hES cell culture, mouse embryonic fibroblast (MEF) feeders and animal component-containing media (FBS or serum replacement) are commonly used. However, the use of animal materials increases the risk of transmitting pathogens to hES cells and therefore is not optimal for use in cultures intended for human transplantation. There are other limitations with conventional feeder cells, such as MEFs, which have a short lifespan and can only be propagated five to six passages before senescing. Several groups have investigated maintaining existing hES cell lines and deriving new hES cell lines on human feeder layers. However, almost all of these human source feeder cells employed in previous studies were derived and cultured in animal component conditions. Even though one group previously reported the derivation and culture of human foreskin fibroblasts (HFFs) in human serum-containing medium, this medium is not optimal because HFFs routinely undergo senescence after 10 passages when cultured in human serum. In this study we have developed a completely animal-free method to derive HFFs from primary tissues. We demonstrate that animal-free (AF) HFFs do not enter senescence within 55 passages when cultured in animal-free conditions. This methodology offers alternative and completely animal-free conditions for hES cell culture, thus maintaining hES cell morphology, pluripotency, karyotype stability, and expression of pluripotency markers. Moreover, no difference in hES cell maintenance was observed when they were cultured on AF-HFFs of different passage number or independent derivations.  相似文献   

17.
The utilization of human embryonic stem cells (hESC) in regenerative medicine largely depends on the development of technologies that will allow efficient genetic manipulation of the cells in vitro. Although a few studies have described the transfection of hESC for generation of reporter lines stably expressing specific transgenes driven by different promoters, the optimal choice of promoter system for driving transgene in hESC has yet to be elucidated. We show for the first time that Chinese hamster elongation factor-1 alpha (CHEF1) promoter robustly drove reporter gene expression higher than the human elongation factor 1 alpha (hEF1 alpha), other constitutive Chinese hamster promoters, human cytomegalovirus (CMV) immediate early enhancer/promoter and SV40 promoters in hESC by quantitative analysis. We also successfully generated stably transfected hESC lines using this CHEF1 promoter system and demonstrated that they continued to express enhanced green fluorescent protein (EGFP) during prolonged undifferentiated proliferation, in differentiated embryoid bodies (EBs), and in teratomas without transgene silencing. By immunofluorescence staining and D ow cytometry analysis, the pluripotent markers, OCT-4, SSEA-4, and TRA-1-60, continued to be expressed in undifferentiated CHEF1-EGFP expressing hESC lines. When the stably transfected hESC were directed to differentiate into neural precursors in vitro, high-level EGFP expression was maintained and co-expression of neural markers, Nestin, and beta-tubulin III was observed. The morphology, karyotype, and telomerase activity of CHEF1-EGFP expressing hESC were normal after >50 continuous passages, and the cells retained the ability to differentiate into derivatives of the three germ layers in vitro as confirmed by RT-PCR analysis and immunocytochemical staining and in vivo teratoma formation. Therefore, stable CHEF1-EGFP hESC lines retained the capability for self-renewal and pluripotency. The novel CHEF1 promoter system described here enables high-level transgene expression in the stably transfected hESC. It may have signi, cant implication for uses in bioprocess development and future development of gene-modified hESC in tissue regeneration and transplantation applications.  相似文献   

18.
We have developed a novel culture technique for human embryonic stem cells (hESCs) using a porous membrane with feeder cells. The feeder cells were seeded and attached to the bottom of a porous membrane and, subsequently, hESCs were cultured on the top of the membrane. This porous membrane technique (PMT) allowed hESCs to be successfully cultured and to be effectively and efficiently separated from the feeder cell layer without enzyme treatment. hESCs being cultured by PMT were observed to interact with feeder cells through pores of membrane, where the interaction was dependent on the pore size of the membrane used. It was also revealed that the number of attached hESC colonies depended on the concentration of feeder cells on the bottom of the membrane. On the other hand, hESC colonies did not attach to porous membrane, as feeder cells were in the presence of culture dish, not the porous membrane. The hESCs cultured on porous membranes not only exhibited expression of several undifferentiated markers and a normal karyotype, but they also formed teratomas consisting of three germ layers in in vivo study. Compared with the mechanical isolation technique conventionally used, PMT significantly decreased mouse vimentin gene expression in cultured hESCs. Thus, a PMT for hESC culture would be a useful tool to exclude enzyme treatment and to reduce contamination from feeder cells simultaneously. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

19.
When implanted into immunodeficient mice, human embryonic stem cells (hESCs) give rise to teratoma, tumor-like formations containing tissues belonging to all three germ layers. The ability to form teratoma is a sine qua non characteristic of pluripotent stem cells. However, limited data are available regarding the effects of implantation site and the methods employed for implantation on the success rate of teratoma formation. In this study, the rate of teratoma formation in immunodeficient mice was site dependent: subcutaneous (25-100%), intratesticular (60%), intramuscular (12.5%), and under the kidney capsule (100%). Co-injecting the hESCs with Matrigel increased subcutaneous teratoma formation efficiency from 25-40% to 80-100%. We did not observe site-specific differences in the teratoma composition at the histological level. However, subcutaneous teratomas were quite distinct, easy to remove, and caused minimal discomfort to the mice. Also, subcutaneous teratomas displayed larger proportion of solid tissues as opposed to cyst formation that dominated the teratomas formed at the other sites. Interestingly, a chromosomally abnormal hESCs with trisomy 20 formed teratomas where the ratio of differentiated to undifferentiated tissues was significantly decreased suggesting defective pluripotency of the cells. In conclusion, subcutaneous implantation of hESCs in presence of Matrigel appears to be the most efficient, reproducible, and the easiest approach for teratoma formation by hESCs. Also, teratoma formation can be employed to study the development defects exhibited by the chromosomally abnormal hESC lines.  相似文献   

20.
陈红  钱坤  张苏明  朱桂金 《解剖学报》2007,38(4):429-435
目的 寻找人胚胎干细胞(hESC)建系材料来源.方法 选用IVF低形态学评分的D3胚胎行序贯囊胚培养,用免疫外科的方法去除滋养细胞,将得到的内细胞团(ICM)接种于丝裂霉素C灭活的小鼠胚胎成纤维细胞(MEFs)上培养5~8 d,每4~7 d传代1次,分别取不同代的hESC进行碱性磷酸酶(AKP)染色、转录因子OCT-4、阶段特异性胚胎抗原(SSEA)SSEA-4、SSEA-1、肿瘤排斥抗原(TRA)TRA-1-60、TAR-1-81、核型及体内外分化全能性鉴定.结果 130枚废弃的D3低形态学评分(评分<16)的胚胎培养出囊胚19枚,获得原代克隆5个,成功培养出两株hESC系,它们具有hESC的共同的生物学特性.结论 部分低形态学评分的D3废弃胚胎可发育成囊胚.囊胚形成率与形态学评分相关,这些胚胎可作为建立hESC系的材料来源之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号