首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilization of inorganic mesoporous materials in formulations of poorly water-soluble drugs to enhance their dissolution and permeation behavior is a rapidly growing area in pharmaceutical materials research. The benefits of mesoporous materials in drug delivery applications stem from their large surface area and pore volume. These properties enable the materials to accommodate large amounts of payload molecules, protect them from premature degradation, and promote controlled and fast release. As carriers with various morphologies and chemical surface properties can be produced, these materials may even promote adsorption from the gastrointestinal tract to the systemic circulation. The main concern regarding their clinical applications is still the safety aspect even though most of them have been reported to be safely excreted, and a rather extensive toxicity screening has already been conducted with the most frequently studied mesoporous materials. In addition, the production of the materials on a large scale and at a reasonable cost may be a challenge when considering the utilization of the materials in industrial processes. However, if mesoporous materials could be employed in the industrial crystallization processes to produce hybrid materials with poorly soluble compounds, and hence to enhance their oral bioavailability, this might open new avenues for the pharmaceutical industry to employ nanotechnology in their processes.  相似文献   

2.
This study aims to evaluate the in vivo performance of ordered mesoporous silica (OMS) as a carrier for poorly water soluble drugs. Itraconazole was selected as model compound. Physicochemical characterization was carried out by SEM, TEM, nitrogen adsorption, DSC, TGA and in vitro dissolution. After loading itraconazole into OMS, its oral bioavailability was compared with the crystalline drug and the marketed product Sporanox® in rabbits and dogs. Plasma concentrations of itraconazole and OH–itraconazole were determined by HPLC-UV. After administration of crystalline itraconazole in dogs (20 mg), no systemic itraconazole could be detected. Using OMS as a carrier, the AUC0–8 was boosted to 681 ± 566 nM h. In rabbits, the AUC0–24 increased significantly from 521 ± 159 nM h after oral administration of crystalline itraconazole (8 mg) to 1069 ± 278 nM h when this dose was loaded into OMS. Tmax decreased from 9.8 ± 1.8 to 4.2 ± 1.8 h. No significant differences (AUC, Cmax, and Tmax) could be determined when comparing OMS with Sporanox® in both species. The oral bioavailability of itraconazole formulated with OMS as a carrier compares well with the marketed product Sporanox®, in rabbits as well as in dogs. OMS can therefore be considered as a promising carrier to achieve enhanced oral bioavailability for drugs with extremely low water solubility.  相似文献   

3.
The purpose of this work was to improve the oral bioavailability of poorly soluble drugs by incorporation into solid lipid nanoparticles (SLNs). All-trans retinoic acid (ATRA) was used as a poorly soluble model drug. Different formulations of SLNs loaded with ATRA were successfully prepared by a high-pressure homogenization method and using Compritol 888 ATO as lipid matrix. The particle size and distribution, drug loading capacity, drug entrapment efficiency (EE %), zeta potential, and long-term physical stability of the SLNs were investigated in detail. Drug release from two sorts of ATRA-SLN was studied and compared with the diffusion from ATRA solution in 0.1 M HCl, distilled water and phosphate buffer (pH 7.40), using a dialysis bag method. A pharmacokinetic study was conducted in male rats after oral administration of 8 mg kg(-1) ATRA in different formulations and it was found that the relative bioavailability of ATRA in SLNs was significantly increased compared with that of an ATRA solution. The amount of surfactant also had a marked effect on the oral absorption of ATRA with SLN formulations. Although an emulsion formulation also increased ATRA absorption, it was too unstable for use in clinical situations. The absorption mechanism of the SLN formulations was discussed. These results indicate that ATRA absorption is enhanced significantly by employing SLN formulations. SLNs offer a new approach to improve the oral bioavailability of poorly soluble drugs.  相似文献   

4.
The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.  相似文献   

5.
A physically stabilized dry emulsion dosage form reforming the original emulsion after rehydration was developed by spray-drying a liquid oil-in-water emulsion containing maltodextrin as carrier and sodium caseinate as emulsifying agent. Several oil:water as well as maltodextrin:water ratios were tested, the homogenization and spray-drying processes and the reconstitution properties were investigated and an optimum formulation was selected for poorly soluble drug incorporation, having an identical oil:water and carrier:water ratio of 10% (w/w) and a load of solid material of 20% (w/w). Lipophilic 5-phenyl-1,2-dithiole-3-thione (5-PDTT) was selected as a model drug. 5-PDTT release from the solid state emulsion was studied using an in vitro two-phase stirred model and the relative bioavailability of 5-PDTT in the dry emulsion was obtained in the rabbit after oral administration of the reconstituted emulsion, compared to a 5-PDTT-sulfobutyl ether 7 beta-cyclodextrin complex in solution. Incorporation of 5-PDTT in the oil phase neither affects the surface morphology of the powder nor the reconstitution, the droplet size or the drug releasing properties and, furthermore, allows a 3-fold improvement of 5-PDTT relative bioavailability in rabbit after oral administration. These results indicate that dry emulsions may be considered as relevant dosage forms to improve bioavailability of poorly absorbable lipophilic drugs.  相似文献   

6.
提高难溶性药物尼群地平溶出率和口服生物利用度的研究   总被引:2,自引:0,他引:2  
目的通过制剂手段提高难溶性药物尼群地平的体外溶出率和家犬体内的相对生物利用度。方法用共研磨法制备研磨混合物,并用差热分析法、X射线衍射法、显微镜法鉴别药物在共研磨混合物中的存在状态,在此基础上采用直接压片法制备口腔速崩片,测定体外溶出速率,所有试验均以物理混合物为参照进行比较;用HPLC法测定3只健康家犬分别口服尼群地平口腔速崩片(受试制剂)、市售普通片(参比制剂)后不同时间血浆中尼群地平的浓度,计算药物代谢动力学参数及相对生物利用度。结果共研磨混合物中尼群地平的粒径远小于物理混合物,并以微晶状态存在;以共研磨混合物制备的口腔速崩片的溶出速度和程度均大于以物理混合物制备的口腔速崩片;在家犬体内受试制剂和参比制剂的tmax分别为1.5 h和4.25 h,ρmax分别为176.54μg.L-1和111.12μg.L-1,AUC0-t分别为903.78μg.h.L-1和651.99μg.h.L-1,AUC0-∞分别为1 030.46μg.h.L-1和903.68μg.h.L-1,受试制剂的相对生物利用度为138.5%;受试制剂的体内吸收和体外溶出速率均高于参比制剂。结论通过制备共研磨混合物和口腔速崩片的方法,提高了尼群地平的体外溶出度和家犬体内的相对生物利用度。  相似文献   

7.
Nanocrystals, a carrier-free colloidal delivery system in nano-sized range, is an interesting approach for poorly soluble drugs. Nanocrystals provide special features including enhancement of saturation solubility, dissolution velocity and adhesiveness to surface/cell membranes. Several strategies are applied for nanocrystals production including precipitation, milling, high pressure homogenization and combination methods such as NanoEdge™, SmartCrystal and Precipitation-lyophilization-homogenization (PLH) technology. For oral administration, many publications reported useful advantages of nanocrystals to improve in vivo performances i.e. pharmacokinetics, pharmacodynamics, safety and targeted delivery which were discussed in this review. Additionally, transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.  相似文献   

8.
9.
10.
11.
Abstract

Uniform mesoporous carbon spheres (UMCS) were used as a carrier to improve the bioavailability of the model drug, celecoxib (CEL). Furthermore, we investigated the mechanism responsible for the improved bioavailability of CEL. The association, adhesion and uptake of UMCS by intestinal epithelial cells were studied by transmission electron microscopy (TEM), fluorescence-activated cell sorting (FACS) and laser confocal scanning microscopy (LCSM). UMCS was found to promote cellular uptake of CEL. Drug transport in Caco-2 cell monolayers proved that UMCS can significantly reduce the rate of drug efflux and improve CEL permeability. The dissolution rate of CEL from drug-loaded samples was markedly improved compared with pure crystalline CEL; moreover, oral bioavailability of CEL loaded into UMCS was also markedly improved compared with that of commercially available capsules. UMCS indicates the advantages and potential of this method to achieve improved oral absorption by increasing the dissolution rate, cellular uptake and permeability of the drug.  相似文献   

12.
A biodegradable porous starch foam (BPSF) was developed for the first time as a carrier in order to improve the dissolution and enhance the oral bioavailability of lovastatin - defined as a model poorly water soluble BCS type II drug. In this paper, BPSF was prepared by the solvent exchange method and characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis in order to perform the morphological and structural characterization of BPSF. Lovastatin was loaded by immersion/solvent evaporation into the BPSF which provided a stable hydrophilic matrix with a nano-porous structure. The solid state properties of the loaded BPSF samples were characterized by SEM, Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). In vitro and in vivo drug release studies showed that when BPSF was used as a carrier it allowed immediate release of lovastatin and enhanced the dissolution rate in comparison with crystalline lovastatin and commercial capsules. These results provide important information about the mechanism of drug adsorption and release from BPSF as a carrier. Accordingly, BPSF has a promising future as a device for the oral delivery of poorly water soluble drugs.  相似文献   

13.
14.
15.
Lipid-based formulations encompass a diverse group of formulations with very different physical appearance, ranging from simple triglyceride vehicles to more sophisticated formulations such as self-emulsifying drug delivery systems (SEDDS). Lipid-based drug delivery systems may contain a broad range of oils, surfactants, and co-solvents. They represent one of the most popular approaches to overcome the absorption barriers and to improve the bioavailability of poorly water-soluble drugs. Diversity and versatility of pharmaceutical grade lipid excipients and drug formulations as well as their compatibility with liquid, semi-solid and solid dosage forms make lipid systems most complex. Digestion of triglyceride lipids, physicochemical characteristics and solubilisation of lipid digestion products as well as intestinal permeability are some of the variable parameters of such formulations. Furthermore, among the factors affecting the bioavailability of the drug from lipid-based formulations are the digestion of lipid, the mean emulsion droplet diameter, the lipophilicity of the drug and the type of lipids. The solubility of the Active Pharmaceutical Ingredient in the Lipid System, the desorption/sorption isotherm and the digestibility of lipid vehicle are important issues to be considered for formulations of isotropic lipid formulations. This review also describes the fate of lipid formulations in the gut and the factors influencing the bioavailability from lipid-based formulations. Novel formulation systems and currently marketed products conclude this review.  相似文献   

16.
The aim of this study was to develop tocol derivatives of chitosan able (i) to self-assemble in the gastrointestinal tract and (ii) to enhance the solubility of poorly soluble drugs. Among the derivatives synthesized, tocopherol succinate glycol chitosan (GC-TOS) conjugates spontaneously formed micelles in aqueous solution with a critical micelle concentration of 2 μg mL−1. AFM and TEM analysis showed that spherical micelles were formed. The GC-TOS increased water solubility of 2 model class II drugs. GC-TOS loading efficiency was 2.4% (w/w) for ketoconazole and 0.14% (w/w) for itraconazole, respectively. GC-TOS was non-cytotoxic at concentrations up to 10 mg mL−1. A 3.4-fold increase of the apparent permeation coefficient of ketoconazole across a Caco-2 cell monolayer was demonstrated. Tocol polymer conjugates may be promising vehicles for the oral delivery of poorly soluble drugs.  相似文献   

17.
Solid dispersions are one of the most promising strategies to improve the oral bioavailability of poorly water soluble drugs. By reducing drug particle size to the absolute minimum, and hence improving drug wettability, bioavailability may be significantly improved. They are usually presented as amorphous products, mainly obtained by two major different methods, for example, melting and solvent evaporation. Recently, surfactants have been included to stabilize the formulations, thus avoiding drug recrystallization and potentiating their solubility. New manufacturing processes to obtain solid dispersions have also been developed to reduce the drawbacks of the initial process. In this review, it is intended to discuss the recent advances related on the area of solid dispersions.  相似文献   

18.
The aims of this study were to formulate a self-microemulsifying drug delivery system (SMEDDS) by a rational formulation approach using mixture experimental design and to derive general concepts that make the development of such systems more feasible. Various types of oils and surfactants were systematically combined and the phase behaviour upon dilution with simulated gastric fluid examined by construction of phase diagrams. The systems solubilising the highest amount of simulated gastric fluid in the continuous microemulsion area were selected for investigation and optimisation of drug solubility. Simvastatin was added as a poorly water-soluble, lipophilic model drug. Two different mixture experimental designs using D-optimal design were set up and used to investigate the solubility of simvastatin in the SMEDDS before and after dilution with simulated gastric fluid respectively. The solubility in each mixture region was analysed by fitting quadratic models using partial least squares analysis. The established models revealed the influence of mixture components on phase behaviour and drug solubility and gave the rationale for formulation optimisation. This study demonstrated that the development of complex self-emulsifying formulations with sufficient solubilisation capacity for poorly water-soluble drugs upon oral administration can be more feasible when using experimental design.  相似文献   

19.
Objectives The aim of this study was to determine the influence of nonionic surfactants on drug permeability using the phospholipid vesicle‐based permeation assay (PVPA), which excludes other than trans‐membrane diffusion pathways. Methods Barrier integrity was monitored both by electrical resistance and permeability measurement of the hydrophilic marker calcein. Permeability of the model drugs ketoprofen and nadolol across the PVPA‐barrier was measured by HPLC‐UV. Micelle association of the model drugs was determined using ultrafiltration, whereby micelle‐bound drug and molecular drug were separated. Key findings The nonionic surfactant poloxamer 188 was demonstrated not to affect barrier integrity. Drug permeability was found depressed in the presence of poloxamer 188 in a concentration‐dependent manner. Both drugs were found to associate with poloxamer 188 micelles. The extent of the decrease in permeability correlated mostly, but not in all cases, with the fraction of micelle‐bound drug. Conclusions Micelle association was one important but not the only factor affecting drug permeability across the PVPA‐barrier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号