首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is a common human single nucleotide polymorphism (SNP) that affects the regulated release of BDNF, and has been implicated in affective disorders and cognitive dysfunction. A decreased activation of the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for the regulation of affective behaviors, has been described in BDNF(Met) carriers. However, it is unclear whether and how the Val66Met polymorphism affects the IL-mPFC synapses. Here, we report that spike timing-dependent plasticity (STDP) was absent in the IL-mPFC pyramidal neurons from BDNF(Met/Met) mice, a mouse that recapitulates the specific phenotypic properties of the human BDNF Val66Met polymorphism. Also, we observed a decrease in NMDA and GABA receptor-mediated synaptic transmission in the pyramidal neurons of BDNF(Met/Met) mice. While BDNF enhanced non-NMDA receptor transmission and depressed GABA receptor transmission in the wild-type mice, both effects were absent in BDNF(Met/Met) mice after BDNF treatment. Indeed, exogenous BDNF reversed the deficits in STDP and NMDA receptor transmission in BDNF(Met/Met) neurons. BDNF-mediated selective reversal of the deficit in plasticity and NMDA receptor transmission, but its lack of effect on GABA and non-NMDA receptor transmission in BDNF(Met/Met) mice, suggests separate mechanisms of Val66Met polymorphism upon synaptic transmission. The effect of the Val66Met polymorphism on synaptic transmission and plasticity in the IL-mPFC represents a mechanism to account for this impact of SNP on affective disorders and cognitive dysfunction.  相似文献   

2.
Childhood stress and genetic factors like the Val66MET polymorphism of the brain derived neurotrophic factor (BDNF) gene are associated with a higher risk for developing major depressive disorder (MDD) and might also influence hippocampal changes. The aim of this study was to determine which hippocampal dentate gyrus and cornu ammonis subfields are altered in MDD compared to healthy controls and which subfields are affected by the BDNF Val66Met polymorphism and child adversity. Adult patients with MDD and healthy matched controls underwent high‐resolution magnetic resonance imaging. Automatic segmentation using the programme FreeSurfer was used to segment the hippocampal subfields dentate gyrus (DG/CA4), CA1 and CA2/3. The history of possible childhood adversity was assessed using the Childhood Trauma Questionnaire and the Val66Met BDNF SNP (rs6265) genotypes were obtained. Patients with MDD had significantly smaller CA4/DG and CA2/3 volumes compared to healthy controls. Furthermore, there was a significant interactive effect of BDNF allele and childhood adversity on CA2/3 and CA4/DG volumes. Met allele carriers without childhood adversity had larger and with childhood adversity smaller CA4/DG and CA2/3 volumes than Val‐allele homozygotes. Our results highlight stress by gene interactions as relevant for hippocampal volume reductions, in particular for the subfield CA2/3 and dentate gyrus. Hum Brain Mapp 35:5776–5783, 2014. © 2014 Wiley Periodicals, Inc .  相似文献   

3.
BACKGROUND: Changes in densities and in the morphology of dendritic spines in the hippocampus are linked to hippocampal long-term potentiation (LTP), spatial learning, and depression. Decreased brain-derived neurotrophic factor (BDNF) levels seem to contribute to depression. Through its receptor trkB, BDNF is also involved in hippocampal LTP and hippocampus-dependent learning. Conditionally gene-targeted mice in which the ablation of trkB is restricted to the forebrain and occurs only during postnatal development display impaired learning and LTP. METHODS: To examine whether there is a link among impaired hippocampal synaptic plasticity, altered spines, and trkB receptors, we performed a quantitative analysis of spine densities and spine length in the hippocampal area CA1 and the dentate gyrus in conditional mutant mice (trkB(lox/lox)CaMKII-CRE mice). TrkB protein and mRNA levels were assayed using Western blot and in situ hybridization analysis. RESULTS: Fifteen-week-old mutant mice exhibit specific reductions in spine densities and a significant increase in spine length of apical and basal dendrites in area CA1. These alterations correlate with a time- and region-specific reduction in full-length trkB mRNA in the hippocampus. CONCLUSIONS: TrkB functions in structural remodeling of hippocampal dendritic spines, which in turn may affect synaptic transmission and plasticity.  相似文献   

4.
Prenatal cocaine exposure leads to persistent alterations in the growth factor brain-derived neurotrophic factor (BDNF), particularly in the medial prefrontal cortex (mPFC) and hippocampus, brain regions important in cognitive functioning. BDNF plays an important role in the strengthening of existing synaptic connections as well as in the formation of new contacts during learning. A single nucleotide polymorphism in the BDNF gene (Val66Met), leading to a Met substitution for Val at codon 66 in the prodomain, is common in human populations, with an allele frequency of 20-30% in Caucasians. To study the interaction between prenatal cocaine exposure and BDNF, we have utilized a line of BDNF Val66Met transgenic mice on a Swiss Webster background in which BDNF(Met) is endogenously expressed. Examination of baseline levels of mature BDNF protein in the mPFC of prenatally cocaine-treated wild-type (Val66Val) and Val66Met mice revealed significantly lower levels compared to prenatally saline-treated mice. In contrast, in the hippocampus of prenatally saline- and cocaine-treated adult Val66Met mice, there were significantly lower levels of mature BDNF protein compared to Val66Val mice. In extinction of a conditioned fear, we found that prenatally cocaine-treated Val66Met mice had a deficit in recall of extinction. Examination of mature BDNF protein levels immediately after the test for extinction recall revealed lower levels in the mPFC of prenatally cocaine-treated Val66Met mice compared to saline-treated mice. However, 2 h after the extinction test, there was increased BDNF exons I, IV, and IX mRNA expression in the prelimbic cortex of the mPFC in the prenatally cocaine-treated BDNF Val66Met mice compared to prenatally saline-treated mice. Taken together, our results suggest the possibility that prenatal cocaine-induced constitutive alterations in BDNF mRNA and protein expression in the mPFC differentially poises animals for alterations in behaviorally induced gene activation, which are interactive with BDNF genotype and differentially impact those behaviors. Such findings in our prenatal cocaine mouse model suggest a gene X environment interaction of potential clinical relevance.  相似文献   

5.
Cortistatin-14 (CST) is a neuropeptide expressed in cortical and hippocampal interneurons that shares 11 of 14 residues with somatostatin. In contrast to somatostatin, infusion of CST decreases locomotor activity and selectively enhances slow wave sleep. Here, we show that transgenic mice that overexpress cortistatin under the control of neuron-specific enolase promoter do not express long-term potentiation in the dentate gyrus. This blockade of dentate LTP correlates with profound impairment of hippocampal-dependent spatial learning. Exogenously applied CST to slices of wild-type mice also blocked induction of LTP in the dentate gyrus. Our findings implicate cortistatin in the modulation of synaptic plasticity and cognitive function. Thus, increases in hippocampal cortistatin expression during aging could have an impact on age-related cognitive deficits.  相似文献   

6.
Fluoxetine, a selective serotonin‐reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input‐specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase‐67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle‐aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle‐aged hippocampus shows greater sensitivity to fluoxetine‐induced input‐specific synaptic remodeling than the hippocampus in adulthood with the stratum‐oriens of CA1 exhibiting heightened structural plasticity. The input‐specific changes and circuit‐level modifications in middle‐age were associated with modest enhancement in contextual fear memory precision, anxiety‐like behavior and antidepressant‐like behavioral responses. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Background and purpose:  Adult-onset dystonia may be related, amongst other factors, to abnormal neuronal plasticity in cortical and subcortical structures. Brain-derived neurotrophic factor is a major modulator of synaptic efficiency and neuronal plasticity. Recent works documented that a single nucleotide polymorphism (SNP) of the BDNF gene, the Val66Met SNP, modulates short-term plastic changes within motor cortical circuits. In this study we aimed at exploring the effect of this SNP upon the risk of developing common forms of primary adult-onset dystonia.
Methods:  We explored the influence of the Val66Met SNP of the BDNF gene on the risk of cranial and cervical dystonia in a cohort of 156 Italian patients and 170 age- and gender-matched healthy control subjects drawn from the same population.
Results:  The presence of the rare Met allele was not significantly associated with the diagnosis of dystonia (age- and gender-adjusted odds ratios of 1.22, P  =   0.38). The study had a >90% power to detect a 50% change in the risk of developing cranial-cervical dystonia associated with the presence of the Met allele. Moreover, there was no relationship between Val66Met SNP and age at dystonia onset or type of dystonia.
Conclusion:  Our data do not support the common variant Val66Met of the BDNF gene as an etiologic factor shared by the various forms of primary adult-onset dystonia.  相似文献   

8.
Novel spatially restricted genetic manipulations can be used to assess contributions made by synaptic plasticity to learning and memory, not just selectively within the hippocampus, but even within specific hippocampal subfields. Here we generated genetically modified mice (NR1(deltaDG) mice) exhibiting complete loss of the NR1 subunit of the N-methyl-D-aspartate receptor specifically in the granule cells of the dentate gyrus. There was no evidence of any reduction in NR1 subunit levels in any of the other hippocampal subfields, or elsewhere in the brain. NR1(deltaDG) mice displayed severely impaired long-term potentiation (LTP) in both medial and lateral perforant path inputs to the dentate gyrus, whereas LTP was unchanged in CA3-to-CA1 cell synapses in hippocampal slices. Behavioural assessment of NR1(deltaDG) mice revealed a spatial working memory impairment on a three-from-six radial arm maze task despite normal hippocampus-dependent spatial reference memory acquisition and performance of the same task. This behavioural phenotype resembles that of NR1(deltaCA3) mice but differs from that of NR1(deltaCA1) mice which do show a spatial reference memory deficit, consistent with the idea of subfield-specific contributions to hippocampal information processing. Furthermore, this pattern of selective functional loss and sparing is the same as previously observed with the global GluR-A L-alpha-amino-3-hydroxy-5-methyl-4-isoxazelopropionate receptor subunit knockout, a mutation which blocks the expression of hippocampal LTP. The present results show that dissociations between spatial working memory and spatial reference memory can be induced by disrupting synaptic plasticity specifically and exclusively within the dentate gyrus subfield of the hippocampal formation.  相似文献   

9.
The dentate gyrus of the hippocampus has been implicated in mechanisms of action of selective serotonin reuptake inhibitors (SSRIs). We have recently demonstrated that the SSRI fluoxetine can reverse the state of maturation of the adult dentate granule cells and enhances serotonin 5-HT? receptor-mediated synaptic potentiation at the synapses formed by their mossy fiber axons. Here, we show that fluoxetine can induce long-lasting enhancement of dopaminergic modulation at the mossy fiber synapse. Synaptic responses arising from the mossy fiber-CA3 pyramidal cell synapse were recorded using acute mouse hippocampal slices. Dopamine potentiates mossy fiber synaptic transmission by activating D?-like receptors. Chronic fluoxetine treatment induced a prominent increase in the magnitude of dopamine-induced synaptic potentiation, and this effect was maintained at least up to 1 month after withdrawal of fluoxetine. Quantitative autoradiography revealed that binding of the D?-like receptor ligand [3H]SCH23390 was selectively increased in the dentate gyrus and along the mossy fiber in fluoxetine-treated mice. However, binding of the 5-HT? receptor ligand [3H]GR113808 was not significantly changed. These results suggest that chronic fluoxetine enhanced the dopaminergic modulation at least in part by upregulating expression of D?-like receptors, while the enhanced serotonergic modulation may be mediated by modifications of downstream signaling pathways. These enhanced monoaminergic modulations would greatly increase excitatory drive to the hippocampal circuit through the dentate gyrus. The highly localized upregulation of D?-like receptors further supports the importance of the dentate gyrus in the mechanism of action of SSRIs.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) plays important roles in cell survival, neural plasticity, learning, and stress regulation. However, whether the recently found human BDNF Val66Met (BDNF(Met)) polymorphism could alter stress vulnerability remains controversial. More importantly, the molecular and structural mechanisms underlying the interaction between the BDNF(Met) polymorphism and stress are unclear. We found that heterozygous BDNF(+/Met) mice displayed hypothalamic-pituitary-adrenal axis hyperreactivity, increased depressive-like and anxiety-like behaviors, and impaired working memory compared with WT mice after 7 d restraint stress. Moreover, BDNF(+/Met) mice exhibited more prominent changes in BDNF levels and apical dendritic spine density in the prefrontal cortex and amygdala after stress, which correlated with the impaired working memory and elevated anxiety-like behaviors. Finally, the depressive-like behaviors in BDNF(+/Met) mice could be selectively rescued by acute administration of desipramine but not fluoxetine. These data indicate selective behavioral, molecular, and structural deficits resulting from the interaction between stress and the human genetic BDNF(Met) polymorphism. Importantly, desipramine but not fluoxetine has antidepressant effects on BDNF(+/Met) mice, suggesting that specific classes of antidepressant may be a more effective treatment option for depressive symptoms in humans with this genetic variant BDNF.  相似文献   

11.
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is common and influences the activity-dependent secretion of BDNF, which is critical for neuronal plasticity and survival. This study investigated the genetic effect of the BDNF Val66Met polymorphism on cognitive function and regional gray matter (GM) volume in a healthy Chinese population (n = 330). Voxel-based morphometry (VBM)-optimized analysis was used. There was no significant difference in the neuropsychological performances among the three BDNF genotypic groups. VBM analyses demonstrated that Met homozygotes had greater GM volumes than Val homozygotes in the left medial frontal gyrus, the left middle temporal gyrus, the left cerebellum, and the right middle temporal gyrus, and had larger GM volumes than Val/Met heterozygotes in the left middle temporal gyrus, the left inferior temporal gyrus, and the right superior frontal gyrus. Our findings suggest that the presence of two Met alleles has a protective effect on regional GM volumes in the Chinese population.  相似文献   

12.
Memory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory. Key plasticity genes, such as the immediate early gene Arc, are induced by learning and by LTP induction. Mice that lack Arc have severe deficits in memory consolidation, and Arc has been implicated in numerous other forms of synaptic plasticity, including long-term depression and cell-to-cell signaling. Here, we take a comprehensive approach to determine if Arc is necessary for hippocampal LTP in male and female mice. Using a variety of Arc knock-out (KO) lines, we found that germline Arc KO mice show no deficits in CA1 LTP induced by high-frequency stimulation and enhanced LTP induced by theta-burst stimulation. Temporally restricting the removal of Arc to adult animals and spatially restricting it to the CA1 using Arc conditional KO mice did not have an effect on any form of LTP. Similarly, acute application of Arc antisense oligodeoxynucleotides had no effect on hippocampal CA1 LTP. Finally, the maintenance of in vivo LTP in the dentate gyrus of Arc KO mice was normal. We conclude that Arc is not necessary for hippocampal LTP and may mediate memory consolidation through alternative mechanisms.SIGNIFICANCE STATEMENT The immediate early gene Arc is critical for maintenance of long-term memory. How Arc mediates this process remains unclear, but it has been proposed to sustain Hebbian synaptic potentiation, which is a key component of memory encoding. This form of plasticity is modeled experimentally by induction of LTP, which increases Arc mRNA and protein expression. However, mechanistic data implicates Arc in the endocytosis of AMPA-type glutamate receptors and the weakening of synapses. Here, we took a comprehensive approach to determine if Arc is necessary for hippocampal LTP. We find that Arc is not required for LTP maintenance and may regulate memory storage through alternative mechanisms.  相似文献   

13.
Val66Met (rs6265) is a gene variation, a single nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene that codes for the protein BDNF. The substitution of Met for Val occurs at position 66 in the pro-region of the BDNF gene and is responsible for altered activity-dependent release and recruitment of BDNF in neurons. This is believed to manifest itself in an altered ability in neuroplasticity induction and an increased predisposition toward a number of neurological disorders. Many studies using neuroplasticity-inducing protocols have investigated the impact of the BDNF polymorphism on cortical modulation and plasticity; however, the results are partly contradictory and dependent on the paradigm used in a given study. The aim of this review is to summarize recent knowledge on the relationship of this BDNF SNP and neuroplasticity.  相似文献   

14.
15.
Y P Tang  Y L Ma  S K Chen  E H Lee 《Hippocampus》2001,11(6):637-646
The process of long-term potentiation (LTP) consists of the early induction and late maintenance phases. Few studies have examined the cellular mechanisms underlying these two phases; their respective mRNA expression profiles have not yet been elucidated. Here we used the technique of PCR differential display to identify genes that are differentially expressed between the early and late phases of LTP in vivo. Our results indicated that the cDNA fragment corresponding to one mRNA with preferentially increased expression during the early, but not late, phase of LTP encodes the rat thyroid hormone-responsive protein (THRP) gene. In situ hybridization analysis confirmed the results obtained from the PCR differential display. Prior NMDA receptor blockade with MK801 prevented induction of LTP and decreased THRP mRNA expression in the dentate gyrus, as assayed by quantitative RT-PCR analysis. THRP antisense oligonucleotide treatment before tetanic stimulation also prevented induction of LTP. However, when THRP antisense oligonucleotide was administered after induction of LTP, it did not affect expression and maintenance of LTP. THRP is known to be responsive to thyroid hormone. Our results indicate that direct thyroid hormone (T3) injection into the dentate gyrus produces a long-lasting enhancement of synaptic efficacy of these neurons. T3 injection also markedly increased THRP mRNA expression in the dentate gyrus. Taken together, our results suggest that THRP mRNA expression plays an important role in the early phase, but not the late phase, of LTP and that both THRP and thyroid hormone are involved in synaptic plasticity in hippocampal neurons.  相似文献   

16.
Recent behavioural studies have provided evidence that the amygdala modulates hippocampal-dependent memory. To test the possibility that the amygdala modulates hippocampal synaptic plasticity, we investigated the effects of surgical lesions of the amygdaloid nuclei on the induction of long-term potentiation (LTP) in the dentate gyrus of anaesthetized rats. Previously we reported that LTP in the dentate gyrus was attenuated by lesion of the basolateral amygdala, but was not affected by lesion of the central amygdala. In the present study, dentate gyrus LTP was significantly attenuated by basomedial amygdala lesion but not by medial amygdala lesion. These results suggest that, among the amygdaloid nuclei, the basomedial and basolateral nuclei are involved in the modulation of hippocampal plasticity. The roles of the basomedial and basolateral amygdala were further supported by experiments examining the effects of electrical stimulation of these nuclei. High-frequency stimulation of the basomedial amygdala alone did not induce dentate gyrus LTP, but when applied at the same time as tetanic stimulation of the perforant path increased the magnitude of the dentate gyrus LTP. Similarly, high-frequency stimulation of the basolateral amygdala enhanced LTP induced by tetanic stimulation of the perforant path. Furthermore, facilitation of dentate gyrus LTP by basomedial or basolateral amygdala stimulation was observed even in rats lesioned in either amygdala, suggesting that neurons in the basomedial and basolateral amygdala can modulate dentate gyrus LTP independently. Activity-dependent facilitation of hippocampal plasticity by the basomedial and basolateral amygdala may underlie memory processing associated with emotion.  相似文献   

17.
The common single-nucleotide polymorphism (SNP) brain-derived neurotrophic factor (BDNF) valine-to-methionine substitution at codon 66 (Val66Met) has been associated with differences in memory functions and cortical plasticity following brain stimulation. Other studies could not confirm these results, though, and potential interactions of BDNF carrier status with other learning-relevant SNPs are largely unknown. The present study aimed to evaluate the effects of BDNF Val66Met genotype on paired associative stimulation (PAS)-induced motor cortex plasticity, while additionally taking catechol-O-methyltransferase (COMT) Val158Met and kidney and brain (KIBRA) rs17070145 carrier status into account. Therefore, a cohort of 2 × 16 age- and education-matched healthy young females underwent transcranial magnetic stimulation using an excitatory PAS(25) protocol to induce cortical plasticity. Cognitive performance was assessed using implicit grammar- and motor-learning tasks and a detailed neuropsychological test battery. While BDNF carrier status alone did not significantly influence PAS-induced cortical plasticity, we found a significant BDNF × COMT interaction, showing higher plasticity immediately following the PAS(25) protocol for the BDNF Val/Val vs Met genotype in COMT Met homozygotes only (ANOVA, p = 0.027). A similar advantage for this group was noted for implicit grammar learning (ANOVA, p = 0.021). Accounting for KIBRA rs17070145 did not explain significant variance. Our findings for the first time demonstrate an interaction of BDNF by COMT on human cortical plasticity. Moreover, they show that genotype-related differences in neurophysiology translate into behavioral differences. These findings might contribute to a better understanding of the mechanisms of interindividual differences in cognition.  相似文献   

18.
Unravelling the impact of genetic variants on clinical phenotypes is a challenging task. Apolipoprotein E (ApoE) and brain-derived neurotrophic factor (BDNF) play an important role in cell growth, regeneration, synaptic plasticity, learning and memory processes. The aim of the present study was to examine the impact of BDNF Val66Met- and ApoE-polymorphisms and their interactions on hippocampal morphology and memory functions in healthy young adults. Hippocampal volume and memory performance of 135 healthy individuals, aged 24.6 ± 3.2 years, were assessed, using magnetic resonance imaging and the Inventory for Memory diagnostics. The performance of BDNF-Met66 carriers was significantly lower in working memory (P = 0.03) compared with non carriers, whereas no further differences were observed either in cognitive performance or in hippocampal volumes between the groups. Age, BDNF Val66 Met polymorphism and the interaction factor BDNF genotype x age were significantly associated with the variation of working memory scores (P = 0.01, 0.01, 0.02 respectively). No statistically significant differences were detected in the volumes of hippocampi and in memory phenotypes between individuals carrying the ApoE E4 allele and those without it. The analysis did not reveal an impact of gene-gene interaction between BDNF and ApoE genes on hippocampal volumes or memory performance. BDNF Val66Met polymorphism seems to influence working memory function and modulate the effects of ageing on working memory in healthy young adults.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin growth factor family and is implicated as a modulator of neuronal survival and differentiation, synaptic plasticity, and higher order cognitive functions such as learning and memory. A common single-nucleotide polymorphism (SNP) has been identified in the human BDNF gene (BDNF Val66Met) that leads to decreased BDNF secretion and impairments in specific forms of learning in humans. To better understand the impact of this SNP on biological function, the authors generated a mouse model containing the BDNF Met allele, which they found to replicate the key phenotypes observed in humans and provided further insight into the functional impact of this SNP in vivo. They used a "bottom-up" approach to study the BDNF SNP, which provided external validation in biologically less complex, genetically uniform systems, which minimized the variability inherent in human studies. In this review, the authors discuss the impact of the BDNF SNP on learning and memory while providing arguments for the relevance of a vertically integrated approach to studying human genetic variants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号