首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AlphaB-crystallin is known as a small heat shock protein with a cytoprotective function. This study was undertaken to investigate the relationship between alphaB-crystallin and changes seen in Alzheimer's disease. The distribution and immunohistochemical characteristics of alphaB-crystallin positive neurones in the cerebral cortices of 4 patients with Alzheimer's disease were examined. AlphaB-crystallin positive neurones were mainly distributed in the limbic and paralimbic regions, namely parahippocampal gyrus, fusiform gyrus, cingulate cortex, middle and superior frontal gyrus, and insular cortex, which corresponded to commonly affected regions in Alzheimer's disease. Moreover, such neurones were present predominantly in the III or V layer of the cerebral cortex. The number of alphaB-crystallin positive neurones increased in parallel with the neuronal loss. Logistic regression analysis revealed a significant relation between the density of alphaB-crystallin positive neurones and that of extracellular neurofibrillary tangles (NFTs), with a correlation coefficient (r) of 0.57 and P < 0.0001 in 14 regions of the cerebral cortex. In contrast, the relation was not statistically significant between the density of alphaB-crystallin positive neurones and that of classical senile plaques, diffuse plaques or intracellular NFTs. Modified Gallyas-Braak (GB) staining on alphaB-crystallin positive neurone demonstrated several patterns of the structures: faint GB positive structures in the swollen perikaryon with straight neurites, fine granules compressed and contorted into fuzzy bundles, intensely GB positive filamentous structures together with fine granules and very intensely GB positive ring-like NFTs in a swollen perikaryon with curved neurites. In positive neurones, the density of ring-like NFTs correlated with that of atrophic perikaryon, or bent neurites and a decrease in the immunoreactivity of alphaB-crystallin. These data suggest that a close relationship exists between the appearance of alphaB-crystallin in neurones, extracellular NFTs, and neurofibrillary formation in alphaB-crystallin positive neurones in Alzheimer brain.  相似文献   

2.
A relationship between the microvasculature and Alzheimer senile plaques has been suggested by several lines of evidence. Besides close anatomic and biochemical relationships, both extrinsic (fibronectin) and intrinsic [heparan sulfate proteoglycan (HSPG)] components of the vascular basement membrane (VBM) have been colonized with amyloid plaques. The present study was designed to examine the association between three intrinsic components of the VBM [HSPG, collagen type IV (CIV), and laminin] and the histopathologic lesions of Alzheimer's disease (AD). Six cases with neuropathologically confirmed AD were immunocytochemically labeled for the presence of HSPG, CIV, laminin, or tau-2 (a marker for degenerating neurites) and examined at the light and electron microscopic levels. For light microscopic analyses, sections were counterstained with a fluorescent marker for amyloid. The present study illustrates an involvement of VBM components in the lesions associated with AD. First, we replicate our previous finding that HSPG antibodies immunolabel a subset of neurons; ultrastructural analyses indicate that at least some of these are actually extracellular neurofibrillary tangles. Second, we report that CIV and laminin immunoreaction product was not associated with neurons but did label several perivascular cells with the morphologic characteristics of microglia. Finally, we demonstrate that all three intrinsic VBM components, CIV and laminin as well as HSPG, are localized to senile plaques. Both light and electron microscopic studies indicate that the VBM components are associated with amyloid rather than degenerating neurites. These findings suggest that the VBM or its components may play a role in the AD pathogenetic cascade.  相似文献   

3.
Emerging evidences indicate a role for lipoprotein lipase (LPL) in degenerative states. Genetic variations in the LPL gene were previously associated to lipid imbalance and coronary artery disease (CAD) risk and severity, a condition that shares pathological features with common Alzheimer's disease (AD). To evaluate whether these genetic variations associate with the risk and pathophysiology of common AD, autopsy-confirmed patients (242 controls, 153 AD) were genotyped for a PvuII single nucleotide polymorphism (SNP; rs285; referred to as the P+ allele) of LPL. Brain LPL mRNA levels, cholesterol levels, amyloid concentration, senile plaques and neurofibrillary tangles density counts were measured and contrasted with specific LPL genotypes. When adjusted for age and sex, homozygosity for the P+ allele resulted in an odds ratio of 2.3 for the risk of developing AD. More importantly, we report that the presence of the P+ allele of LPL significantly affects its mRNA expression level (n = 51; P = 0.026), brain tissue cholesterol levels (n = 55; P = 0.0013), neurofibrillary tangles (n = 52; P = 0.025) and senile plaque (n = 52; P = 0.022) densities. These results indicate that a common polymorphism in the lipoprotein lipase gene modulates the risk level for sporadic AD in the eastern Canadian population but more importantly, indirectly modulates the pathophysiology of the brain in autopsy-confirmed cases.  相似文献   

4.
The neurochemistry of Alzheimer's disease   总被引:1,自引:0,他引:1  
Our knowledge of the neurochemical pathology of AD has increased immensely the last years. Although it is now clear that mutations in the APP gene can cause some rare hereditary forms of AD, and that ApoE4 is a prominent risk factor for AD, we at present know little about the underlying cause of AD in the general population and the biochemical mechanisms by which the apolipoprotein E4 isoform affects AD pathogenesis. It is hoped that the near future will see a resolution of the current controversies in AD research, including: 1) whether APP mutations cause Alzheimer's disease by affecting Aβ deposition or the function of APP itself; 2) whether abnormal phosphorylation of tau is a central pathogenetic event, or whether it occurs as epiphenomena that reflect general neurodegeneration in a variety of disease processes; 3) Whether Aβ deposition in the brain is the central event in AD or whether it occurs as epiphenomena in a variety of brain disorders such as head trauma; and 4) whether altered tau phosphorylation occurs secondary to Aβ deposition or vice versa, and what the link is (if any) between the two processes.  相似文献   

5.
The brains of 10 patients with Huntington's disease (HD) were studied for the presence of senile plaques (SP), neurofibrillary tangles, and granulovacuolar degeneration in the frontobasal, the parietal and occipital cortices and the anterior and posterior hippocampus. Five had died at a mean age of 42 years and 5 at one of 74 years. Senile plaques were found in 3 of 5 elderly HD patients and no were found in the young group. This finding supports the hypothesis that dementia in HD is not related to the presence of senile changes of the Alzheimer type.  相似文献   

6.
A review is presented of diseases of the central nervous system associated with amyloid deposition. The name amyloid is given to substances with particular physical characteristics which are independent of the chemical constitution of the proteins in the substance. Ideally, a classification of amyloid diseases should be based on the chemical composition of the amyloid deposits; this has only been partially realized. The best documented group of diseases with amyloid deposition in the central nervous system is the group of ‘cerebral β amyloid diseases’, characterized by the deposition of β-protein. This group includes: Alzheimer's disease, sporadic cerebral amyloid angiopathy, Down's syndrome, Parkinson-dementia of Guam, hereditary cerebral hemorrhage with amyloidosis-Dutch type and age-related asymptomatic amyloid angiopathy.  相似文献   

7.
8.
Cells of the mononuclear phagocytic system (MPS) present foreign antigen on their cell surfaces bound to major histocompatibility complex (MHC) class II molecules. Previous studies of normal human brain samples reported MHC class II expression primarily by perivascular MPS cells and white matter microglial cells. Marked increases in MHC class II-expressing microglia have been shown in many neuropathologic disorders, including Alzheimer's disease (AD). A close morphologic association between these cells and Alzheimer senile plaque beta-amyloid has been demonstrated. The present study used a mixed aldehyde fixative to enhance the localization of MHC class II-expressing MPS cells in non-AD and AD brain. Two antibodies against MHC class II (HLA-DR; LN3), as well as the lectin Ricinus communis agglutinin (which recognizes both ramified and activated microglia) were used for light and electron microscopic analyses. We now report that MHC class II-expressing ramified microglia are distributed in a uniform reticular array throughout the grey, as well as the white matter in non-AD cases. In AD cases, immunolabelled cells had the morphology of activated microglia, with darkly stained plump somata and short, thick processes. Microglia clustered around senile plaque amyloid and neurofibrillary tangles (NFT), rather than forming the uniform array characteristic of control tissue. Finally, we report that perivascular MPS cells are found in a morphologic relationship with vascular amyloid identical to that seen between microglial cells and senile plaque beta-amyloid. These data suggest that MHC class II-expressing cells may be involved in the degradation of NFT-laden neurons and the posttranslational modification of extracellular-NFT epitopes. In addition, both parenchymal and perivascular MPS cells are ideally situated to uptake and process the beta-amyloid protein precursor and deposit beta-amyloid on senile plaques, NFT, and the cerebrovasculature.  相似文献   

9.
10.
We compared the densities of lesions immunolabelled with ubiquitin, tau and βA4 antibodies and stained by various silver impregnations, with the intellectual status. The densities of senile plaques and neurofibrillary tangles labelled by anti-ubiquitin antibody were correlated with the Blessed test score. Ubiquitin-positive neurofibrillary tangles were less numerous than those labelled by Gallyas, anti-tau, Bodian's and Bielschowsky's methods. There were five times more βA4 deposits than ubiquitin positive plaques. βA4 deposits could be numerous in cases in which ubiquitin immunolabelling was entirely negative. Bielschowsky's method, silver methenamine and thioflavin S revealed more senile plaques than anti-ubiquitin, whereas anti-tau, Gallyas, Bodian's and Cross' techniques revealed similar numbers. Anti-ubiquitin positive lesions were correlated with the severity of dementia. Compared with other staining methods, sensitivity of anti-ubiquitin was weaker for neurofibrillary tangles than for senile plaques. These findings suggest that ubiquitin epitopes are linked to the neurofibrillary changes (in the perikaryon or within the senile plaques), and are absent from βA4 deposits, either diffuse or compact.  相似文献   

11.
Abstract  The present quantitative study was performed in order to discriminate pathological substrates for dementia from Alzheimer changes in normal controls (NC) and non-Alzheimer neuropsychiatric diseases (NAND). Regional densities of senile plaques (SP), neurofibrillary tangles (NFT) and astrocytes in the cornu ammonis (CA), subiculum and entorhinal cortex were measured and differences in these densities among Alzheimer's disease (AD), NAND and NC were statistically compared. Densities of NFT in the CA and subiculum were significantly higher in AD than in NAND, and densities of SP in all regions were significantly higher in AD than in NAND. Similarly, NFT density in the subiculum and SP density in all regions were higher in AD than in NC. Regional densities of astrocytes in most regions were closely correlated with those of Alzheimer changes. In conclusion, the attribution of the Alzheimer changes, particularly of NFT, to dementia is neglected when they are confined to the entorhinal cortex. However, the attribution of the Alzheimer changes to dementia should be appreciated when they spread from the entorhinal cortex to the subiculum and/or CA.  相似文献   

12.
OBJECTIVE: The present study was performed to compare the distributions of three-repeat (3R) and four-repeat (4R) neurofibrillary tangles (NFT) with those of pretangles (p-NFT), intracellular NFT (i-NFT), and extracellular NFT (e-NFT) in the hippocampus of Alzheimer's disease brains. METHODS: NFT labeling was performed using anti-tau antibodies: pSer262 for p-NFT, pSer422 for i-NFT, AT8 for e-NFT, RD3 for 3R, and RD4 for 4R tau, and Gallyas impregnation for the NFT population. RD4- and pSer422-positive NFT were detected predominantly in sectors from CA2 to CA4, while RD3- and pSer262-positive NFT were predominantly present in CA1, the entorhinal cortex, and the subiculum. The tau epitope recognized by pSer262 belongs to 4R tau but it showed a strong correlation with RD3- and AT8-positive NFT. CONCLUSIONS: Sectors CA2-CA4 showed predominantly 4R-NFT containing the pSer422 epitope. pSer262 may detect the process of transformation from p-NFT to i-NFT, and e-NFT consisted predominantly of 3R tau.  相似文献   

13.
Over 90% of patients with Alzheimer's disease (AD) develop cerebral amyloid angiopathy (CAA). Severe dyshoric CAA, in which amyloid extends into the surrounding brain parenchyma, may be associated with adjacent clustering of tau-immunopositive neurites but the relationship of CAA to neurofibrillary pathology has not been systematically investigated. In the present study this relationship was examined in sections of frontal, temporal and parietal cortex from 25 AD patients with moderate to severe CAA and 26 with mild or absent CAA. We measured immunolabelling of abnormally phosphorylated tau adjacent to A beta-laden and non-A beta-laden arteries and arterioles, and in cortex away from arteries and arterioles. We also analysed the possible influence of APOE genotype on these measurements. There were no significant differences between the lobes in measurements of tau labelling, either around blood vessels or elsewhere in the cortex. However, tau labelling around A beta-laden arteries and arterioles significantly exceeded that around non-A beta-laden blood vessels (P<0.001) and this, in turn was greater than the labelling of cortex away from blood vessels (P<0.001). There was no association between APOE epsilon 4 and the immunolabelling density for tau, whether around amyloid- or non-amyloid-laden arteries and arterioles, or in the cerebral cortex away from these. We propose that both CAA and peri-vascular accumulation of hyperphosphorylated tau may be a consequence of elevated levels of soluble A beta around cortical arteries and arterioles.  相似文献   

14.
The present immunohistochemical study provides evidence that the kynurenine pathway is up-regulated in Alzheimer's disease (AD) brain, leading to increases in the excitotoxin quinolinic acid (QUIN). We show that the regulatory enzyme of the pathway leading to QUIN synthesis, indoleamine 2,3 dioxygenase (IDO) is abundant in AD compared with controls. In AD hippocampus, both IDO- and QUIN-immunoreactivity (-IR) was detected in cortical microglia, astrocytes and neurones, with microglial and astrocytic expression of IDO and QUIN highest in the perimeter of senile plaques. QUIN-IR was present in granular deposits within the neuronal soma of AD cortex and was also seen uniformly labelling neurofibrillary tangles. Our data imply that QUIN may be involved in the complex and multifactorial cascade leading to neuro-degeneration in AD. These results may open a new therapeutic door for AD patients.  相似文献   

15.
Three hypotheses have been proposed to explain neuropathological heterogeneity in Alzheimer’s disease (AD): the presence of distinct subtypes (‘subtype hypothesis’), variation in the stage of the disease (‘phase hypothesis’) and variation in the origin and progression of the disease (‘compensation hypothesis’). To test these hypotheses, variation in the distribution and severity of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in 80 cases of AD using principal components analysis (PCA). Principal components analysis using the cases as variables (Q‐type analysis) suggested that individual differences between patients were continuously distributed rather than the cases being clustered into distinct subtypes. In addition, PCA using the abundances of SP and NFT as variables (R‐type analysis) suggested that variations in the presence and abundance of lesions in the frontal and occipital lobes, the cingulate gyrus and the posterior parahippocampal gyrus were the most important sources of heterogeneity consistent with the presence of different stages of the disease. In addition, in a subgroup of patients, individual differences were related to apolipoprotein E (ApoE) genotype, the presence and severity of SP in the frontal and occipital cortex being significantly increased in patients expressing apolipoprotein (Apo)E allele ?4. It was concluded that some of the neuropathological heterogeneity in our AD cases may be consistent with the ‘phase hypothesis’. A major factor determining this variation in late‐onset cases was ApoE genotype with accelerated rates of spread of the pathology in patients expressing allele ?4.  相似文献   

16.
Presenilin 1 (PS1) is a causative gene for chromosome 14-linked familial Alzheimer's disease. The gene product is known to be cleaved into N-terminal fragments (PS1-N) and C-terminal fragments (PS1-C). To understand the pathophysiological role of PS1, we conducted immunohistochemical studies using antibodies specific for PS1-N and PS1-C in sporadic Alzheimer's disease (AD). Both antibodies showed punctuate staining exclusively in neurons and their processes in both control and AD brains. PS1-N immunolabeling colocalized with neurofibrillary tangles (NFTs) in 36% of NFT-bearing neurons and with dystrophic neurites in 28% of senile plaques (SPs). PS1-C immunolabeling colocalized with dystrophic neurites in 70% of NFT-bearing SPs and with intraneuronal NFTs in 32% of NFT-bearing neurons. Both antibodies did not detect PHF-tau-positive neuropil threads and Aβ amyloid fibrils. The colocalization was also found in 33–38% of NFT-bearing neurons in progressive supranuclear palsy. These results indicate that both PS1-N and PS1-C fragments are deposited in part of NFT-bearing neurons and dystrophic neurites in SPs; both are the pathologic hallmarks of AD. J. Neurosci. Res. 53:99–106, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Alzheimer’s disease is characterized by the extracellular accumulation of the amyloidβin the form of amyloid plaques and the intracellular deposition of the microtubule-associated protein tau in the form of neurofibrillary tangles.Most of the Alzheimer’s drugs targeting amyloidβhave been failed in clinical trials.Particularly,tau pathology connects greatly in the pathogenesis of Alzheimer’s disease.Tau protein enhances the stabilization of microtubules that leads to the appropriate function of the neuron.Changes in the quantity or the conformation of tau protein could affect its function as a microtubules stabilizer and some of the processes wherein it is involved.The molecular mechanisms leading to the accumulation of tau are principally signified by numerous posttranslational modifications that change its conformation and structural state.Therefore,aberrant phosphorylation,as well as truncation of tau protein,has come into focus as significant mechanisms that make tau protein in a pathological entity.Furthermore,the shape-shifting nature of tau advocates to comprehend the progression of Alzheimer’s disease precisely.In this review,we emphasize the recent studies about the toxic and shape-shifting nature of tau in the pathogenesis of Alzheimer’s disease.  相似文献   

18.
Amyloid P component is a normal serum protein that is highly conserved across phylogeny. Although it resembles the classic acute-phase reactant C-reactive protein, and is considered to be a normal extracellular matrix component, its physiologic role in humans is unknown. Amyloid P component is also colocalized with accumulations of all recognized forms of amyloid. The present study uses light and electron microscopy to compare the cerebral localization of amyloid P component in cases with (n = 19) and without (n = 15) Alzheimer's disease (AD). In non-AD cases, amyloid P component was predominantly localized to the cerebrovasculature. Perivascular staining was observed in most cases, more so in the white than in the gray matter. In AD cases, amyloid P component was localized to all three characteristic histopathologic lesions, namely, neurofibrillary tangles, senile plaques, and amyloid angiopathy. Furthermore, in cases with prominent staining of gray matter parenchymal lesions, intravascular staining was decreased. Given the fixation and processing methods used, amyloid P component was never seen to be localized to the cerebrovascular basement membrane. These data argue against amyloid P component's postulated role as the anchor for vascular β-amyloid deposition. Because there is no evidence for intrinsic amyloid P component production in brain, its perivascular and parenchymal distributions suggest either compromise of the blood-brain barrier or transport across vascular endothelium. © 1995 Wiley-Liss, Inc.  相似文献   

19.
REVIEW: tau protein pathology in Alzheimer's disease and related disorders   总被引:5,自引:0,他引:5  
Abundant neurofibrillary lesions made of hyperphosphorylated microtubule-associated protein tau constitute one of the defining neuropathological features of Alzheimer's disease. However, tau containing filamentous inclusions in neurones and/or glial cells also define a number of other neurodegenerative disorders clinically characterized by dementia and/or motor syndromes. All these disorders, therefore, are grouped under the generic term of tauopathies. In the first part of this review we outline the morphological and biochemical features of some major tauopathies, e. g. Alzheimer's disease, argyrophilic grain disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration. The impact of the recent finding of tau gene mutations in familial frontotemporal dementia and parkinsonism linked to chromosome 17 on other tauopathies is discussed in the second part. The review closes with a look towards a new understanding of neurodegenerative disorders characterized by filamentous nerve cell inclusions. The recent identification of the major protein component of their respective inclusions led to a surprising convergence of seemingly unrelated disorders. The new findings now allow us to classify neurodegenerative disorders with filamentous nerve cell inclusions into four main categories: (i) the tauopathies; (ii) the alpha-synucleinopathies; (iii) the polyglutamine disorders; and (iv) the iquitin disorders'. Within the proposed classification scheme, tauopathies constitute the most frequent type of disorder.  相似文献   

20.
Chronic accumulation of beta-amyloid in the brain has been shown to result in complex molecular and cellular changes that accompany neurodegeneration in Alzheimer's disease (AD). In this study, we examined the expression of a newly identified beta-secretase, memapsin 2 (M2) or beta-site APP cleaving enzyme in deparaffinized sections from 10 AD patients and 10 aged matched controls and in frozen samples of parietal cortex from 11 AD and 8 controls. M2 is mainly expressed in neurons, with high levels in CA4 to CA2 regions and transentorhinal cortex and low or intermediate levels in CA1, subiculum, and granule cells of the dentate gyrus. The majority of AD brains showed an increase of M2 expression in the CA1, but a decrease in the transentorhinal cortex. A subset of controls and AD patients had high M2 expression in parietal neocortex. Double-staining revealed that senile plaques are not directly associated with the soma of M2-expressing neurons. Neurofibrillary tangles were associated with lower M2 expression in AD. These data indicate that beta-secretase M2 may not be straightforwardly involved in amyloid plaque formation in AD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号