首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer is a multi-faceted disease comprising complex interactions between neoplastic and normal cells. Over the past decade, there has been considerable progress in defining the molecular, cellular and environmental contributions to the pathophysiology of tumor development. Despite these advances, the conventional treatment of patients still generally involves surgery, radiotherapy and/or chemotherapy, and the clinical outcome for many of these efforts remains unsatisfactory. Recent studies have highlighted the feasibility of using immunotherapeutic approaches that seek to enhance host immune responses to developing tumors. These strategies include immunomodulatory cytokines, with TNF-alpha, type I or type II IFNs, IL-2, IL-12, IL-15 and IL-18 being among the most potent inducers of anti-tumor activity in a variety of preclinical studies. More recently, some exciting new cytokines have been characterized, such as IL-21, IL-23, IL-27 and their immunomodulatory and antitumor effects in vitro and in vivo suggest that they may have considerable promise for future immunotherapy protocols. The promise of cytokine therapy does indeed derive from the identification of these novel cytokines but even more fundamentally, the field is greatly benefiting from the ever-expanding amount of preclinical data that convincingly demonstrate synergistic and/or novel biologic effects, which may be achieved through the use of several combinations of cytokines with complementary immune-stimulating capabilities. One cytokine in particular, IL-12, holds considerable promise by virtue of the fact that it plays a central role in regulating both innate and adaptive immune responses, can by itself induce potent anticancer effects, and synergizes with several other cytokines for increased immunoregulatory and antitumor activities. This review discusses the antitumor activity of IL-12, with a special emphasis on its ability to synergize with other cytokines for enhancement of immune effector cell populations and regulation of host-tumor cell interactions and the overall tumor microenvironment.  相似文献   

2.
With respect to CD8 effector T cells, interleukin-12 (IL-12) and transforming growth factor beta (TGFbeta) are 2 cytokines that exert opposing effects. IL-12 promotes antitumor immune responses by augmenting activated CD8 T-cell proliferation and interferon-gamma secretion. Conversely, TGFbeta generates a permissive environment for cancer growth, in part by antagonizing the effects of immunomodulatory cytokines, including IL-12. We demonstrate that TGFbeta-resistant T cells are capable of sustaining IL-12-induced mitogenesis and interferon-gamma secretion in a TGFbeta-rich milieu. Furthermore, in 2 murine tumor models associated with high TGFbeta1 levels in the local microenvironment, treatment with IL-12 and adoptively transferred TGFbeta-resistant T cells provided improved survival times. These results suggest that combining IL-12 with TGFbeta neutralization strategies may be effective in enhancing antitumor immune responses.  相似文献   

3.
Some antimicrobial agents have been reported to modify the host immune and inflammatory responses both in vivo and in vitro. Fosfomycin (FOM) and clarithromycin (CAM) have immunomodulatory activity on human lymphocyte function. In the present study, we examined the effects of FOM and CAM on cytokine synthesis by lipopolysaccharide (LPS)-stimulated human monocytes in comparison with that of dexamethasone in vitro. The three drugs demonstrated positive or negative effects on the synthesis of various cytokines by LPS-primed monocytes. They suppressed the synthesis of tumor necrosis factor alpha, interleukin 1 alpha (IL-1 alpha), IL-1 beta, the IL-1 receptor antagonist, and granulocyte-macrophage colony-stimulating factor in a concentration-dependent manner at concentrations between 1.6 and 40 micrograms/ml. On the contrary, the drugs showed different actions on the synthesis of IL-6 and IL-10. Namely, FOM enhanced both IL-6 and IL-10 synthesis, CAM enhanced only IL-10 synthesis, but dexamethasone deeply suppressed the synthesis of both cytokines. These data indicate that antibacterial agents may modify acute-phase inflammatory responses through their effects on cytokine synthesis by monocytes.  相似文献   

4.
Seo SH  Kim KS  Park SH  Suh YS  Kim SJ  Jeun SS  Sung YC 《Gene therapy》2011,18(5):488-495
Owing to its tumor tropism and prolonged transgene expression, mesenchymal stem cell (MSC) has been considered as an ideal delivery vehicle for cancer gene therapies or therapeutic vaccines. In this study, we demonstrated that intratumoral (i.t.) injection of MSCs expressing modified interleukin-12 (MSCs/IL-12M) exhibited stronger tumor-specific T-cell responses and antitumor effects as well as more sustained expressions of IL-12 and interferon (IFN)-γ in both sera and tumor sites than did IL-12M-expressing adenovirus (rAd/IL-12M) in mice bearing both solid and metastatic tumors. Subcutaneous (s.c.) injection of MSCs/IL-12M at contralateral site of tumor exhibited similar levels of serum IL-12 and IFN-γ as i.t. injection, but much weaker antitumor effects in both B16F10 melanoma and TC-1 cervical cancer models than i.t. injection. Although intravenous (i.v.) injection elicited earlier peak serum levels of cytokines, it induced weaker tumor-specific T-cell responses and antitumor effects than i.t. injection, indicating that serum cytokine levels are not surrogate indicators of antitumor effects. Taken together, these results indicated that MSC is more efficient than adenovirus as a cytokine gene delivery vehicle and that i.t. injection of MSCs/IL-12M is the best approach to induce strong tumor-specific T-cell responses that correlate with anti-metastatic effects as well as inhibition of solid tumor growth, although MSCs themselves have an ability to migrate into the tumor site. In addition, MSCs/IL-12M embedded in Matrigel (MSCs/IL-12M/Matrigel) exhibited significant antitumor effects even in immunodeficient mice such as SCID and BNX mice lacking T, B and natural killer (NK) cells, but not in IFN-γ knockout mice. Our findings provide an optimal approach for designing an efficient clinical protocol of MSC-based cytokine gene therapy to induce strong tumor-specific T-cell responses and therapeutic anticancer efficacy.  相似文献   

5.
Cytokines are protein/glycoprotein messengers of the immune system and have distinct autocrine and paracrine functions to modulate immunity. Recombinant cytokine proteins have been employed as biological drugs for cancer, viral and autoimmune targets. Unfortunately, systemic delivery of pharmacological doses of proteins often results in severe side effects and toxicities. As these therapeutic proteins tend to have very short half-lives and are complex to manufacture and deliver, many investigators are evaluating the genetic delivery of cytokine genes. Here, some of the promising cytokines currently under investigation for cancer therapies are examined, including interleukin (IL)-2, IL-4, IL-12, IL-24, interferon (IFN)-alpha, IFN beta, IFN gamma, granulocyte-monocyte colony-stimulating factor and tumor necrosis factor (TNF)-alpha. Chemokines are smaller chemotactic cytokines which induce migration of leukocytes, activate inflammatory responses, and are implicated in the regulation of tumor development and growth. Chemokines can modulate tumor growth via regulation of tumor-associated angiogenesis, by activation of host immunological responses or by direct inhibition of tumor cell proliferation. In this review, chemokines that have been proposed as antitumor drugs will be discussed, including Glu-Leu-Arg (ELR)-negative chemokines such as IP-10, MCP-3, MIG and SDF-1 alpha from the human CXC and C-C chemokine families.  相似文献   

6.
Cationic lipid-DNA complexes are being evaluated for local or systemic therapeutic gene transfer. These positively charged liposomes fuse with negatively charged cell membranes and deliver the enclosed plasmid and its encoded gene to target tissues. This system has relevance for delivering genes to both normal and damaged or malignant tissues including phagocytes, tumor cells, endothelium and possibly parenchymal cells. Among the approaches being actively evaluated is the delivery of immunostimulatory cytokine genes (such as IL-2, IFN alpha or IL-12) into tumors. It is hypothesized that the local cytokine release will attract or induce antitumor immune responses. Valentis, (formerly GeneMedicine), has developed a plasmid encoding human IL-2 complexed with the liposomal preparation of DOTMA and cholesterol and has initiated phase I studies of intratumoral injection in head and neck cancer patients. Other routes of administration (intravenous and intratracheal), cytokines (IL-2) and proprietary liposomal-DNA complexes are being evaluated in preclinical models.  相似文献   

7.
Wang Q  Yu H  Ju DW  He L  Pan JP  Xia DJ  Zhang LH  Cao X 《Gene therapy》2001,8(7):542-550
Antibody-targeted superantigen C215Fab-SEA is a fusion protein of staphylococcal enterotoxin A (SEA) and the Fab region of the tumor-reactive C215 mAb. It can trigger CTL against C215 antigen-positive tumor cells and induce tumor-suppressive cytokines. However, the antitumor effect of C215Fab-SEA is not satisfactory because of suboptimal production of Th1 cytokines after repeated administration. Interleukin 18 (IL-18) is a novel cytokine with profound effects on Th1 cellular response. In this study, we showed that adenovirus-mediated intratumoral IL-18 gene transfer strongly improved the therapeutic efficacy of C215Fab-SEA in the pre-established C215 antigen-expressing B16 melanoma murine model. More significant tumor inhibition and prolonged survival time were observed in tumor-bearing mice received combined therapy of C215Fab-SEA and Ad IL-18 than those of mice treated with C215Fab-SEA or AdIL-18 alone. Combination therapy augmented NK and CTL activities of tumor-bearing mice more markedly. The production of IL-2 and IFN-gamma also increased more significantly. More potent antitumor effect of combined therapy was observed in IL-10 KO mice with enhanced Th1 response. Our data demonstrated that the antitumor effect of C215Fab-SEA immunotherapy could be potentiated significantly by combination with intratumoral IL-18 gene transfer through more efficient activation of Th1 immune responses.  相似文献   

8.
Introduction: Immunotherapy, in its entirety, represents a promising field at the forefront of cancer. Treatment with potent cytokine IL-12 has provided science with many challenges, but has also demonstrated promise as therapeutic strategy in ovarian cancer.

Areas covered: This review examines the anti-tumor mechanism of action of IL-12 and the development of IL-12 as a potential therapeutic option in a variety of malignancies. It also reviews the immunogenicity of ovarian cancer and covers preclinical and clinical trials that have contributed to the advancement of IL-12 as a potential therapy for ovarian malignancy. The obstacles that researchers have overcome and currently face regarding the use of IL-12 in clinical ovarian cancer trials are also discussed.

Expert opinion: IL-12, as a therapeutic modality, is mechanistically logical and shows great promise in preclinical trials. Further clinical studies are warranted to optimize the potential of IL-12 as a treatment strategy for ovarian cancer.  相似文献   

9.
Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-β, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.  相似文献   

10.
DC-based tumor vaccine research has largely focused on enhancing DC maturation/costimulation and antigen presentation in order to break tolerance against self tumor-associated antigens. DC immunization can activate autoreactive T cells but rarely causes autoimmune pathologies, indicating that self tolerance at the host level is still maintained in the vaccinated hosts. This study in mice reveals a novel regulatory mechanism for the control of self tolerance at the host level by DCs through the restriction of positive cytokine feedback loops by cytokine signaling inhibitor SOCS1. The study further finds the requirement of persistent antigen presentation by DCs for inducing pathological autoimmune responses against normal tissues and tumor, which can be achieved by silencing SOCS1 to unleash the unbridled signaling of IL-12 and the downstream cytokine cascade. However, the use of higher-affinity self peptides, enhancement of DC maturation, and persistent stimulation with cytokines or TLR agonists fail to break tolerance and induce pathological antitumor immunity. Thus, this study indicates the necessity of inhibiting SOCS1, an antigen presentation attenuator, to break self tolerance and induce effective antitumor responses.  相似文献   

11.
Cancer immunotherapy relies on the ability of the immune system to destroy tumor cells selectively and to elicit a long-lasting memory of such activity. Interleukin-12 (IL-12) is an immunomodulatory cytokine produced primarily by antigen-presenting cells, which play an important role in promoting Th1-type immune response and cell-mediated immunity. To augment the antitumor immune action by in vivo IL-12 gene delivery, mannosylated chitosan (MC) was prepared to induce mannose receptor-mediated endocytosis of IL-12 gene directly into dendritic cells which reside within the tumor. Upon characterization, MC was proven to be suitable for IL-12 gene delivery due to good physicochemical properties and low cytotoxicity. In addition, MC exhibited much enhanced IL-12 gene transfer efficiency to dendritic cells rather than chitosan itself in terms of the induction of murine IL-12 p70 and murine IFN-gamma. In animal studies, intratumoral injection of MC/plasmid encoding murine IL-12 complex into BALB/c mice bearing CT-26 carcinoma cells clearly suppressed tumor growth and angiogenesis, and significantly induced cell cycle arrest and apoptosis. Therefore, this study provides a new MC-mediated cytokine gene delivery system for cancer immunotherapy.  相似文献   

12.
To optimize polynucleotide vaccinations for protective antitumor immunity we used a self-replicating RNA vaccine in which Semliki Forest virus replicase drives RNA expression of the lacZ gene coding for beta-galactosidase as model tumor-associated antigen (TAA). This was compared with replicase-deficient control RNA and with lacZ DNA plasmids with respect to gene expression in vitro and in vivo and for vaccination using the mouse ear pinna as an optimal immunization site. In vitro, the highest expression was observed with self-replicating RNA. Gene expression following pinna inoculation of either non-replicating DNA plasmids or self-replicating RNA was similar, lasting for 2-3 weeks. Higher antibody responses were obtained with RNA than with DNA. beta-Gal peptide specific CTL memory responses to lacZ DNA or RNA lasted for more than 6 weeks while respective responses induced by lacZ-transfected tumor cells lasted for only 2 weeks. To achieve a protective response against lacZ tumor cells with self-replicating RNA about a 100-fold lower dose of polynucleotide was sufficient in comparison to DNA. The extent of protective antitumor immunity not only depended on the gene dose used for vaccination, but also on the aggressiveness of the lacZ-transfected tumor line used for challenge. In comparison to lacZ-transfected tumor cells as vaccines, polynucleotide vaccination also demonstrated superiority with regard to cross-protection. Protective antitumor immunity could be strongly increased upon co-inoculation of lacZ DNA with IL-2 DNA or IL-12 RNA. IL-2 DNA, but not IL-12 RNA, also augmented the CTL response while IL-12 RNA, but not IL-2 DNA, reduced the antibody response. These results demonstrate efficient protective antitumor immunity after intra-pinna lacZ TAA polynucleotide vaccination and show additional immunomodulatory effects by co-administration of cytokine polynucleotides.  相似文献   

13.
Low-dose vaccinia virus-mediated cytokine gene therapy of glioma   总被引:2,自引:0,他引:2  
Recombinant viruses can produce cytokines in tumors mobilizing an immune response to tumor cells. In this study, the authors investigated gene expression, in vivo antitumor efficacy, and safety of attenuated recombinant vaccinia virus (rVV) carrying murine cytokine genes interleukin (IL)-2 (rVV-mIL-2), IL-12 (rVV-mIL-12), and both IL-2 and IL-12 (rVV-2-12) in an athymic nude mice model. Significant tumor inhibition (p < 0.05) was observed in a preestablished subcutaneously implanted C6 glioma model using rVVs at doses ranging from 10(2) to 10(7) plaque forming units (PFU). An antitumor effect did not depend on the dose of the rVV-mIL-2 and rVV-mIL-12 viruses. All constructed rVVs induced a high level of cytokine expression in vitro and in vivo. Most groups injected with high doses of recombinant viruses encoding cytokine genes (10(5) to 10(7) PFU) showed signs of cytokine toxicity, whereas in the low-dose treatment groups (10(2) to 10(3) PFU) toxicity was greatly reduced. The antitumor activity of rVV-mIL-12 was associated with increases in both the percentage and number of natural killer T cells in the spleen. Local detection of interferon-y and tumor necrosis factor-alpha was also correlated with tumor growth arrest induced by the treatment. High-dose VV control vector per se induced tumor inhibition by activating Mac-1+ cells in blood, but the antitumor effect was less pronounced compared with rVV-carrying cytokine genes (p < 0.05). These results suggest that attenuated recombinant strains of VV at low doses may potentially be efficient vectors for cancer immunotherapy.  相似文献   

14.
Local expression of cytokine genes by ex vivo transfection or intratumoral gene delivery can control the growth of cutaneous tumors. However, control of tumor metastases by conventional nonviral gene therapy approaches is more difficult. Intravenous injection of lipid-DNA complexes containing noncoding plasmid DNA can significantly inhibit the growth of early metastatic lung tumors. Therefore, we hypothesized that delivery of a cytokine gene by lipid-plasmid DNA complexes could induce even greater antitumor activity in mice with established lung metastases. The effectiveness of treatment with lipid-DNA complexes containing the IL-2 or IL-12 gene was compared with the effectiveness of treatment with complexes containing noncoding (empty vector) DNA. Treatment effects were evaluated in mice with either early (day 3) or late (day 6) established lung tumors. Lung tumor burdens and local intrapulmonary immune responses were assessed. Treatment with either noncoding plasmid DNA or with the IL-2 or IL-12 gene significantly inhibited the growth of early tumors. However, only treatment with the IL-2 or IL-12 gene induced a significant reduction in lung tumor burden in mice with more advanced metastases. Furthermore, the reduction in tumor burden was substantially greater than that achieved by treatment with recombinant cytokines. Treatment with the IL-2 or IL-12 gene was accompanied by increased numbers of NK cells and CD8+ T cells within lung tissues, increased cytotoxic activity, and increased local production of IFN-gamma by lung tissues, compared with treatment with noncoding DNA. Thus, cytokine gene delivery to the lungs by means of intravenously administered lipid-DNA complexes may be an effective method of controlling lung tumor metastases.  相似文献   

15.
BACKGROUND: Dendritic cells (DCs) are the most potent antigen-presenting cells that initiate and regulate immune responses. They are unique in their feature to produce bioactive interleukin (IL)-12, a major proinflammatory cytokine connecting innate and adaptive immunity. Platelets (PLTs) are highly reactive components of the circulatory system with fundamental importance in hemostasis and innate immunity. Recently, immunomodulatory capacities of single specific human PLT-derived products on DC effector functions were identified. To improve the understanding of PLT-DC interactions, this study investigates the influence of intact resting and activated PLTs on DC phenotype and key functions. STUDY DESIGN AND METHODS: Magnetic beads sorted CD14+ cells were expanded in the presence and absence of resting or activated PLTs. DC differentiation, maturation, allostimulatority capacity, antigen uptake, and cytokine profile were estimated to control group. RESULTS: Activated PLTs potently impaired DC differentiation according to CD1a expression (mean reduction, 62%; p < 0.05). Production of IL-12p70 and tumor necrosis factor-alpha was reduced in the presence of resting (mean reduction, 46 and 55%, respectively; p < 0.05) as well as activated PLTs (mean reduction, 63 and 49%, respectively; p < 0.05). In contrast to the suppression of proinflammatory cytokines, activated PLTs increased production of the immunoregulatory cytokine IL-10 by DCs (mean increase, 52%; p < 0.05). DC allostimulatority capacity, antigen uptake, and phenotypic maturation remained unaffected. CONCLUSION: It is proposed that intact PLTs connect immunity and hemostasis by interfering with DC differentiation and cytokine production. This interference might be of importance in clinical settings, such as DC therapy and PLT transfusions.  相似文献   

16.
It has been shown that intratumor administration of an adenovirus vector expressing IL-12 produces a potent T cell-mediated response that leads to significant tumor regression in a murine breast cancer model. IP-10 and MIG are CXC chemokines that recruit mononuclear cells in vivo. In addition to their chemotactic roles, IP-10 and MIG inhibit angiogenesis. We tested whether the addition of IP-10 or MIG may both enhance the antitumor immune response of IL-12 through T cell recruitment and inhibit tumor growth through angiostasis. Adenovirus vectors expressing IP-10 or MIG and/or IL-12 were administered intratumorally in a murine model of mammary adenocarcinoma and fibrosarcoma. Administration of IP-10 or MIG in combination with IL-12 resulted in considerable tumor regression and increased survival time of tumor-bearing animals as compared with IP-10, MIG, IL-12 alone or control-treated animals, with the IP-10 IL-12 combination being most effective. These results suggest augmenting the antitumor immune response and inhibiting tumor angiogenesis with adenoviral vectors expressing IP-10 in combination with IL-12 is a novel way to enhance tumor regression.  相似文献   

17.
The anti-tumor activity of recombinant mAb's directed against tumor cell growth receptors has generally been considered to result from direct antiproliferative effects, the induction of apoptosis, or possibly Ab-dependent cellular cytotoxicity mediated against tumor targets. However, it remains unclear to what degree these mechanisms actually aid in the clearance of Ab-coated tumor cells in vivo. We show here that NK cells secrete a distinct profile of potent immunostimulatory cytokines in response to dual stimulation with Ab-coated tumor cells and IL-12. This response could not be duplicated by costimulation with other ILs and was significantly enhanced in the presence of monocytes. Cytokine production was dependent upon synergistic signals mediated by the activating receptor for the Fc portion of IgG (FcgammaRIII) and the IL-12 receptor expressed on NK cells. Coadministration of Ab-coated tumor cells and IL-12 to BALB/c mice resulted in enhanced circulating levels of NK cell-derived cytokines with the capacity to augment anti-tumor immunity. These findings suggest that, in addition to mediating cellular cytotoxicity and apoptosis, the anti-tumor activity of mAb's might also result from activation of a potent cytokine secretion program within immune effectors capable of recognizing mAb-coated targets.  相似文献   

18.
Th9 cells are a subset of CD4+ Th cells that produce the pleiotropic cytokine IL-9. IL-9/Th9 can function as both positive and negative regulators of immune response, but the role of IL-9/Th9 in tumor immunity is unknown. We examined the role of IL-9/Th9 in a model of pulmonary melanoma in mice. Lack of IL-9 enhanced tumor growth, while tumor-specific Th9 cell treatment promoted stronger antitumor responses in both prophylactic and therapeutic models. Th9 cells also elicited strong host antitumor CD8+ CTL responses by promoting Ccl20/Ccr6-dependent recruitment of DCs to the tumor tissues. Subsequent tumor antigen delivery to the draining LN resulted in CD8+ T cell priming. In agreement with this model, Ccr6 deficiency abrogated the Th9 cell–mediated antitumor response. Our data suggest a distinct role for tumor-specific Th9 cells in provoking CD8+ CTL-mediated antitumor immunity and indicate that Th9 cell–based cancer immunotherapy may be a promising therapeutic approach.  相似文献   

19.
Choi IK  Lee JS  Zhang SN  Park J  Sonn CH  Lee KM  Yun CO 《Gene therapy》2011,18(9):898-909
The oncolytic adenovirus (Ad) is currently being advanced as a promising antitumor remedy as it selectively replicates in tumor cells and can transfer and amplify therapeutic genes. Interleukin (IL)-12 induces a potent antitumor effect by promoting natural killer (NK) cell and cytotoxic T cell activities. IL-18 also augments cytotoxicity of NK cells and proliferation of T cells. This effect further enhances the function of IL-12 in a synergistic manner. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral administration of oncolytic Ad co-expressing IL-12 and IL-18, RdB/IL-12/IL-18. Intratumoral administration of RdB/IL-12/IL-18 improved antitumor effects, as well as increased survival, in B16-F10 murine melanoma model. The ratio of T-helper type 1/2 cytokine as well as the levels of IL-12, IL-18, interferon-γ and granulocyte-macrophage colony-stimulating factor was markedly elevated in RdB/IL-12/IL-18-treated tumors. Mice injected with RdB/IL-12/IL-18 also showed enhanced cytotoxicity of tumor-specific immune cells. Consistent with these results, immense necrosis and infiltration of NK cells, as well as CD4+ and CD8+ T cells, were observed in RdB/IL-12/IL-18-treated tumor tissues. Importantly, tumors treated with RdB/IL-12/IL-18 showed an elevated number of T cells expressing IL-12Rβ2 or IL-18Rα. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-18 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.  相似文献   

20.
A broad range of approaches are under active investigation for the biological therapy of cancer, in particular, strategies directed at host immune response potentiation. These efforts have been fuelled by studies demonstrating the presence of an endogenous, but ineffective, host antitumour immune response and a greater understanding of the key factors which regulate this response. These mechanisms involve complex interactions between various effector cell populations, soluble factors and the tumour itself and are determined by the timing and relative intensity of positive and negative autoregulatory pathways, as well as a variety of immunosuppressive effects capable of mediating tumour self-defence. Based on these observations, immunotherapeutic regimens have been developed to potentiate antigen-specific sensitisation of effector cells with tumour vaccines/adjuvants, expand and amplify the number and function of effector cells, and to counteract suppressive pathways engaged by tumour cells themselves. Significant effort has focused on evaluating the use of exogenous cytokines, administered either systemically or locally into the tumour site via gene therapy. Several cytokines have demonstrated unique activity in the preclinical setting, including IL-2 and IFN-alpha -inducing cytokines such as IL12 and IL18. Most notably, later studies have now attempted to build on the clinical efficacy of IL-2 alone, to define combinations of agents with synergistic immunoregulatory and/or antitumour efficacy. Several lines of evidence suggest that IL-12 and IL-2 provide complementary immunoregulatory signals and have now shown that in combination, these two cytokines mediate synergistic antitumour activity in preclinical tumour models. This paper will review existing data regarding mechanisms of interaction between IL-2 and IL-12 in vitro and in preclinial models and describe future opportunities for the investigation of these potentially promising cytokines in the treatment of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号