首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: Organ failure and tissue loss are challenging health issues due to widespread injury, the lack of organs for transplantation and limitations of conventional artificial implants. The field of tissue engineering aims to provide alternative living substitutes that restore, maintain or improve tissue function.

Areas covered: In this paper, a wide range of porous scaffolds are reviewed, with an emphasis on phase-separation techniques that generate advantageous nanofibrous 3D scaffolds for stem cell-based tissue engineering applications. In addition, methods for presentation and delivery of bioactive molecules to mimic the properties of stem cell niches are summarized. Recent progress in using these bioinstructive scaffolds to support stem cell differentiation and tissue regeneration is also presented.

Expert opinion: Stem cells have great clinical potential because of their capability to differentiate into multiple cell types. Biomaterials have served as artificial extracellular environments to regulate stem cell behavior. Biomaterials with various physical, mechanical and chemical properties can be designed to control stem cell development for regeneration.

Conclusion: The research at the interface of stem cell biology and biomaterials has made and will continue to make exciting advances in tissue engineering.  相似文献   

2.
Introduction: Foetal cells present in amniotic fluid (AF) have been used for many years to perform prenatal genetic screening. Recent reports suggested that these cells might have additional benefits. AF contains, in addition to committed and differentiated cells, a subpopulation with stem cell characteristics. AF-derived stem cells (AFS) have functions found in mesenchymal stem cells, but in addition, exhibit a potent expansion capacity and plasticity. AFS are able to undergo multi-lineage differentiation and produce progeny indicative of all three germ layers.

Areas covered: The experimental approaches available to isolate AFS and their potential for tissue engineering, the repair of organs through cell replacement and tissue regeneration.

Expert opinion: The deployment of AFS for tissue regeneration offers advantages over the use of embryonic or adult stem cells: i) AF represents a convenient and non-contested source for obtaining stem cells; ii) their derivation is relatively simple and rapid; iii) no feeder layers are required for their cultivation; iv) they display no spontaneous differentiation in culture; and v) their stem cell phenotype is not affected by long-term storage. The application of AFS for tissue replacement therapies in vivo is at a very early stage, but existing studies indicate great potential for clinical use.  相似文献   

3.
Importance of the field: Mesenchymal adult stem cells have properties that make them attractive for use in tissue engineering and regenerative medicine. They are inherently plastic, enabling them to differentiate along different lineages, and promote wound healing and regeneration of surrounding tissues by modulating immune and inflammatory responses, promoting angiogenesis and secreting other trophic factors. Unlike embryonic stem cells, clinical uses of mesenchymal stem cells are not encumbered by ethical considerations or legal restrictions.

Areas covered in this review: We discuss skeletal muscle as a source of mesenchymal stem and progenitor cells by reviewing their biology and current applications in tissue engineering and regenerative medicine. This paper covers literature from the last 5 – 10 years.

What the reader will gain: Skeletal muscle is a plentiful source of mesenchymal stem and progenitor cells. This tissue may be obtained via routine biopsy or collection after surgical debridement. We describe the biology of these cells and provide an overview of therapeutic applications currently being developed to take advantage of their regenerative properties.

Take home message: There is potential for stem and progenitor cells derived from skeletal muscle to be incorporated in clinical interventions, either as a cellular therapy to modify the natural history of disease or as a component of engineered tissue constructs that can replace diseased or damaged tissues.  相似文献   

4.
Introduction: Embryonic stem cells (ESCs) or adult stem cells, especially mesenchymal stem cells (MSCs), have been intensively studied for skeletal tissue regeneration including bone and cartilage. Epigenetic mechanisms play essential roles in stem cell maintenance and differentiation. However, little is known about the epigenetic regulation of osteogenesis and chondrogenesis of stem cells.

Areas covered: In this review, features of ESCs and adult stem cells, epigenetics and chromatin structure, as well as epigenetic mechanisms, such as chromatin remodeling, DNA methylation and histone modifications, polycomb group (PcG) proteins and microRNAs are described. Epigenetic researches of stem cell are introduced.

Expert opinion: Epigenetic alterations of stem cell during the in vitro differentiation can be controlled for clinical applications. MSCs are effective resources for skeletal tissue regeneration in both undifferentiated and differentiated states. Understanding epigenetic signatures of MSC is crucial to maintain the stemness. In addition, investigation of epigenetic changes in the differentiation of MSCs is very important to develop methods or chemicals to promote efficient differentiation of MSCs. Inhibition of PcG protein enhancer of zeste (Ezh2) a chromatin modifier, could be a promising candidate to improve MSC differentiation by decreasing Ezh2-mediated H3K27me3.  相似文献   

5.
Importance of the field: Over the past years, extensive research has been directed towards tissue engineering using conventional scaffolds. In-depth studies in this field have led to the realization that in vivo cells interact with the extracellular matrix, composed of nanofibers at sub-micron scale, which not only provides the mechanical support to the cells but also plays a key role in regulation of cellular behavior. This has led to the development of nanofibrous scaffold (NFS) technology which in combination with stem cells is emerging as an important tool in the development of tissue engineering and regenerative medicine.

Areas covered in this review: This review summarizes the three methods of nanofibrous scaffold preparation and provides a state-of-the-art update on the recent advancement in the use of nanoscaffolds in stem cell regeneration therapy.

What the reader will gain: The review gives the reader an insight on nanoscaffold based therapy methods, such as how these scaffolds can potentially be designed and used in successful development of stem cell based therapies.

Take home message: NFS technology when coupled with stem cells and exploited in the right way has a strong potential of being used in stem cell based regenerative medicine.  相似文献   

6.
Importance of the field: Regulating stem cell contributions to vascularization is a challenging goal, but a fundamental aspect of regenerative medicine. Human mesenchymal stem cells retain considerable potential for adult vascular repair and regeneration therapies. They are readily obtained, rapidly proliferate in culture, display a capacity to differentiate towards endothelial or vascular smooth muscle cells, and play an important role in postnatal neovascularization in various tissue contexts. To therapeutically enhance neovascularization during ischemic disease, or inhibit neovascularization during tumorigenesis, an essential prerequisite is to determine the mechanisms which control the recruitment and differentiation of mesenchymal stem cells towards vascular cells.

Areas covered in this review: In this review, we describe the current understanding of how PDGF receptors contribute prominently to neovascularization, and play a decisive role in modulating mesenchymal stem cell recruitment and differentiation towards vascular cells. We discuss PDGF receptor-based therapeutic strategies to exploit mesenchymal stem cells during vascular repair and regeneration, and to control pathological neovascularization.

Take home message: PDGF receptor signaling is emerging as a critical regulatory mechanism and important therapeutic target, that critically directs the fate of mesenchymal stem cells during postnatal neovascularization.  相似文献   

7.
ABSTRACT

Introduction: Cardiovascular disease is the leading cause of mortality worldwide. Current surgical treatments for cardiovascular disease include vascular bypass grafting and replacement with autologous blood vessels or synthetic vascular grafts. However, there is a call for better alternative biological grafts.

Areas covered: Tissue-engineered vascular grafts (TEVGs) are promising novel alternatives to replace diseased vessels. However, obtaining enough functional and clinically usable vascular cells for fabrication of TEVGs remains a major challenge. New findings in adult stem cells and recent advances in pluripotent stem cells have opened a new avenue for stem cell-based vascular engineering. In this review, recent advances on stem cell sourcing for TEVGs including the use of adult stem cells and pluripotent stem cells and advantages, disadvantages, and possible future implementations of different types of stem cells will be discussed. In addition, current strategies used during the fabrication of TEVGs will be highlighted.

Expert opinion: The application of patient-specific TEVGs constructed with vascular cells derived from immune-compatible stem cells possesses huge clinical potential. Advances in lineage-specific differentiation approaches and innovative vascular engineering strategies will promote the vascular regeneration field from bench to bedside.  相似文献   

8.
Importance of the field: Mesenchymal stem cells are multipotent adult stem cell populations that have broad differentiation plasticity and immunosuppressive potential that render them of great importance in cell-based therapies. They are identified by in vitro characteristics based on their differentiation potential for clinical approaches while their biological properties and in vivo identities are often less understood.

Areas covered in this review: Recent research carried out in the last decade on mesenchymal stem cell biology suggests that mesenchymal stem cells from various tissues reside in a perivascular location and these can be identified as pericytes that function as mural cells in microvessels.

What the reader will gain: This review covers recent progress on understanding the link between pericytes and mesenchymal stem cells discussing specific points such as response to injury and tissue-specific functions.

Take home message: Despite a long and controversial history, there is a growing acceptance that perivascular cells are connected with mesenchymal stem cells, all that is really lacking is genetic evidence to show differentiation of pericytes into different cells types.  相似文献   

9.
Introduction: Organ dysfunction and failure are major health issues affecting millions of patients, many of whom are desperate for organ transplantation. Tissue regeneration aims at providing alternative solutions through innovative application of cell biology and materials engineering to clinical practice. Biomaterials play a critical role in tissue engineering, which interface with both cell biology and surgical procedures. Injectable stem cell carriers represent a promising platform to harvest the therapeutic effects of cells and to simplify the surgical process.

Areas covered: This review is focused on injectable cell carriers which are not only expected to improve therapeutic outcomes, but also to facilitate easy surgical process. Such cell carriers include in situ gelling hydrogel, injectable supramolecular hydrogels, and microcarriers.

Expert opinion: The current design of hydrogels and microcarriers can achieve biocompatibility, biodegradability, and provide desirable features to enhance biological response. Overall, more systematic understanding of stem cell behaviors in a synthetic microenvironment, as well as advancement in materials sciences, are needed to design injectable biomaterials that can provide all critical guidance for the full course of tissue regeneration.  相似文献   


10.
11.
Introduction: Mesenchymal stem cells (MSCs) can be obtained from a wide variety of tissues for bone tissue engineering such as bone marrow, adipose, birth-associated, peripheral blood, periosteum, dental and muscle. MSCs from human fetal bone marrow and embryonic stem cells (ESCs) are also promising cell sources.

Areas covered: In vitro, in vivo and clinical evidence was collected using MEDLINE® (1950 to January 2014), EMBASE (1980 to January 2014) and Google Scholar (1980 to January 2014) databases.

Expert opinion: Enhanced results have been found when combining bone marrow–derived mesenchymal stem cells (BMMSCs) with recently developed scaffolds such as glass ceramics and starch-based polymeric scaffolds. Preclinical studies investigating adipose tissue–derived stem cells and umbilical cord tissue–derived stem cells suggest that they are likely to become promising alternatives. Stem cells derived from periosteum and dental tissues such as the periodontal ligament have an osteogenic potential similar to BMMSCs. Stem cells from human fetal bone marrow have demonstrated superior proliferation and osteogenic differentiation than perinatal and postnatal tissues. Despite ethical concerns and potential for teratoma formation, developments have also been made for the use of ESCs in terms of culture and ideal scaffold.  相似文献   

12.
Introduction: Thymosin β4, a low molecular weight, naturally-occurring peptide plays a vital role in the repair and regeneration of injured cells and tissues. After injury, thymosin β4, is released by platelets, macrophages and many other cell types to protect cells and tissues from further damage and reduce apoptosis, inflammation and microbial growth. Thymosin β4 binds to actin and promotes cell migration, including the mobilization, migration, and differentiation of stem/progenitor cells, which form new blood vessels and regenerate the tissue. Thymosin β4 also decreases the number of myofibroblasts in wounds, resulting in decreased scar formation and fibrosis

Areas covered: This article will cover the many thymosin β4 activities that directly affect the repair and regeneration cascade with emphasis on its therapeutic uses and potential. Our approach has been to evaluate the basic biology of the molecule as well as its potential for clinical applications in the skin, eye, heart and brain.

Expert opinion: The considerable advances in our understanding of the functional biology and mechanisms of action of thymosin β4 have provided the scientific foundation for ongoing and projected clinical trials in the treatment of dermal wounds, corneal injuries and in the regeneration and repair of heart and CNS tissue following ischemic insults and trauma.  相似文献   

13.
ABSTRACT

Introduction: Cartilage tissue engineering has rapidly developed in recent decades, exhibiting promising potential to regenerate and repair cartilage. However, the origin of a large amount of a suitable seed cell source is the major bottleneck for the further clinical application of cartilage tissue engineering. The use of a monoculture of passaged chondrocytes or mesenchymal stem cells results in undesired outcomes, such as fibrocartilage formation and hypertrophy. In the last two decades, co-cultures of chondrocytes and a variety of mesenchymal stem cells have been intensively investigated in vitro and in vivo, shedding light on the perspective of co-culture in cartilage tissue engineering.

Areas covered: We summarize the recent literature on the application of heterologous cell co-culture systems in cartilage tissue engineering and compare the differences between direct and indirect co-culture systems as well as discuss the underlying mechanisms.

Expert opinion: Co-culture system is proven to address many issues encountered by monocultures in cartilage tissue engineering, including reducing the number of chondrocytes needed and alleviating the dedifferentiation of chondrocytes. With the further development and knowledge of biomaterials, cartilage tissue engineering that combines the co-culture system and advanced biomaterials is expected to solve the difficult problem regarding the regeneration of functional cartilage.  相似文献   

14.
Introduction: Heart valve disease is an increasingly prevalent and clinically serious condition. There are no clinically effective biological diagnostics or treatment strategies. The only recourse available is replacement with a prosthetic valve, but the inability of these devices to grow or respond biologically to their environments necessitates multiple resizing surgeries and life-long coagulation treatment, especially in children. Tissue engineering has a unique opportunity to impact heart valve disease by providing a living valve conduit, capable of growth and biological integration.

Areas covered: This review will cover current tissue engineering strategies in fabricating heart valves and their progress towards the clinic, including molded scaffolds using naturally derived or synthetic polymers, decellularization, electrospinning, 3D bioprinting, hybrid techniques, and in vivo engineering.

Expert opinion: Whereas much progress has been made to create functional living heart valves, a clinically viable product is not yet realized. The next leap in engineered living heart valves will require a deeper understanding of how the natural multi-scale structural and biological heterogeneity of the tissue ensures its efficient function. Related, improved fabrication strategies must be developed that can replicate this de novo complexity, which is likely instructive for appropriate cell differentiation and remodeling whether seeded with autologous stem cells in vitro or endogenously recruited cells.  相似文献   

15.
Introduction: Stromal cell-derived factor-1α (SDF-1) is a chemokine that plays a major role in cell trafficking and homing of CD34+ stem cells. Studies employing SDF-1/CXCR4 have demonstrated its therapeutic potential in tissue engineering. During injury, cells from the injured organ highly express SDF-1, which causes an elevation of localized SDF-1 levels. This leads to recruitment and retention of circulating CD34+ progenitor cells at the injury site via chemotactic attraction toward a gradient of SDF-1. The general approaches for SDF-1 introduction in tissue engineering are direct protein incorporation into scaffolds and transplantation of SDF-1-overexpressing cells and both methods are successful in improving the regeneration of the damaged tissue/organ.

Areas covered: The mechanisms of SDF-1-mediated homing via CXCR4 receptor and the success of SDF-1-based medical applications in mesenchymal stem cell (MSC) homing as well as areas such as therapeutic angiogenesis, wound healing and neuronal and liver regeneration.

Expert opinion: Current SDF-1 delivery designs and platforms hold much room for improvement. Regardless of the different techniques of SDF-1 introduction, they have proved to be effective in recruitment of various stem/progenitor cells. The pursuit of SDF-1-related regenerative medicine has already begun. It is thus conceivable that its usage in the clinical setting will be a reality in the near future.  相似文献   

16.
Introduction: Lifelong maintenance of a healthy lung requires resident stem cells to proliferate according to tissue requirements. Once thought to be a quiescent tissue, evolving views of the complex differentiation landscape of lung stem and progenitor cells have broad implications for our understanding of how the lung is maintained, as well as the development of new therapies for promoting endogenous regeneration in lung disease.

Areas covered: This review collates a large body of research relating to the hierarchical organization of epithelial stem cells in the adult lung and their role in tissue homeostasis and regeneration after injury. To identify relevant studies, PubMed was queried using one or a combination of the terms ‘lung’, ‘airway’, ‘alveoli’, ‘stem cells’, ‘progenitor’, ‘repair’ and ‘regeneration’.

Expert opinion: This review discusses how new technologies and injury models have challenged the demarcations between stem and progenitor cell populations.  相似文献   


17.
Introduction: Our previous scientometric review of regenerative medicine provides a snapshot of the fast-growing field up to the end of 2011. The new review identifies emerging trends and new developments appearing in the literature of regenerative medicine based on relevant articles and reviews published between 2000 and the first month of 2014.

Areas covered: Multiple datasets of publications relevant to regenerative medicine are constructed through topic search and citation expansion to ensure adequate coverage of the field. Networks of co-cited references representing the literature of regenerative medicine are constructed and visualized based on a combined dataset of 71,393 articles published between 2000 and 2014. Structural and temporal dynamics are identified in terms of most active topical areas and cited references. New developments are identified in terms of newly emerged clusters and research areas. Disciplinary-level patterns are visualized in dual-map overlays.

Expert opinion: While research in induced pluripotent stem cells remains the most prominent area in the field of regenerative medicine, research related to clinical and therapeutic applications in regenerative medicine has experienced a considerable growth. In addition, clinical and therapeutic developments in regenerative medicine have demonstrated profound connections with the induced pluripotent stem cell research and stem cell research in general. A rapid adaptation of graphene-based nanomaterials in regenerative medicine is evident. Both basic research represented by stem cell research and application-oriented research typically found in tissue engineering are now increasingly integrated in the scientometric landscape of regenerative medicine. Tissue engineering is an interdisciplinary field in its own right. Advances in multiple disciplines such as stem cell research and graphene research have strengthened the connections between tissue engineering and regenerative medicine.  相似文献   

18.
19.
Introduction: Prosthetic materials, autologous tissues, cryopreserved homografts and allogeneic tissues have thus far proven unsuccessful in providing long-term functional solutions to extensive upper airway disease and damage. Research is therefore focusing on the rapidly expanding fields of regenerative medicine and tissue engineering in order to provide stem cell-based constructs for airway reconstruction, substitution and/or regeneration.

Areas covered: Advances in stem cell technology, biomaterials and growth factor interactions have been instrumental in guiding optimization of tissue-engineered airways, leading to several first-in-man studies investigating stem cell-based tissue-engineered tracheal transplants in patients. Here, we summarize current progress, outstanding research questions, as well as future directions within the field.

Expert opinion: The complex immune interaction between the transplant and host in vivo is only beginning to be untangled. Recent progress in our understanding of stem cell biology, decellularization techniques, biomaterials and transplantation immunobiology offers the prospect of transplanting airways without the need for lifelong immunosuppression. In addition, progress in airway revascularization, reinnervation and ever-increasingly sophisticated bioreactor design is opening up new avenues for the construction of a tissue-engineered larynx. Finally, 3D printing is a novel technique with the potential to render microscopic control over how cells are incorporated and grown onto the tissue-engineered airway.  相似文献   

20.
Importance of the field: Cellular replacement therapies in vascular and urogenital organ disorders require an abundant source of smooth muscle cells. A promising approach would be the directed myogenic differentiation (characterized by the expression of α-smooth muscle actin (α-SMA)) into a sufficient amount of smooth muscle cells through easily obtainable adult stem cells, for example from the sweat gland.

Areas covered in this review: We present novel multipotent adult stem cell populations derived from glandular tissues like pancreas, salivary gland and sweat gland and assess their myogenic potential. Their possible application in cell replacement therapies is discussed, with regard to numerous scaffold-based approaches in the course of the last decade.

What the reader will gain: Multipotent glandular stem cells can be manipulated by different means to express a predominant smooth muscle-like phenotype. Possible promising applications of myogenic differentiated stem cells were evaluated, since several studies revealed the beneficial effect of somatic stem cells in replacement therapies for blood vessels, bladder reconstructions, etc.

Take home message: Glandular stem cells, especially sweat-gland-derived cells, provide an easily accessible and efficient source for autologous smooth muscle tissue, which might be used to replace vascular tissue in case of organ failure or disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号