首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the increase in prevalence of fungal infections, newer antifungal agents are needed to effectively treat invasive disease, and at the same time minimize adverse effects from therapy. The echinocandins comprise a novel class of antifungals; their mechanism of action involves inhibiting 1,3-beta-D-glucan synthase, which is essential in cell wall synthesis for certain fungi. All three echinocandins are US FDA-approved for the treatment of esophageal candidiasis. Caspofungin and anidulafungin are licensed for the treatment of candidemia, and other select forms of invasive candidiasis. Micafungin is at present the only echinocandin approved for prophylaxis of fungal infections in hematopoietic stem cell transplants; whereas caspofungin is approved for empiric therapy of febrile neutropenia. Although all three echinocandins are active against Aspergillus, only caspofungin is presently approved for salvage therapy in invasive aspergillosis. Combination therapy with echinocandins plus other licensed antifungal therapy shows promise in treating invasive aspergillosis. This article will explore the similarities and differences among the echinocandins.  相似文献   

2.
Chen SC  Slavin MA  Sorrell TC 《Drugs》2011,71(1):11-41
This review compares the pharmacology, spectrum of antifungal activity, pharmacokinetic and pharmacodynamic properties, safety and clinical efficacy of the three licensed echinocandins: caspofungin, micafungin and anidulafungin. Echinocandins inhibit the synthesis of 1,3-β-D-glucan, an essential component of the fungal cell wall, and represent a valuable treatment option for fungal infections. The echinocandins exhibit potent in vitro and in vivo fungicidal activity against Candida species, including azole-resistant pathogens. For all agents, strains with drug minimum inhibitory concentrations (MICs) of ≤ 2?μg/mL are considered susceptible; the MIC at which 90% of isolates tested were inhibited (MIC??) values are typically <2?μg/mL but 100-fold higher MIC?? values are seen with Candida parapsilosis (1-2?μg/mL) and Candida guilliermondii (1-4?μg/mL). Activity is comparable between the three agents, although limited data indicate that anidulafungin may have low MICs against C. parapsilosis and Candida glabrata strains that demonstrate elevated MICs to caspofungin and micafungin. All three drugs have good fungistatic activity against Aspergillus spp., although minimal effective concentrations of micafungin and anidulfungin are 2- to 10-fold lower than those for caspofungin. Synergistic/additive in vitro effects of echinocandins when combined with a polyene or azole have been observed. Clinical resistance to the echinocandins is rare despite case reports of caspofungin resistance in several Candida spp. Resistance has been attributed to mutations in the FKS1 gene within two hot spot regions, leading to amino acid substitutions, mostly at position 645 (serine), yet not all FKS1 mutants have caspofungin MICs of >2?μg/mL. Of the three echinocandins, the in vitro 'paradoxical effect' (increased growth at supra-MIC drug concentrations) is observed least often with anidulafungin. All echinocandins have low oral bioavailability, and distribute well into tissues, but poorly into the CNS and eye. Anidulafungin is unique in that it undergoes elimination by chemical degradation in bile rather than via hepatic metabolism, has a lower maximum concentration and smaller steady state under the concentration-time curve but longer half-life than caspofungin or micafungin. In children, dosing should be based on body surface area. Daily doses of caspofungin (but not micafungin and anidulafungin) should be decreased (from 50 to 35?mg) in moderate liver insufficiency. All echinocandins display concentration-dependent fungicidal (for Candida) or fungistatic (for Aspergillus) activity. The postantifungal effect is 0.9-20 hours against Candida and <0.5 hours against Aspergillus. The echinocandins are well tolerated with few serious drug-drug interactions since they are not appreciable substrates, inhibitors or inducers of the cytochrome P450 or P-glycoprotein systems. In parallel with the greater clinical experience with caspofungin, this agent has a slightly higher potential for adverse effects/drug-drug interactions, with the least potential observed for anidulafungin. Caspofungin (but not micafungin or anidulafungin) dosing should be increased if coadministered with rifampicin and there are modest interactions of caspofungin with calcineurin inhibitors. All three agents are approved for the treatment of oesophageal candidiasis, candidaemia and other select forms of invasive candidiasis. Only micafungin is licensed for antifungal prophylaxis in stem cell transplantation, whereas caspofungin is approved for empirical therapy of febrile neutropenia. Caspofungin has been evaluated in the salvage and primary therapy of invasive aspergillosis. Combination regimens incorporating an echinocandin showing promise in the treatment of aspergillosis. However, echinocandins remain expensive to use.  相似文献   

3.
The changing pattern in fungal infections has driven the need to expand the targets of antifungal activity. The echinocandins are the newest addition to the arsenal against fungal infections. Three echinocandins have been approved by the United States Food and Drug Administration: caspofungin, micafungin, and anidulafungin. These agents have a broad spectrum of activity and are similar to each other with respect to in vitro activity against Candida sp, with micafungin and anidulafungin having similar minimum inhibitory concentrations (MICs) that are generally lower than the MIC of capsofungin. The MICs of the echinocandins are highest against Candida parapsilosis; however, whether this will affect clinical outcomes is unknown. Several case reports have identified clinical failure due to elevated MICs with caspofungin or micafungin against Candida albicans, Candida krusei, and C. parapsilosis. Resistance to the echinocandin class was present in some but not all of the isolates. Empiric therapy with one of the echinocandins for candidemia or invasive candidiasis in patients with neutropenia and those without neutropenia appears to be appropriate when one factors in mortality rate, the increasing frequency of non-albicans Candida infections, and the broad spectrum, safety, and fungicidal effect of the echinocandins. After speciation of the organism, continued therapy with an echinocandin can and should be reevaluated. The echinocandins demonstrate similar in vitro and in vivo activity against Aspergillus sp, but only caspofungin is approved for treatment in patients who are intolerant of or refractory to other therapies. Voriconazole and amphotericin B have demonstrated synergy with the echinocandins. The clinical response to combination therapy has been variable; however, the mortality rate appears to be lower with combination therapy than monotherapy. Large controlled trials are needed to determine the role of combination therapy for invasive aspergillosis. Micafungin and anidulafungin generally have a lower frequency of adverse reactions compared with caspofungin. Phlebitis (3.5-25% of patients) and elevated liver enzyme levels (1-15%) occur more often with caspofungin compared with micafungin and anidulafungin (< 8%). Overall, the three echinocandins are relatively safe and effective agents for the treatment of Candida infections.  相似文献   

4.
Caspofungin: the first in a new class of antifungal agents.   总被引:3,自引:0,他引:3  
Caspofungin is the first approved agent from a new class of antifungals, the echinocandins. By targeting the fungal cell wall (as opposed to the fungal cell membrane), the echinocandins exhibit a unique mechanism of action relative to the other currently approved antifungal agents. Preclinical (in vitro and in vivo) studies have demonstrated activity for caspofungin against the most commonly encountered fungi in the hospital setting, namely Candida and Aspergillus species. Caspofungin is administered as a once-a-day, intravenous formulation. Notably, caspofungin is neither an inhibitor, inducer, nor metabolite of the cytochrome p450 system. To date, few drug-drug interactions have been seen for this echinocandin. A number of Phase II and III clinical studies in documented invasive candidiasis, esophageal candidiasis, and invasive aspergillosis have been completed and have demonstrated efficacy for caspofungin against all three diseases. In all studies, caspofungin manifested an excellent safety profile with few serious, drug-related adverse events or discontinuations due to drug-related adverse events. Isolated symptoms compatible with histamine release have been infrequently reported. In clinical studies, drug-related nephrotoxicity with caspofungin has been rare, and the incidence of liver transaminase elevations has been similar to the incidence seen with comparator agents. Results from a Phase III study as empirical therapy in patients with febrile neutropenia are anticipated in late 2003. Overall, caspofungin represents an important addition to the current antifungal armamentarium.  相似文献   

5.
Echinocandins act by inhibiting 1,3-β-d-glucan synthesis in the fungal cell wall. The three licensed agents in this class, namely anidulafungin, caspofungin and micafungin, have a favourable pharmacological profile. These agents are narrow spectrum with clinically relevant activity against Candida and Aspergillus spp. Several trials have established the non-inferiority of these agents over existing agents in the treatment of invasive fungal infections. Caspofungin is also licensed for empirical antifungal therapy of presumed fungal infections in patients with febrile neutropenia. This paper reviews the literature on echinocandins.  相似文献   

6.
Caspofungin: a review of its use in the treatment of fungal infections   总被引:3,自引:0,他引:3  
McCormack PL  Perry CM 《Drugs》2005,65(14):2049-2068
Caspofungin (Cancidas) is the first of a new class of antifungal agents, the echinocandins, that inhibit the synthesis of the fungal cell wall component beta-(1,3)-D-glucan. Caspofungin is administered once daily by slow intravenous infusion and is used to treat infections caused by Candida spp. and Aspergillus spp.Caspofungin is a valuable new antifungal agent with a novel mechanism of action. In comparative clinical trials, caspofungin was no less effective than liposomal amphotericin B in the empirical treatment of neutropenic patients with persistent fever, amphotericin B deoxycholate in the treatment of invasive candidiasis or fluconazole in the treatment of oesophageal candidiasis. Caspofungin also displayed broadly similar efficacy to amphotericin B deoxycholate in oesophageal or oropharyngeal candidiasis and was effective as salvage therapy in patients with invasive aspergillosis who were refractory to or intolerant of standard therapy. The tolerability profile of caspofungin was similar to that of fluconazole and superior to that of amphotericin B deoxycholate and liposomal amphotericin B. Therefore, in the appropriate indications, caspofungin is a viable alternative to amphotericin B deoxycholate, liposomal amphotericin B or fluconazole.  相似文献   

7.
Systemic fungal infections are difficult to treat and often fatal. Established treatment options include conventional amphotericin B or one of its lipid-based or liposomal formulations, or a triazole antifungal such as fluconazole or itraconazole. [symbol: see text]Caspofungin (Cancidas--Merck Sharp & Dohme) and [symbol: see text]voriconazole (Vfend--Pfizer) are two new antifungals for severe infections caused by Candida spp. (invasive candidiasis) and Aspergillus spp. (invasive aspergillosis). Caspofungin is the first licensed echinocandin antifungal, while voriconazole is a triazole. Promotional claims for caspofungin include that it "provides an effective, yet less toxic, alternative to amphotericin B" while voriconazole is claimed to offer "significantly improved survival in invasive aspergillosis compared with amphotericin B". Here we consider the place of caspofungin and voriconazole in managing patients with severe fungal infections.  相似文献   

8.
Invasive fungal infections are important causes of morbidity and mortality in hospitalised patients. Current therapy with amphotericin B and antifungal triazoles has overlapping targets and is limited by toxicity and resistance. The echinocandin lipopeptide caspofungin is the first of a new class of antifungal compounds that inhibit the synthesis of 1,3-β-D-glucan. This homopolysaccharide is a major component of the cell wall of many pathogenic fungi and yet is absent in mammalian cells. It provides osmotic stability and is important for cell growth and cell division. In vitro, caspofungin has broad-spectrum antifungal activity against Candida and Aspergillus spp. without cross-resistance to existing agents. The compound exerts prolonged post-antifungal effects and fungicidal activity against Candida spp. and causes severe damage of Aspergillus fumigatus at the sites of hyphal growth. Animal models have demonstrated efficacy against disseminated candidiasis and disseminated and pulmonary aspergillosis, both in normal and in immunocompromised animals. Caspofungin possesses favourable pharmacokinetic properties and is not metabolised through the cytochrome P450 (CYP) enzyme system. It showed highly promising antifungal efficacy in Phase II and III clinical trials in immunocompromised patients with oesophageal candidiasis. Caspofungin was effective in patients with invasive aspergillosis intolerant or refractory to standard therapies. Based on its documented antifungal efficacy and an excellent safety profile, caspofungin has been approved recently by the US Food and Drug Administration for the treatment of invasive aspergillosis in patients who are refractory to or intolerant of other therapies (i.e., amphotericin B, lipid formulations of amphotericin B, and/or itraconazole). Phase III clinical trials in patients with candidaemia and in persistently febrile neutropenic patients requiring empirical antifungal therapy are ongoing. This paper reviews the preclinical and clinical pharmacology of caspofungin and its potential role for treatment of invasive and superficial fungal infections in patients.  相似文献   

9.
The echinocandins are a new class of antifungals, developed in response to the need for safe and effective antifungals for the treatment of invasive fungal infections. These agents work by inhibiting 1,3-β-d-glucan synthase, an enzyme essential for production of cell walls in select fungi. Echinocandins appear to demonstrate favourable activity in vitro against a variety of yeasts (including both Candida albicans and non-albicans Candida) as well as select moulds (including Aspergillus spp.) In general, all echninocandins demonstrate a favourable safety profile and require once-daily parenteral administration. Caspofungin is the first of these agents to be available in the US, and is approved for empirical antifungal therapy in febrile neutropenic patients, candidaemia and select forms of invasive candidiasis, and for management of invasive aspergillosis in patients refractory to or intolerant of other therapies. Micafungin was recently approved by the FDA for treatment of oesophageal candidiasis, and for the prophylaxis of fungal infections in haematopoietic stem cell transplant recipients. Emerging data indicate micafungin may have an important role in the treatment of invasive forms of candidiasis. Anidulafungin is an echinocandin approved in the US for treatment of candidaemia and oesophageal candidiasis. Aminocandin (HMR-3702, IP-960) is an investigational agent, with published experience limited to in vitro studies and animal models of infection.  相似文献   

10.
Caspofungin (Cancidas, Merck & Co. Inc.) is the first echinocandin antifungal agent to gain FDA-approval for use in the US. It has excellent clinical activity against Candida spp. and Aspergillus spp. but lacks significant activity against Cryptococcus neoformans. Caspofungin may have some activity against dimorphic fungi such as Histoplasma capsulatum and Coccidioides immitis, but no clinical data is available for treatment of these infections. Caspofungin has demonstrated poor activity against most filamentous fungi in vitro. Several clinical trials have demonstrated its efficacy in the treatment of oropharyngeal, oesophageal and invasive candidiasis, as well as invasive aspergillosis. As a result of caspofungin's unique mechanism of action, and the high morbidity and mortality of invasive fungal infections, there is considerable interest in using this new antifungal agent as part of a combination antifungal therapy. In vitro studies and small case series indicate that caspofungin does not appear to be antagonistic when combined with other antifungals, such as itraconazole, voriconazole or amphotericin B against Aspergillus spp. Caspofungin exerts concentration-dependent killing effects in many different in vitro and animal models of disseminated fungal infection. The usual daily dose is 50 mg/day i.v. following a 70 mg i.v. loading dose. However, higher caspofungin doses have been safely administered and up to 70 mg/day can be administered for patients who fail to respond to lower doses. Caspofungin has an excellent safety profile with reduced toxicities, compared to other licensed antifungal agents. Fever, thrombophlebitis, headache and liver enzyme elevations were the most common drug-related side effects reported in clinical trials so far. Additional data are needed to document its safety in long-term use, and with higher doses in patients with invasive fungal infections. Caspofungin is a promising agent as first-line therapy for invasive candidiasis, and as salvage therapy for invasive aspergillosis. However, more clinical data are needed to define its role as primary therapy for invasive aspergillosis, and its role in combination antifungal therapy.  相似文献   

11.
The echinocandins are a new class of antifungals, developed in response to the need for safe and effective antifungals for the treatment of invasive fungal infections. These agents work by inhibiting 1,3-beta-d-glucan synthase, an enzyme essential for production of cell walls in select fungi. Echinocandins appear to demonstrate favourable activity in vitro against a variety of yeasts (including both Candida albicans and non-albicans Candida) as well as select moulds (including Aspergillus spp.) In general, all echninocandins demonstrate a favourable safety profile and require once-daily parenteral administration. Caspofungin is the first of these agents to be available in the US, and is approved for empirical antifungal therapy in febrile neutropenic patients, candidaemia and select forms of invasive candidiasis, and for management of invasive aspergillosis in patients refractory to or intolerant of other therapies. Micafungin was recently approved by the FDA for treatment of oesophageal candidiasis, and for the prophylaxis of fungal infections in haematopoietic stem cell transplant recipients. Emerging data indicate micafungin may have an important role in the treatment of invasive forms of candidiasis. Anidulafungin is an echinocandin approved in the US for treatment of candidaemia and oesophageal candidiasis. Aminocandin (HMR-3702, IP-960) is an investigational agent, with published experience limited to in vitro studies and animal models of infection.  相似文献   

12.
This column reviews 3 new systemic antifungal agents (posaconazole, micafungin, and anidulafungin) from the standpoint of dermatology. Posaconazole, approved to treat invasive Aspergillus and Candida infections, is available in an oral suspension and resembles fluconazole, but seems to have a broader spectrum of activity. Posaconazole is effective against yeasts and molds and could be effective in treating rare fungal infections involving Zygomycetes, Mucor necrotizing fasciitis, rhinocerebral mucormycosis, some Fusarium species, Penicillium, Histoplasma, Blastomyces, Coccidioides, Paracoccidioides, and sporotrichosis, chromoblastomycosis, mycetoma, and phaeohyphomycosis, including Scedosporium apiospermum and Exophiala, Alternaria, and Bipolaris species. Posaconazole may abate onychomycosis and dermatophytes, but clinical trial data is lacking. Micafungin and anidulafungin are echinocandins like caspofungin and are useful salvage therapy for invasive aspergillosis and candidiasis. The exciting new agents have extended the armamentarium against antifungal pathogens, but have yet to find their place in the dermatologic practice.  相似文献   

13.
Caspofungin, micafungin and anidulafungin are three drugs of the echinocandin class of antifungals available for intravenous treatment of invasive candidiasis and aspergillosis. They exhibit high in vitro and in vivo activities against Candida spp. and Aspergillus spp. In various clinical studies investigating candidemia and invasive candidiasis, Candida esophagitis, and fever in neutropenia, the clinical efficacy of the echinocandin tested was similar to that of established antifungals. Antifungal activity against strains no longer susceptible to conventional antifungal agents, such as fluconazole and amphotericin B suggests that echinocandins can be used as salvage therapy in life-threatening fungal infections. There is no cross-resistance to other antifungals. Excellent safety and tolerability of treatment with caspofungin has been documented over a total of 4.3 million patient days. Echinocandins are poor substrates of the cytochrome P450 enzyme family and can be safely co-administered with most drugs without the need for dosage adaptation. No dose reduction is required in renal impairment. A reduction in the daily maintenance dose has been recommended for caspofungin, but not for micafungin and anidulafungin in patients presenting with mild to moderate hepatic failure.  相似文献   

14.
PURPOSE: The chemistry, pharmacology, spectrum of activity, resistance, pharmacokinetics, pharmacodynamics, clinical efficacy, adverse effects, drug interactions, dosage and administration, cost, and place in therapy of echinocandins are reviewed. SUMMARY: Three echinocandins are currently available: caspofungin, micafungin, and anidulafungin. The principal mechanism of action of the echinocandins is the noncompetitive inhibition of beta-(1,3)-D-glucan synthase, an essential component of the cell wall of many fungi that is not present in mammalian cells. Echinocandins exhibit fungicidal activity against Candida species, including triazole-resistant isolates, and fungistatic activity against Aspergillus species. While fungistatic against mold, echinocandins may hold promise for the treatment of these pathogens when given in combination with amphotericin B or broad-spectrum triazoles, such as voriconazole. To date, resistance to echinocandins has been reported in only two patients. Echinocandins exhibit concentration-dependent activity against Candida species. In clinical trials, caspofungin has demonstrated efficacy in treating candidemia, esophageal candidiasis, and febrile neutropenia. Micafungin has demonstrated efficacy as antifungal prophylaxis in hematopoietic stem cell transplant recipients and in the treatment of esophageal candidiasis. Anidulafungin received approved labeling from the Food and Drug Administration in February 2006. Clinical efficacy data will be forthcoming. CONCLUSION: Echinocandins are fungicidal against yeast and fungistatic against mold. Their limited toxicity profile and minimal drug-drug interactions make them an attractive new option for the treatment of invasive fungal infections. Their cost may limit their use as initial therapy for patients with fungemia in medical centers or intensive care units with a high rate of triazoleresistant Candida infections.  相似文献   

15.
PURPOSE: The chemistry, pharmacology, spectrum of activity, resistance, pharmacokinetics, pharmacodynamics, clinical efficacy, adverse effiects, drug interactions, dosage and administration, cost, and place in therapy of echinocandins are reviewed. SUMMARY: Three echinocandins are currently available: caspofungin, micafungin, and anidulafungin. The principal mechanism of action of the echinocandins is the noncompetitive inhibition of beta-(1,3)-dglucan synthase, an essential component of the cell wall of many fungi that is not present in mammalian cells. Echinocandins exhibit fungicidal activity against Candida species, including triazole-resistant isolates, and fungistatic activity against Aspergillus species. While fungistatic against mold, echinocandins may hold promise for the treatment of these pathogens when given in combination with amphotericin B or broad-spectrum triazoles, such as voriconazole. To date, resistance to echinocandins has been reported in only two patients. Echinocandins exhibit concentration- dependent activity against Candida species. In clinical trials, caspofungin has demonstrated efficacy in treating candidemia, esophageal candidiasis, and febrile neutropenia. Micafungin has demonstrated efficacy as antifungal prophylaxis in hematopoietic stem cell transplant recipients and in the treatment of esophageal candidiasis. Anidulafungin received approved labeling from the Food and Drug Administration in February 2006. Clinical efficacy data will be forthcoming. CONCLUSION: Echinocandins are fungicidal against yeast and fungistatic against mold. Their limited toxicity profile and minimal drug-drug interactions make them an attractive new option for the treatment of invasive fungal infections. Their cost may limit their use as initial therapy for patients with fungemia in medical centers or intensive care units with a high rate of triazoleresistant Candida infections.  相似文献   

16.
Scott LJ  Simpson D 《Drugs》2007,67(2):269-298
Voriconazole (VFEND), a synthetic second-generation, broad-spectrum triazole derivative of fluconazole, inhibits the cytochrome P450 (CYP)-dependent enzyme 14-alpha-sterol demethylase, thereby disrupting the cell membrane and halting fungal growth. In the US, intravenous and/or oral voriconazole is recommended in adults for the treatment of invasive aspergillosis, candidaemia in non-neutropenic patients, disseminated infections caused by Candida spp., oesophageal candidiasis, and in patients with scedosporiosis and fusariosis who are refractory to or intolerant of other antifungal therapy. In Europe, intravenous and/or oral voriconazole is recommended in adults and paediatric patients of at least 2 years of age for the treatment of invasive aspergillosis, candidaemia in non-neutropenic patients, fluconazole-resistant serious invasive Candida spp. infections, scedosporiosis and fusariosis.In large randomised trials, voriconazole was an effective and generally well tolerated primary treatment for candidiasis and invasive aspergillosis in adults and adolescents. More limited data also support the use of voriconazole for the treatment of invasive fungal infections in children, in those with rare fungal infections, such as Fusarium spp. or Scedosporium spp., and in those refractory to or intolerant of other standard antifungal therapies. The availability of both parenteral and oral formulations and the almost complete absorption of the drug after oral administration provide for ease of use and potential cost savings, and ensure that therapeutic plasma concentrations are maintained when switching from intravenous to oral therapy. On the other hand, the numerous drug interactions associated with voriconazole may limit its usefulness in some patients. Further clinical experience will help to more fully determine the position of voriconazole in relation to other licensed antifungal agents. In the meantime, voriconazole is a valuable emerging option for the treatment of invasive aspergillosis and rare fungal infections, including Fusarium spp. and Scedosporium spp. infections, and provides an alternative option for the treatment of candidiasis, particularly where the causative organism is inherently resistant to other licensed antifungal agents.  相似文献   

17.
Novel therapies to treat invasive fungal infections have revolutionised the care of patients with candidiasis, aspergillosis and other less common fungal infections. Physicians in the twenty first century have access to safer versions of conventional drugs (i.e., lipid amphotericin B products), extended-spectrum versions of established drugs (i.e., voriconazole), as well as a new class of antifungal agents; the echinocandins. The increased number of options in the antifungal armamentarium is well timed, as the incidence of both invasive candidiasis and invasive aspergillosis, and the financial burden associated with these infections, have increased significantly in the past several decades. The increasing incidence of fungal infections has risen in parallel with the increase in critically ill and immunocompromised patients. Candida is the fourth most common bloodstream isolate, approximately 50% of which are non-albicans species. Estimates suggest there to be 9.8 episodes of invasive candidiasis per 1000 admissions to surgical intensive care units, with attributable mortality at 30% and cost per episode of US44,000 dollars. The burden of candidiasis is even higher in the paediatric population, with Candida being the second most common bloodstream infection. The increase in non-albicans candidiasis mandates the introduction of new antifungal agents capable of treating these often azole-resistant isolates. In addition, there has been a rise in the incidence of invasive aspergillosis, the most common invasive mould infection following haematopoietic stem cell transplantation, with an estimated incidence of 10 - 20%. The mortality associated with invasive aspergillosis has increased by 357% since 1980. Unfortunately, the overall survival rate among patients treated with amphotericin B, and even voriconazole, remains suboptimal, as evidenced by the failure of treatment in 47% of patients in the landmark voriconazole versus amphotericin B trial. Given the increasing incidence and suboptimal outcomes of these serious fungal infections, novel therapies represent an opportunity for significant advancement in clinical care. The current challenge is to discover the optimal place for the echinocandins in the treatment of invasive fungal infections.  相似文献   

18.
Caspofungin was the first echinocandin to be licensed for the treatment of invasive fungal infections. Caspofungin has in vitro and in vivo activity against Candida spp. and Aspergillus spp., which constitute the majority of medically important opportunistic fungal pathogens. Caspofungin inhibits the synthesis of the 1,3-beta-glucan, with resultant osmotic instability and lysis. The pharmacology of caspofungin is relatively complex. Trafficking of drug into tissues is an important determinant of the shape of the concentration-time relationship. Caspofungin has demonstrated efficacy in experimental models of invasive candidiasis and aspergillosis, which reflect its activity in the treatment of oropharyngeal, esophageal and disseminated candidiasis, as well as salvage therapy for patients with invasive aspergillosis.  相似文献   

19.
Invasive fungal infections are on the rise. Amphotericin B and azole antifungals have been the mainstay of antifungal therapy so far. The high incidence of infusion related toxicity and nephrotoxicity with amphotericin B and the emergence of fluconazole resistant strains of Candida glabrata egged on the search for alternatives. Echinocandins are a new class of antifungal drugs that act by inhibition of β (1, 3)-D- glucan synthase, a key enzyme necessary for integrity of the fungal cell wall.Caspofungin was the first drug in this class to be approved. It is indicated for esophageal candidiasis, candidemia, invasive candidiasis, empirical therapy in febrile neutropenia and invasive aspergillosis. Response rates are comparable to those of amphotericin B and fluconazole. Micafungin is presently approved for esophageal candidiasis, for prophylaxis of candida infections in patients undergoing hematopoietic stem cell transplant (HSCT) and in disseminated candidiasis and candidemia. The currently approved indications for anidulafungin are esophageal candidiasis, candidemia and invasive candidiasis.The incidence of infusion related adverse effects and nephrotoxicity is much lower than with amphotericin B. The main adverse effect is hepatotoxicity and derangement of serum transaminases. Liver function may need to be monitored. They are, however, safer in renal impairment. Even though a better pharmacoeconomical choice than amphotericin B, the higher cost of these drugs in comparison to azole antifungals is likely to limit their use to azole resistant cases of candidial infections and as salvage therapy in invasive aspergillosis rather than as first line drugs.  相似文献   

20.
Newer systemic antifungal agents : pharmacokinetics, safety and efficacy   总被引:22,自引:0,他引:22  
Boucher HW  Groll AH  Chiou CC  Walsh TJ 《Drugs》2004,64(18):1997-2020
The past few years have seen the advent of several new antifungal agents, including those of a new class and a new generation of an existing class. Caspofungin, the first available echinocandin, has greatly expanded the antifungal armamentarium by providing a cell wall-active agent with candidacidal activity as well as demonstrated clinical efficacy in the therapy of aspergillosis refractory to available therapy. In addition, in clinical trials, caspofungin had comparable efficacy to amphotericin B for candidaemia and invasive Candida infections. Caspofungin and two more recently introduced echinocandins, micafungin and anidulafungin, are available as intravenous formulations only and characterised by potent anti-candidal activity, as well as few adverse events and drug interactions. Voriconazole, the first available second-generation triazole, available in both intravenous and oral formulations, has added a new and improved therapeutic option for primary therapy of invasive aspergillosis and salvage therapy for yeasts and other moulds. In a randomised trial, voriconazole demonstrated superior efficacy and a survival benefit compared with amphotericin B followed by other licensed antifungal therapy. This and data from a noncomparative study led to voriconazole becoming a new standard of therapy for invasive aspergillosis. Voriconazole has several important safety issues, including visual adverse events, hepatic enzyme elevation and skin reactions, as well as a number of drug interactions. Posaconazole, only available orally and requiring dose administration four times daily, shows encouraging efficacy in difficult to treat infections due to zygomycetes. Ravuconazole, available in both intravenous and oral formulations, has broad-spectrum in vitro potency and in vivo efficacy against a wide range of fungal pathogens. Clinical studies are underway. Despite the advances offered with each of these drugs, the morbidity and mortality associated with invasive fungal infections remains unacceptable, especially for the most at-risk patients. For individuals with severe immunosuppression as a result of chemotherapy, graft-versus-host disease and its therapy, or transplantation, new drugs and strategies are greatly needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号