首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is ample therapeutic opportunity for the use of antiangiogenic inhibitors in the clinic, as there are several human diseases that are dependent upon angiogenesis [1]. However, no disease has attracted as much attention as a target for antiangiogenic therapy as malignant disorders. There is a vast amount of literature acting as proof-of-principle for the use of angiogenic inhibitors as effective agents for blocking tumour-induced angiogenesis and subverting tumour growth and disease dissemination. One of the unique attractions of targeting tumour angiogenesis is that vascular endothelial cells are a genetically stable population in which acquisition of therapeutic resistance might be less efficient than in genetically unstable tumour cells [2,3]. This review covers inhibitors that target the tumour angiogenic agent vascular endothelial growth factor and its receptors as one such antiangiogenic approach. Many agents in this class are in clinical trials with limited reports of toxicity and some early evidence of clinical benefit.  相似文献   

2.
The rationale and future potential of angiogenesis inhibitors in neoplasia.   总被引:29,自引:0,他引:29  
G Gasparini 《Drugs》1999,58(1):17-38
Malignant tumours are angiogenesis-dependent diseases. Several experimental studies suggest that primary tumour growth, invasiveness and metastasis require neovascularisation. Tumour-associated angiogenesis is a complex multistep process under the control of positive and negative soluble factors. A mutual stimulation occurs between tumour and endothelial cells by paracrine mechanisms. Angiogenesis is necessary, but not sufficient, as the single event for tumour growth. There is, however, compelling evidence that acquisition of the angiogenic phenotype is a common pathway for tumour progression, and that active angiogenesis is associated with other molecular mechanisms leading to tumour progression. Experimental research suggests that it is possible to block angiogenesis by specific inhibitory agents, and that modulation of angiogenic activity is associated with tumour regression in animals with different types of neoplasia. The more promising angiosuppressive agents for clinical testing are: naturally occurring inhibitors of angiogenesis (angiostatin, endostatin, platelet factor-4 and others), specific inhibitors of endothelial cell growth (TNP-470, thalidomide, interleukin-12 and others), agents neutralising angiogenic peptides (antibodies to fibroblast growth factor or vascular endothelial growth factor, suramin and analogues, tecogalan and others) or their receptors, agents that interfere with vascular basement membrane and extracellular matrix [metalloprotease (MMP) inhibitors, angiostatic steroids and others], antiadhesion molecules antibodies such as antiintegrin alpha v beta 3, and miscellaneous drugs that modulate angiogenesis by diverse mechanisms of action. Antiangiogenic therapy is to be distinguished from vascular targeting. Gene therapy aimed to block neovascularisation is also a feasible anticancer strategy in animals bearing experimental tumours. Antiangiogenic therapy represents one of the more promising new approaches to anticancer therapy and it is already in early clinical trials. Because angiosuppressive therapy is aimed at blocking tumour growth indirectly, through modulation of neovascularisation, antiangiogenic agents need to be developed and evaluated as biological response modifiers. Therefore, adequate and well designed clinical trials should be performed for a proper evaluation of antiangiogenic agents, by determination and monitoring of surrogate markers of angiogenic activity.  相似文献   

3.
Angiogenesis is a crucial event in tumour growth, since the growth of tumour cells depends on the supply of essentials such as oxygen and nutrients. Therefore, suppression of angiogenesis is expected to show potent therapeutic effects on various cancers. Additionally, this 'antiangiogenic therapy' is thought not only to eradicate primary tumour cells, but also suppress tumour metastases through disruption of haematogenous metastatic pathways. Tumour dormancy therapy does not aim to disrupt newly formed angiogenic vessels but aims to inhibit further formation of neovessels through inhibiting certain processes of angiogenesis. This raises a question of whether or not these antiangiogenic agents bring complete cure of tumours as complete cut-off of oxygen and nutrients is not expected by the treatment with these agents. This paper will review a novel antiangiogenic therapy, antineovascular therapy (ANET). ANET is categorised in antiangiogenic therapy but is different from tumour dormancy therapy using conventional angiogenic inhibitors: ANET aims to disrupt neovessels rather than to inhibit neovessel formation. ANET is based on the fact that angiogenic endothelial cells are growing cells and would be effectively damaged by cytotoxic agents when the agents are effectively delivered to the neovessels. The complete eradication of angiogenic endothelial cells may cause complete cut-off of essential supplies to the tumour cells and lead to indirect but strong cytotoxicity instead of cytostasis caused by the inhibition of angiogenesis. For the purpose of ANET, an angiogenic vasculature-targeting probe has been developed, by which cytotoxic anticancer agents are actively delivered to the angiogenic endothelial cells by using drug delivery system (DDS) technology. Another way to damage newly formed vessels by cytotoxic agents is achieved by metronomic-dosing chemotherapy. This chemotherapy shifts the target of chemotherapeutic agents from tumour cells to angiogenic endothelial cells by selective dosing schedule. Similarly, the shift of target from tumour cells to angiogenic endothelial cells enhanced therapeutic efficacy of cancer photo-dynamic therapy (PDT): in this antiangiogenic PDT, photosensitizers are delivered more to neovessel endothelial cells than to tumour cells. These therapeutic strategies would be clinically applied in the future.  相似文献   

4.
Tumor angiogenesis--a potential target in cancer chemoprevention.   总被引:2,自引:0,他引:2  
Tumor angiogenesis is critically important for the growth of solid tumors as tumors remain in dormant phase for a long time in the absence of the initiation of blood vessel formation. Tumors can grow up to approximately 2mm size without requirement of blood supply as diffusion is sufficient at this level to support the removal of wastes from and supply of nutrients to tumor cells. Therefore, angiogenesis process could be an important target to suppress tumor growth and metastasis. Angiogenesis is required at almost every step of tumor progression and metastasis, and tumor vasculature has been identified as strong prognostic marker for tumor grading. Endothelial cells are the main players of angiogenesis process and could be peculiar target for antiangiogenic therapy because they are non-transformed and easily accessible to achievable concentrations of antiangiogenic agents, and also are unlikely to acquire drug resistance. Several antiangiogenic strategies have been developed to inhibit tumor growth by targeting different components of tumor angiogenesis. Chemopreventive agents have been shown to target and inhibit different aspects and components of angiogenesis process and can be used conveniently as they are mostly non-toxic natural compounds and could be part of our daily diet. However, a risk assessment for the use of antiangiogenic phytochemicals is needed as they can also disrupt normal physiologic angiogenesis such as wound healing and endometrium development processes. This review focuses on how different chemopreventive phytochemicals target various components of angiogenesis, including angiogenic signaling, which usually starts from tumor cells producing angiogenic factors and affecting endothelial cells growth, migration and capillary vessel organization for tumor angiogenesis.  相似文献   

5.
Perindopril: possible use in cancer therapy   总被引:2,自引:0,他引:2  
Since angiogenesis is essential for the growth of any solid tumor, emerging efforts are being made to develop antiangiogenic therapy. To date, however, no antiangiogenic agent has become widely available for the clinical setting. Angiotensin I-converting enzyme (ACE) inhibitors are commonly used as antihypertensive agents and it has recently been suggested that they decrease the risk of cancer. Studies have found that an ACE inhibitor, perindopril, is a potent inhibitor of experimental tumor development and angiogenesis at a clinically comparable dose. The potent angiogenic factor, vascular endothelial growth factor (VEGF), is significantly suppressed by perindopril and also inhibits VEGF-induced tumor growth. In vitro studies showed that perindopril is not cytotoxic to either tumor cells or endothelial cells. Since perindopril is already in widespread clinical use without serious side effects, it may represent a potential new strategy for anticancer therapy.  相似文献   

6.
Several angiogenic mechanisms are involved in the pathology of renal cell carcinoma (RCC). Increasing knowledge of angiogenesis and the associated signalling pathways has led to the development of targeted antiangiogenic agents for the treatment of metastatic RCC and the introduction of these agents has significantly improved outcomes for these patients. This article provides an overview of the angiogenic mechanisms implicated in RCC, focusing on the main vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and mammalian target of rapamycin (mTOR) signalling pathways. Targeted antiangiogenic agents for the treatment of mRCC include receptor tyrosine kinase inhibitors (such as sunitinib, sorafenib, pazopanib, axitinib, cediranib and tivozanib), monoclonal antibodies (such as bevacizumab) and mTOR inhibitors (such as temsirolimus and everolimus). In this article, we consider the modes of action of these targeted agents and their differing target receptor profiles and we also evaluate how these correlate with their clinical efficacy and tolerability profiles.  相似文献   

7.
It has become increasingly apparent that current antiangiogenic therapy elicits modest effects in clinical settings. In addition, it remains challenging to treat cancer metastasis through antiangiogenic regimes. Rho GTPases are essential for vascular endothelial growth factor (VEGF)-mediated angiogenesis and are involved in tumour cell invasion. This review discusses novel therapeutic strategies that interfere with Rho GTPase signalling and further explores this network as a target for anticancer therapy through interference with tumour angiogenesis and invasion. Recent findings describe the development of innovative Rho GTPase inhibitors. Positive clinical effects of Rho GTPase targeting in combination with conventional anticancer therapy is of increasing interest.  相似文献   

8.
Angiogenesis is the process by which new blood vessels are formed from preexisting microvasculature. To ensure an adequate blood supply, tumor cells release angiogenic factors that are capable of promoting nearby blood vessels to extend vascular branches to the tumor. In addition, larger tumors have been shown to release angiogeneic inhibitory factors that prevent blood vessels from sending branches to smaller, more distant tumors that compete for oxygen and nutrients. Angiogenesis is a complex multistep biochemical process, and offers several potential molecular targets for non-cytotoxic anticancer therapies. Strategies for exploiting tumor angiogenesis for novel cancer drug discovery include: (i) inhibition of proteolytic enzymes that breakdown the extracellular matrix surrounding existing capillaries; (ii) inhibition of endothelial cell migration; (iii) inhibition of endothelial cell proliferation; (iv) enhancement of tumor endothelial cell apoptosis. There is also a host of miscellaneous agents that inhibit angiogenesis for which the specific mechanisms are not clear. Several methods have been developed for measuring antiangiogenic activity both in vitro and in vivo. Although there has been intensive research efforts focused at the phenomena of angiogenesis, as well as the search for antiangiogenic agents for more than two decades, many questions remain unanswered with regard to the overall biochemical mechanisms of the angiogenesis process and the potential therapeutic utility of angiogenic inhibitors. Nevertheless potent angiogenic inhibitors capable of blocking tumor growth have been discovered, and appear to have potential for development into novel anticancer therapeutics. However there are still hurdles to be overcome before these inhibitors become mainstream therapies.  相似文献   

9.
Malignant glioma represents one of the most lethal and angiogenic cancers. Angiogenesis is a fundamental process of blood vessel growth that is a hallmark of cancer. Although several molecular mechanisms contribute to tumor angiogenesis in gliomas, the vascular endothelial growth factor (VEGF) pathway appears particularly important and has been a prominent therapeutic target in cancer treatment. Several preclinical studies have demonstrated efficacy of antiangiogenic agents in both subcutaneous and orthotopic malignant glioma xenograft models. Recently, a phase II clinical trial of bevacizumab, a neutralizing monoclonal antibody to VEGF, in combination with irinotecan has demonstrated promising radiographic response and survival benefit in patients with recurrent malignant glioma. Several other antiangiogenic agents such as inhibitors to platelet derived growth factors (PDGFs), fibroblast growth factors (FGFs), angiopoietins/Tie-2 system, protein kinase C and integrins are currently in preclinical and clinical development. Despite the encouraging results of antiangiogenic therapies in malignant glioma, there are several challenges to be overcome to achieve optimal clinical benefit. Identification of biomarkers to predict response or resistance and to monitor antiangiogenic effects is important to enrich for patients who are likely to respond to therapy and to define the optimal biological dose. At present, antiangiogenic therapies remain palliative suggesting that overcoming antiangiogenic resistance may require multi-targeted agents, combination of agents targeting different angiogenic pathways or multi-modality combination with radiation, chemotherapy, other targeted therapeutics or immunotherapy. In this review, we will discuss the current development, promise and challenge of antiangiogenic therapy in malignant glioma.  相似文献   

10.
Angiogenesis, a process of new blood vessel formation, is a prerequisite for tumour growth to supply the proliferating tumour with oxygen and nutrients. The angiogenic process may contribute to tumour progression, invasion and metastasis, and is generally accepted as an indicator of tumour prognosis. Therefore, targeting tumour angiogenesis has become of high clinical relevance. The current review aimed to highlight mechanistic details of anti-angiogenic therapies and how they relate to classification and treatment rationales. Angiogenesis inhibitors are classified into either direct inhibitors that target endothelial cells in the growing vasculature or indirect inhibitors that prevent the expression or block the activity of angiogenesis inducers. The latter class extends to include targeted therapy against oncogenes, conventional chemotherapeutic agents and drugs targeting other cells of the tumour micro-environment. Angiogenesis inhibitors may be used as either monotherapy or in combination with other anticancer drugs. In this context, many preclinical and clinical studies revealed higher therapeutic effectiveness of the combined treatments compared with individual treatments. The proper understanding of synergistic treatment modalities of angiogenesis inhibitors as well as their wide range of cellular targets could provide effective tools for future therapies of many types of cancer.  相似文献   

11.
Angiogenesis inhibitors. New agents in cancer therapy   总被引:7,自引:0,他引:7  
Ryan CJ  Wilding G 《Drugs & aging》2000,17(4):249-255
Tumours that do not develop a blood supply cannot grow larger than 1 to 2mm3. The growth of a tumour blood supply, called angiogenesis, is a complex process that greatly increases the likelihood of metastatic spread and aggressive tumour behaviour. Molecular processes involved in angiogenesis include stimulation of endothelial growth by tumour cytokine production (vascular endothelial growth factor), degradation of extracellular matrix proteins by metalloproteinases, and migration of endothelial cells mediated by cell membrane adhesion molecules called integrins. These processes are being targeted by several new types of agents broadly classified as angiogenesis inhibitors. Additionally, endogenous angiogenesis inhibitors have been discovered and one of them, endostatin, is currently undergoing clinical trials. The unique targets of these drugs make them distinct from traditional cytotoxic chemotherapeutic agents. Unlike cytotoxic chemotherapy, in which the biological effect of the drug produces the antitumour effect as well as the toxic effect, angiogenesis inhibitors may produce their biological effect independently of the toxic effect. This fact raises important questions among clinical investigators as to what is the most effective way to administer these drugs and monitor their effects. This paper details some of the scientific evidence making angiogenesis an important therapeutic target as well as issues regarding the structure of clinical trials with these new anticancer agents.  相似文献   

12.
Drug inhibition of angiogenesis   总被引:9,自引:0,他引:9  
Cancer is one of the leading causes of death in the Western world. Though advances in cancer therapy and diagnosis have considerably improved life expectancy, the overall survival rate of patients still remains poor - disseminated cancer at presentation and acquisition of tumour resistance are two reasons for this. Angiogenesis is one of the crucial steps in the pathogenesis of tumours. Drug inhibition of angiogenesis is an area of intense research and at least 10000 cancer patients worldwide have received some form of experimental antiangiogenic therapy. More than 300 angiogenesis inhibitors have been discovered to date; 80 antiangiogenic drugs are currently in clinical trials, 12 of which target the key angiogenic factor vascular endothelial growth factor. A convincing regression of tumours has been reported for drugs against this target. Antiangiogenic therapy has raised the hopes both of cancer sufferers and of the physicians looking after them. A concerted international effort by cancer researchers and the pharmaceutical industry will help to further develop this novel treatment strategy for cancer.  相似文献   

13.
The tumor microenvironment is critical in the initiation and progression of cancerous growth, which is dependent on the establishment of a functional vascular network supporting neoplastic proliferation. While the precise role of tumor angiogenesis in lymphoma pathogenesis remains under active investigation, emerging data on the proangiogenic properties of the neoplastic lymphoma cells and mechanism of vascular assembly suggest that angiogenesis is highly relevant to the biology and therapy of non-Hodgkin's lymphoma. Antiangiogenic therapies in non-Hodgkin's lymphoma are in various stages of clinical development aiming at distinct angiogenic pathways operative in endothelial cells and perivascular stromal cells. The major classes of available antiangiogenics include anti-VEGF, small molecule inhibitors targeting proangiogenic receptor tyrosine kinases and their downstream signal transduction pathways, as well as immunomodulatory compounds with antiangiogenic properties. Preliminary clinical data indicate therapeutic advantages associated with strategies targeting dual compartments of vascular cells and tumor cells, as well as multiple angiogenic pathways within the tumor microenvironment. This review summarizes recent applications of antiangiogenic strategies in non-Hodgkin's lymphoma based on current understanding of the biology of lymphoma angiogenesis.  相似文献   

14.
The first generation of clinically useful antiangiogenic agents focused on VEGF and targets in the VEGF pathway. The strengths and limitations of these therapeutics are now clear. Some tumors do not respond to VEGF-directed therapies de novo and others become non-responsive or resistant over time by switching to other angiogenic pathways. The next generation of angiogenesis-directed therapeutics will expand the field beyond the VEGF pathway and become more disease selective. Placental growth factor, a protein closely related to VEGF, is induced as tumors lose responsiveness to VEGF-directed therapies. Angiopoietins 1 and 2 are being targeted with a unique peptibody, a human recombinant Fc constant region fused to peptides, in clinical trials. The HGF/c-Met pathway is upregulated in some tumors as an alternate angiogenic pathway. The CXCL12 (SDF-1)/CXCR4 pathway represents a stromal chemokine axis involved in tumor angiogenesis. CXCR2 is a G-protein coupled receptor with several ligands including interleukin-8 and other angiogenic cytokines and may represent a useful target for antiangiogenic agents. The notch pathway is being investigated as a target in the setting of tumor angiogenesis. Sphingosine-1-phosphate is a bioactive lipid that can be neutralized with a monoclonal antibody. The anti-S-1-P antibody is under investigation as an antiangiogenic agent. Finally, several multi-targeted kinase inhibitors each with a unique pattern of inhibitory potency are in clinical trial with a focus on antiangiogenic activity. The expansion of the scope of potential antiangiogenic agents in or entering clinical trial should allow the development of antiangiogenic combination regimens and single agents that address diseases refractory to VEGF-directed therapeutics.  相似文献   

15.
Therapeutic angiogenesis is a novel approach to the treatment of ischaemic or occlusive coronary and peripheral vascular disease. The therapeutic concept is based on the restoration of distal blood flow by the enlargement of existing vessels and tissue perfusion by the induction of new capillaries. Initial studies have focused on the direct application of endothelial growth factors, vascular endothelial growth factor and fibroblast growth factor, or the delivery of genes using either a plasmid or adenoviral vector. Recently, new angiogenic agents such as hypoxia inducible factor-1alpha, fibroblast growth factor-4, Del-1 and hepatocyte growth factor have entered clinical testing. Moreover, stem-cell therapy or factors mobilising bone marrow progenitor cells have provided evidence for a new avenue for therapeutic angiogenesis. Numerous preclinical studies and several initial clinical trials have provided encouraging data in support of the feasibility of promoting biological revascularisation by the administration of angiogenic factors or cells.  相似文献   

16.
Therapeutic angiogenesis is a novel approach to the treatment of ischaemic or occlusive coronary and peripheral vascular disease. The therapeutic concept is based on the restoration of distal blood flow by the enlargement of existing vessels and tissue perfusion by the induction of new capillaries. Initial studies have focused on the direct application of endothelial growth factors, vascular endothelial growth factor and fibroblast growth factor, or the delivery of genes using either a plasmid or adenoviral vector. Recently, new angiogenic agents such as hypoxia inducible factor-1α, fibroblast growth factor-4, Del-1 and hepatocyte growth factor have entered clinical testing. Moreover, stem-cell therapy or factors mobilising bone marrow progenitor cells have provided evidence for a new avenue for therapeutic angiogenesis. Numerous preclinical studies and several initial clinical trials have provided encouraging data in support of the feasibility of promoting biological revascularisation by the administration of angiogenic factors or cells.  相似文献   

17.
18.
Current cancer chemotherapeutic drugs have limited efficacy due to the fact that tumour cells are a rapidly changing target characterised by genomic instability. Unlike tumour cells, activated endothelial cells (ECs) required for angiogenesis, a process indisputably crucial to tumour growth and metastasis, were originally considered to be ideal therapeutic targets free of drug resistance. Additionally, unlike preclinical studies in mice using inhibitors targeting the powerful EC mitogen--vascular endothelial growth factor (VEGF)--overall survival benefit with anti-VEGF therapy used as monotherapy has yet to be demonstrated in phase III clinical trials. In contrast, VEGF-specific antibodies combined with current chemotherapy have resulted in improved outcomes in certain previously untreated cancers. This has led some researchers to hypothesize that combined treatments targeting other angiogenic molecules besides VEGF, and/or targeting not only ECs but other angiogenic non-EC types, may offer alternative but effective therapeutic options for eradicating malignant tumours. A rational approach to effective anti-angiogenic combination therapy will, however, require further understanding of the molecular and cellular mechanisms which undergird tumour vascularisation. Recent studies involving judicious use of powerful new genetic approaches have provided unprecedented insights into how different molecular and cellular mechanisms cooperate to build, branch and mature the growing vessel network so pivotal to tumour growth and survival. This review covers our current understanding of how the various key players--the tumour cells, stromal cells, endothelial cells and pericytes, and bone-marrow-derived haematopoietic and putative endothelial progenitors interact via their cell-derived pro- or anti-angiogenic factors to regulate tumour angiogenesis.  相似文献   

19.
Angiogenesis: regulators and clinical applications   总被引:57,自引:0,他引:57  
Angiogenesis is a fundamental process in reproduction and wound healing. Under these conditions, neovascularization is tightly regulated. Unregulated angiogenesis may lead to several angiogenic diseases and is thought to be indispensable for solid tumor growth and metastasis. The construction of a vascular network requires different sequential steps including the release of proteases from "activated" endothelial cells with subsequent degradation of the basement membrane surrounding the existing vessel, migration of endothelial cells into the interstitial space, endothelial cell proliferation, and differentiation into mature blood vessels. These processes are mediated by a wide range of angiogenic inducers, including growth factors, chemokines, angiogenic enzymes, endothelial specific receptors, and adhesion molecules. Finally, when sufficient neovascularization has occurred, angiogenic factors are down-regulated or the local concentration of inhibitors increases. As a result, the endothelial cells become quiescent, and the vessels remain or regress if no longer needed. Thus, angiogenesis requires many interactions that must be tightly regulated in a spatial and temporal manner. Each of these processes presents possible targets for therapeutic intervention. Synthetic inhibitors of cell invasion (marimastat, Neovastat, AG-3340), adhesion (Vitaxin), or proliferation (TNP-470, thalidomide, Combretastatin A-4), or compounds that interfere with angiogenic growth factors (interferon-alpha, suramin, and analogues) or their receptors (SU6668, SU5416), as well as endogenous inhibitors of angiogenesis (endostatin, interleukin-12) are being evaluated in clinical trials against a variety of solid tumors. As basic knowledge about the control of angiogenesis and its role in tumor growth and metastasis increases, it may be possible in the future to develop specific anti-angiogenic agents that offer a potential therapy for cancer and angiogenic diseases.  相似文献   

20.
Balanced regulation of endothelial cell function and co-ordination of endothelial cells and periendothelial support cells by angiogenic growth factors and cell type-specific receptor tyrosine kinases is crucially involved in physiological angiogenesis. Disturbance of this fine-tuned balance is associated with disease-related neoangiogenesis, such as in tumour angiogenesis or in retinopathy, or in insufficient angiogenesis in occlusive vascular disease. In addition to the well known function of vascular endothelial growth factor (VEGF) as an endothelial cell-specific angiogenesis inducer and survival factor, recent studies on angiopoietins and their receptors have provided insight into the interplay of these endothelium-specific ligand-receptor systems in formation, maintenance and remodelling of the vasculature. Knowledge of the mechanisms by which these ligand-receptor systems are involved in regulation of the interaction of endothelial cells and their periendothelial support cells opens new opportunities for therapeutic angiogenesis to induce formation of functional blood vessels in occlusive disease, as well as to complement and/or enhance current anti-VEGF-based strategies for anti-angiogenic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号