首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavioral effects of dopamine antagonists differing in affinity and selectivity at D1 and D2 dopamine receptors were compared in squirrel monkeys responding under a fixed-interval schedule of stimulus-shock termination. D1-selective antagonists included (R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7 -ol, SCH 23390; its enantiomer (S)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7 -ol, SCH 23388; [(-)-trans-6,7,7a,8,9,13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H - benzo(d)naphtho-(2,1-b)azepine], SCH 39166; (R)-7-bromo-8-hydroxyl-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzaze pine, R-SKF 83566; (R)-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol, R-SKF 83692; 2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol, RS-SKF 83692. D2-selective antagonists included cis-N-(1-benzyl-2-methylpyrrolidine-3-yl)-5-chloro-2-methoxy-4- methylaminobenzamide, YM-09151-2, eticlopride, raclopride, haloperidol, risperidone, remoxipride, S-sulpiride and R-sulpiride; nonselective dopamine antagonists were S-butaclamol and chlorpromazine. Regardless of selectivity for D1 or D2 receptors, all drugs produced dose-related decreases in fixed-interval responding. A high degree of stereoselectivity was evident for both D1 antagonists (SCH 23390 and R-SKF 83692 more potent than, respectively, SCH 23388 and RS-SKF 83692) and D2 antagonists (S-sulpiride more potent than R-sulpiride). High doses of the D1 and D2 antagonists also reduced motor activity and impaired coordination in monkeys in the home cage after test sessions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The present study assessed the role of dopamine D1 and D2 receptors in the production of an extrapyramidal syndrome (EPS) in Cebus apella monkeys. Previous studies have shown the development of EPS in both old and new world monkeys with haloperidol administration. We now report that repeated weekly administration of a selective D1 antagonist, SCH 23390, does not produce this syndrome in cebus monkeys. Cebus monkeys were treated with either vehicle (n = 6), the specific D2 antagonist haloperidol (0.3 mg/kg p.o., n = 9) or the specific D1 antagonist SCH 23390 (10.0 mg/kg p.o., n = 9) once a week for approximately 1 year and behavioral effects were observed and scored. The drug doses used in this study produced similar sedative scores when given acutely and sedation increased over the first 12 weeks of the study for both treatment groups. However, by the 12th week of dosing with haloperidol all the monkeys showed a profound EPS characterized by limb extensions, head pushing, tongue protrusions and sometimes severe biting movements. In contrast, none of the SCH 23390-treated monkeys showed any abnormal movements, suggesting D1 antagonists have a low EPS side-effect liability. The profile of the incidence of EPS seen with classical neuroleptic drugs in cebus monkeys and their blockade of EPS by anticholinergic drugs mimics the profile seen in humans. The models presented appear to be predictive of the production of the EPS in humans and could be used to screen neuroleptics for EPS liability. Furthermore, the EPS is probably due to the selective blockade of dopamine D2 receptors with its associated enhancement of cholinergic neurotransmission.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Chronic treatment of rats with SCH23390 (0.5 mg/kg/day s.c.), a D1 dopamine receptor antagonist, for 21 days resulted in an increase in D1 dopamine receptors but produced no change in D2 dopamine receptors. During habituation to locomotor activity cages the rats treated chronically with SCH23390 showed significantly higher locomotor activity than controls treated chronically with saline. When injected with the selective D1 dopamine receptor agonist SKF38393 (3 mg/kg), rats treated chronically with SCH23390 showed significantly greater stereotypy and locomotor activity responses. Surprisingly, rats treated chronically with SCH23390 also showed significantly higher locomotor activity and stereotypy responses when treated with the selective D2 dopamine receptor agonist, quinpirole (LY171555) (0.3 mg/kg). These results indicate that a selective increase in D1 receptors may not be necessary, but is sufficient, to lead to an enhanced behavioral response to either selective D1 or D2 dopamine receptor agonists. If, indeed, an enhanced stereotypy and locomotor activity response to dopaminergic agonists in rats after a brief chronic treatment with a neuroleptic drug is predictive of tardive dyskinesia potential in the clinical setting, these results can suggest that SCH23390 may also induce tardive dyskinesia in humans. Adenylate cyclase activity stimulated by guanine nucleotides, forskolin or dopamine was enhanced after chronic treatment with SCH23390. However, dopamine-stimulated adenylate cyclase activity was not potentiated detectably by the increase in receptor number over the more general increase in guanine nucleotide-stimulated cyclic AMP production. Additionally, no change was observed in dopamine competition for [3H]SCH23390 binding, with dopamine's RH/RL ratio remaining unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cocaine-heroin combinations ("speedballs") are commonly self-administered by polydrug abusers. Speedball self-administration may reflect in part an enhancement of the reinforcing effects of the drug combination compared with either drug alone. The present study investigated the degree to which the dopamine receptor system plays a role in cocaine-induced enhancement of heroin self-administration. In rhesus monkeys trained under a progressive ratio schedule of i.v. drug injection, combining heroin with cocaine shifted the heroin dose-response function leftward, and isobolographic analysis indicated that the combined effects were dose-additive. Likewise, combining heroin with the D1-like receptor agonists 6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine HCl (SKF 81297) and 6-chloro-N-allyl-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-[1H]-3-benzazepine (SKF 82958) resulted in a leftward shift in the heroin dose-response function that was dose-additive. In contrast, combining heroin with the D2-like agonists R-(-)-propylnorapomorphine (NPA) and quinpirole shifted the heroin dose-response function to the right. Isobolographic analysis of the combined effects of heroin with NPA and quinpirole revealed infra-additive interactions in both cases. When combined with cocaine instead of heroin, both the D1-like receptor agonist SKF 81297 and the D2-like receptor agonist NPA enhanced cocaine self-administration. The combinations of SKF 81297 with cocaine were dose additive; however, the NPA-cocaine interaction was infra-additive. Together, the results suggest that D1- and D2-like receptor mechanisms may play qualitatively different roles in the combined self-administration of heroin and cocaine. In particular, stimulation of D1-like receptors enhances self-administration of heroin or cocaine individually, similar to the effects of combining cocaine with heroin, whereas stimulation of D2-like receptors seems to play primarily an inhibitory role.  相似文献   

5.
Drugs that antagonize D2-like receptors are effective antipsychotics, but the debilitating movement disorder side effects associated with these drugs cannot be dissociated from dopamine receptor blockade. The "atypical" antipsychotics have a lower propensity to cause extrapyramidal symptoms (EPS), but the molecular basis for this is not fully understood nor is the impact of inverse agonism upon their clinical properties. Using a cell-based functional assay, we demonstrate that overexpression of Galphao induces constitutive activity in the human D2-like receptors (D2, D3, and D4). A large collection of typical and atypical antipsychotics was profiled for activity at these receptors. Virtually all were D2 and D3 inverse agonists, whereas none was D4 inverse agonist, although many were potent D4 antagonists. The inverse agonist activity of haloperidol at D2 and D3 receptors could be reversed by mesoridazine demonstrating that there were significant differences in the degrees of inverse agonism among the compounds tested. Aripiprazole and the principle active metabolite of clozapine NDMC [8-chloro-11-(1-piperazinyl)-5H-dibenzo [b,e] [1,4] diazepine] were identified as partial agonists at D2 and D3 receptors, although clozapine itself was an inverse agonist at these receptors. NDMC-induced functional responses could be reversed by clozapine. It is proposed that the low incidence of EPS associated with clozapine and aripiprazole used may be due, in part, to these partial agonist properties of NDMC and aripiprazole and that bypassing clozapine blockade through direct administration of NDMC to patients may provide superior antipsychotic efficacy.  相似文献   

6.
The present work provides a detailed pharmacological characterization of dihydrexidine (DHX) (trans-10,11-dihydroxy- 5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine), the first high-potency, full efficacy, bioavailable D1 dopamine receptor agonist. DHX represents a new conformationally rigid structural class of dopamine receptor ligands. It competes stereoselectively and potently for D1 binding sites in rat striatal membranes labeled with [3H]SCH23390 with an IC50 of about 10 nM compared to about 30 nM for the prototypical D1 agonist SKF38393. Like other dopamine agonists, DHX has a shallow competition curve (nH = ca. 0.7) that can be fitted by a two-site model consisting of high-affinity (63%; KD = 3 nM) and low-affinity (37%; KD = 75 nM) sites. DHX was screened for activity against 40 other binding sites, and was inactive (IC50 greater than 10 microM) against all except D2 dopamine receptors (IC50 = 130 nM) and alpha 2 adrenoreceptors (IC50 = ca. 230 nM). Functionally, DHX is a full efficacy dopamine D1 agonist. In homogenates of rat striatum, DHX or dopamine doubles the rate of cyclic AMP synthesis, whereas SKF38393 only causes a maximal increase of about 50%. These effects of DHX are blocked by the selective D1 antagonist SCH23390, but are not affected by D2, 5-hydroxytryptamine2, muscarinic, or alpha or beta adrenergic antagonists. Because DHX is known to cause D2-like behavioral effects at high doses, the nature of its D2 activity was characterized using prolactin release as an end-point. DHX and the prototypical D2 agonist quinpirole both caused a significant inhibition of the prolactin release induced by 5-hydroxytryptophan. These effects of DHX are not due to "indirect" alterations at the presynaptic terminal, because DHX is essentially inactive at inhibiting the dopamine uptake system, and does not cause the release of dopamine. These data demonstrate the utility of DHX for probing the biochemistry and function of D1 dopamine receptors.  相似文献   

7.
J Costentin 《Thérapie》1991,46(4):269-282
The review begins by a brief presentation of the present state of knowledge on the multiplicity of brain dopamine receptors. The molecular basis of their distinction is reported, as well as the most specific ligands for each receptors type: D1, D2 (their isoforms A and B), D3, the putative D4 and autoreceptors. Then the review focuses on the respective location of D1 receptors (mainly linked positively to an adenylate cyclase) and of so-called D2 (lacking precision for distinguishing D2, D3 or D4), at the cellular level. The theoretical aspects of the functional interactions between these D1 and D2 receptors suggest four possibilities: Antagonism, indifference, additive synergy and potentiation. The effects resulting from the simultaneous administration of either D1 and D2 dopamine agonists or D1 and D2 dopamine antagonists were considered on various behaviours or functions. The four predicted types of interactions were found: D1/D2 antagonism on thermoregulation, D1/D2 indifference on nociception, additive synergy on the traction test, on anorexia or on the latency of the acoustic startle response, and finally potentiation on stereotypies or climbing behaviour. These data are completed by many other reported in an abundant literature about these interactions, which appear as modalities of regulation: their alterations might take part in several pathological states.  相似文献   

8.
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1–5Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2R affinity. Four to six atoms chains are optimal for D2R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2R ligands, which have been developed in the last decade (2010–2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2R ligands and D2R modulators from patents are not discussed in this review.  相似文献   

9.
10.
Wake-promoting actions of dopamine D1 and D2 receptor stimulation   总被引:5,自引:0,他引:5  
Multiple ascending neurotransmitter systems participate in the regulation of behavioral state. For example, noradrenergic, cholinergic, and serotonergic systems increase EEG and, in some cases, behavioral indices of arousal. The extent to which dopaminergic systems exert a similar activating influence on behavioral state remains unclear. The current studies examined the wake-promoting actions of centrally administered D1 and D2 receptor agonists. In these studies, intracerebroventricular infusions of a D1 (SKF-82958; 2.5 and 25 nmol) or D2 (quinpirole; 40 and 140 nmol)-agonist were made into sleeping animals. The effects of these infusions on electroencephalogram/electromyographic indices of sleep-wake state and behavior were examined. D1 agonist administration dose dependently increased time spent awake and suppressed rapid eye movement and slow-wave sleep in the 2 h immediately after infusion. D1 agonist administration also elicited modest increases in measures of locomotion and time spent grooming and eating. D2 agonist administration had similar wake-promoting actions, accompanied by modest effects on drinking and locomotion. Interestingly, D2 agonist administration also significantly increased time spent chewing on inedible material, an arousal/stress-related behavior. Overall, these results demonstrate that dopamine contributes to the alert waking state via actions of D1 and D2 receptors. Additionally or alternatively, these results further suggest a potential involvement of dopamine receptors in the induction of high-arousal states, including stress.  相似文献   

11.
Animal studies have indicated that the nigrostriatal dopaminergic system is involved in central pain modulation. In a recent positron emission tomography (PET) study, we demonstrated presynaptic dysfunction of the nigrostriatal dopaminergic pathway in burning mouth syndrome, which is a chronic pain state. The objective of the present study was to examine striatal dopamine D1 and D2 receptors in these patients. We used 11C-NNC 756 and 11C-raclopride to study D1 and D2 receptor binding in a PET study in ten burning mouth patients and 11 healthy controls. Patients underwent a structured psychiatric evaluation and an electrophysiological test for the excitability of the blink reflex. The striatal uptake of 11C-NNC 756 did not differ between patients and controls. In a voxel-level analysis, the uptake of 11C-raclopride was statistically significantly higher in the left putamen in burning mouth patients (corrected P-value 0.038 at cluster-level). In the region of interest analysis, the D1/D2 ratio was 7.7% lower in the right putamen (0.64+/-0.04 vs. 0.69+/-0.04, P=0.01) and 6.4 % lower in the left putamen (0.65+/-0.05 vs. 0.70+/-0.05, P=0.05) when compared to controls. Increased 11C-raclopride uptake and the subsequent decrease in the D1/D2 ratio may indicate a decline in endogenous dopamine levels in the putamen in burning mouth patients.  相似文献   

12.
Rats were trained to discriminate 8.0 mg/kg of SKF 38393 (SKF) or 1.0 mg/kg of piribedil (PIR) from saline. Drugs were given 10 min before each session in a two-lever, food-reinforced (FR 30) drug discrimination paradigm. SKF (2.0-8.0 mg/kg i.p.) produced a dose-related increase in drug-appropriate responding in the SKF group but not in the PIR group. PIR (0.06-1.0 mg/kg i.p.) produced a dose-related increase in drug-appropriate responding in the PIR group but not in the SKF group. Apomorphine (0.03-0.5 mg/kg i.p. also produced a dose-related increase in PIR-appropriate responding, whereas dopamine (DA; 4.0-16 mg/kg i.p.), which does not readily cross the blood-brain barrier, did not. When pretreatment time was varied, SKF-appropriate responding was maximal when 8.0 mg/kg of SKF was injected 30 min before the session. PIR (1.0 mg/kg i.p.) occasioned maximal PIR-appropriate responding when injected 1 or 10 min before the session but did not when injected 30 or 60 min before the session. In rats trained to discriminate SKF (8.0 mg/kg) using a 30-min pretreatment time, the D1 antagonist SCH 23390 blocked the SKF discriminative stimulus (DS) but did not alter the PIR DS in PIR-trained rats. The D2 antagonist pimozide blocked the PIR DS but did not alter the SKF DS. Thus, the DS properties of D1 and D2 agonists are functionally distinct in rats and are antagonized by DA antagonists selective for D1 or D2 receptors, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Neuroleptic drugs have been suggested to act as inverse agonists at the dopamine D2 receptor, but no link between therapeutic efficacy and ligand's intrinsic activity could be determined. Since the resolving capacity to monitor inverse agonism at dopamine D2 receptors is limited, we speculated that receptor constitutive activation could be enhanced by constructing chimeric D2/alpha 1B receptors. Marked inverse agonist responses with a series of dopamine antagonists were obtained by: 1) exchange of the D 2short receptor's 3ICL by that of the alpha 1B-adrenoceptor, 2) incorporation of an activating mutation (Ala 279 Glu) in the distal portion of its 3ICL, and 3) coexpression with a G alpha11 protein. This chimeric D2/alpha 1B receptor construct displayed a ligand binding profile comparable to that of the wild-type (wt) D 2short receptor and an effector activation profile close to that of the wt alpha 1B-adrenoceptor. Most of the dopamine antagonists attenuated by -54 to -59% basal inositol phosphates (IP) formation, thus clearly acting as inverse agonists. Ziprasidone behaved as a silent antagonist (+5% versus basal IP level) and antagonized both dopamine-mediated (pK B, 7.61) and tropapride-mediated (pK B, 8.52) IP responses. Clozapine, olanzapine, and raclopride displayed partial inverse agonist properties (-31, -67, and -71% versus tropapride, respectively), whereas bromerguride (+63%) and cis-(+)-5-methoxy-1-methyl-2-(di-n-propylamino tetralin) [(+)-UH 232] (+88%) demonstrated positive agonism. In conclusion, analyses with the chimeric D2/alpha 1B Ala 279 Glu 3ICL receptor construct suggest that neuroleptic drugs can be differentiated on the basis of their intrinsic activity, as they can either activate, inhibit, or be silent at this receptor construct.  相似文献   

14.
The present study compared interactions among dopamine D1-like agonists and partial agonists with cocaine on the locomotor stimulant effects of cocaine, as well as the discriminative-stimulus effects of cocaine, and effects of cocaine on rates of responding. Cocaine alone produced a dose-related stimulation of locomotor activity in Swiss-Webster mice and a dose-related increase in the proportion of responses on the cocaine-appropriate response key in squirrel monkeys (Saimiri sciureus) trained to discriminate cocaine (0.3 mg/kg i.m.) from saline. None of the D1 dopaminergic agents fully reproduced these effects, with SKF 77434 producing marginal stimulation of locomotor activity and SCH 23390, SCH 39166, and SKF 77434 producing some, although incomplete substitution for cocaine in monkeys discriminating cocaine. The D1 dopamine antagonists SCH 23390, SCH 39166, and A-69024 dose-dependently shifted the cocaine dose-effect curve for locomotor activity to the right and decreased the efficacy of cocaine. The same compounds shifted the discriminative-stimulus effects of cocaine to the right without altering efficacy of cocaine. In contrast to the effects on locomotor activity, the maximal shift to the right in the discriminative-stimulus effects of cocaine was approximately 3-fold, with higher doses of the antagonists producing no greater shifts in the cocaine dose-effect curve than with intermediate doses. The partial D1 agonists (+/-)-SKF 38393, (+)-SKF 38393, and SKF 77434 also dose-dependently shifted the dose-effect curve for locomotor stimulant effects to the right and decreased the maximal effect of cocaine. These compounds only shifted the discriminative-stimulus effects of cocaine to a 2-fold maximum. In general, cocaine effects on rates of responding in the subjects discriminating cocaine from saline were only minimally antagonized by coadministration of the D1 dopaminergic agents. Both potency for producing behavioral effects alone and in antagonizing the effects of cocaine were related to binding affinities assessed by displacement of [(3)H]SCH 23390 from rat striatum. These results suggest that actions mediated by D1-like receptors contribute to the behavioral effects of cocaine. However, the various limitations to the degree of antagonism accomplished indicate that D1-like dopaminergic actions appear to be more involved in the effects of cocaine on locomotor activity, relatively less involved in the discriminative-stimulus effects of cocaine, and least involved in the effects of cocaine on operant response rates. This differential involvement of D1 dopamine receptors in these various behavioral effects of cocaine suggests problems in predicting clinical efficacy of at least D1 receptor antagonists as potential treatments for cocaine abuse. Additional studies are necessary to determine whether the antagonism of cocaine can predict therapeutic efficacy at all, and, if so, which effects when antagonized are the best predictors.  相似文献   

15.
16.
In food-deprived mice the D1 dopamine agonist SKF 38393 induced dose dependent anorexia (ED50 = 2.6 mg/kg). This effect was reversed by the D1 antagonist SCH 23390. In similar conditions, the D2 dopamine agonist RU 24926 also induced dose dependent anorexia (ED50 = 0.19 mg/kg). This effect was reversed by the D2 antagonist (+/-) sulpiride. The mixed D1/D2 agonist apomorphine also induced an anorectic effect (150 micrograms/kg sc) which was completely reversed by (+/-) sulpiride (25 mg/kg, ip) but unaffected by SCH 23390 (5-30 micrograms/kg). The dose response curve obtained by associating SKF 38393 (2.5 mg/kg) with increasing doses of RU 24926 was roughly parallel to that obtained with RU 24926 alone. This indicates that effects of two drugs were additive. Although both D1 and D2 receptors regulate food consumption, the anorectic effect of apomorphine appears to involve only D2 receptors.  相似文献   

17.
The reinforcing effects of D(1-like) and D(2-like) agonists, and their capacity to modify cocaine self-administration, were compared in rats with extensive cocaine self-administration experience. Cocaine (0.01-1.0 mg i.v.) dose-dependently maintained responding under a fixed ratio (FR) 5 schedule of reinforcement, and an inverted U-shaped function characterized the relationship between unit dose and self-administration behavior. When substituted for cocaine, the D(1-like) agonists SKF 82958 (0.001-0.032 mg i.v.) and SKF 77434 (0.001-0.1 mg i.v.) did not maintain responding above levels observed during saline substitution. In contrast, the D(2-like) agonists quinelorane (0.001-0.1 mg i.v.) and 7-hydroxy-dipropylaminotetralin (7-OH-DPAT; 0.01-0.32 mg i.v.) reliably maintained i.v. self-administration behavior that was characterized by inverted U-shaped dose-effect functions. Pretreatment with the D(1-like) agonists SKF 82958 and SKF 77434 (0.1-1.0 mg/kg i.p.) shifted the dose-effect function for cocaine self-administration downward, whereas pretreatment with the D(2-like) agonists quinelorane (0.01 mg/kg i.p.) and 7-OH-DPAT (0.32-1.0 mg/kg i.p.) shifted the cocaine dose-effect function to the left. Effects of D(1-like) and D(2-like) agonists on patterns of responding maintained by cocaine (0.32 mg i.v.) also differed: D(1-like) agonists increased the latency to the first response but did not otherwise alter patterns of cocaine self-administration, whereas D(2-like) agonists increased the intervals between self-administered cocaine injections. The results suggest that D(2-like) agonists, but not D(1-like) agonists, have prominent reinforcing effects and enhance the effects of self-administered cocaine in rats with extensive cocaine self-administration experience. Consequently, D(2) receptor-related neuronal mechanisms may be especially important in mediating the abuse-related effects of cocaine.  相似文献   

18.
Dopamine transporter (DAT) inhibitors may represent a promising class of drugs in the development of cocaine pharmacotherapies. In the present study, the effects of pretreatments with the selective DAT inhibitor 3beta-(4-chlorophenyl)tropane-2beta-[3-(4'-methylphenyl)isoxazol-5-yl] hydrochloride (RTI-336) (0.3-1.7 mg/kg) were characterized in rhesus monkeys trained to self-administer cocaine (0.1 and 0.3 mg/kg/injection) under a multiple second-order schedule of i.v. drug or food delivery. In addition, RTI-336 (0.01-1.0 mg/kg/injection) was substituted for cocaine to characterize its reinforcing effects. Last, the dose of RTI-336 that reduced cocaine-maintained behavior by 50% (ED(50)) was coadministered with the selective serotonin transporter (SERT) inhibitors fluoxetine (3.0 mg/kg) and citalopram (3.0 mg/kg) to characterize their combined effects on cocaine self-administration. PET neuroimaging with the selective DAT ligand [(18)F]8-(2-[(18)F]fluoroethyl)-2beta-carbomethoxy-3beta-(4-chlorophenyl)nortropane quantified DAT occupancy at behaviorally relevant doses of RTI-336. Pretreatments of RTI-336 produced dose-related reductions in cocaine self-administration, and the ED(50) dose resulted in approximately 90% DAT occupancy. RTI-336 was reliably self-administered, but responding maintained by RTI-336 was lower than responding maintained by cocaine. Doses of RTI-336 that maintained peak rates of responding resulted in approximately 62% DAT occupancy. Co-administration of the ED(50) dose of RTI-336 in combination with either SERT inhibitor completely suppressed cocaine self-administration without affecting DAT occupancy. Hence, at comparable levels of DAT occupancy, coadministration of SERT inhibitors with RTI-336 produced more robust reductions in cocaine self-administration compared with RTI-336 alone. Collectively, the results indicate that combined inhibition of DAT and SERT warrants consideration as a viable approach in the development of cocaine medications.  相似文献   

19.
Bilateral infusions of d-amphetamine into the rat ventral-lateral striatum (VLS) were previously shown to cause a robust behavioral activation that was correlated temporally with a net increase in firing of substantia nigra pars reticulata (SNpr) neurons, a response opposite predictions of the basal ganglia model. The current studies assessed the individual and cooperative contributions of striatal D1 and D2 dopamine receptors to these responses. Bilateral infusions into VLS of the D1/D2 agonist apomorphine (10 microg/microl/side) caused intense oral movements and sniffing, and an overall increase in SNpr cell firing to 133% of basal rates, similar to effects of d-amphetamine. However, when striatal D2 receptors were stimulated selectively by infusions of quinpirole (30 microg/microl/side) + the D1 antagonist R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH 23390; 10 microg/microl/side), no behavioral response and only modest and variable changes in SNpr cell firing were observed. Selective stimulation of striatal D1 receptors by (+/-) 6-chloro-APB hydrobromide (SKF 82958; 10 microg/microl/side) + the D2 antagonist cis-N-(1-benzyl-2-methyl-pyrrolidin-3-yl)-5-chloro-2-methoxy-4-methyl-aminobenzamide (YM 09151-2; 2 microg/microl/side) caused a weak but sustained increase in oral movements and modestly increased SNpr cell firing, but neither response was of the magnitude observed with apomorphine. When the two agonists were infused concurrently, however, robust oral movements and sniffing again occurred over the same time period that a majority of SNpr cells exhibited marked, sometimes extreme and fluctuating, changes in firing (net increase, 117% of basal rates). These data confirm that concurrent striatal D1/D2 receptor stimulation elicits a strong motor activation that is correlated temporally with a net excitation rather than inhibition of SNpr firing, and reveal that D1 and D2 receptors interact synergistically within the striatum to stimulate both forms of output.  相似文献   

20.
In an effort to delineate how specific molecular interactions of dopamine receptor ligand classes vary between D2-like dopamine receptor subtypes, a conserved threonine in transmembrane (TM) helix 7 (Thr7.39), implicated as a key ligand interaction site with biogenic amine G protein-coupled receptors, was substituted with alanine in D2 and D4 receptors. Interrogation of different ligand chemotypes for sensitivity to this substitution revealed enhanced affinity in the D4, but not the D2 receptor, specifically for substituted benzamides (SBAs) having polar 4- (para) and/or 5- (meta) benzamide ring substituents. D4-T7.39A was fully functional, and the mutation did not alter the sodium-mediated positive and negative allostery observed with SBAs and agonists, respectively. With the exception of the non-SBA ligand (+)-butaclamol, which, in contrast to certain SBAs, had decreased affinity for the D4-T7.39A mutant, the interactions of numerous other ligands were unaffected by this mutation. SBAs were docked into D4 models in the same mode as observed for eticlopride in the D3 crystal structure. In this mode, interactions with TM5 and TM6 residues constrain the SBA ring position that produces distal steric crowding between pyrrolidinyl/diethylamine moieties and D4-Thr7.39. Ligand-residue interaction energy profiles suggest this crowding is mitigated by substitution with a smaller alanine. The profiles indicate sites that contribute to the SBA binding interaction and site-specific energy changes imparted by the D4-T7.39A mutation. Substantial interaction energy changes are observed at only a few positions, some of which are not conserved among the dopamine receptor subtypes and thus seem to account for this D4 subtype-specific structure-activity relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号