首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Tetrahydrobiopterin (BH4) is a major endogenous vasoprotective agent that improves endothelial function by increasing nitric oxide (NO) synthesis and scavenging of superoxide and peroxynitrite. Therefore, administration of BH4 is considered a promising therapy for cardiovascular diseases associated with endothelial dysfunction and oxidative stress. Here we report on a novel function of BH4 that might contribute to the beneficial vascular effects of the pteridine. Treatment of cultured porcine aortic endothelial cells with nitroglycerin (GTN) or 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) resulted in heme oxidation of soluble guanylate cyclase (sGC), as evident from diminished NO-induced cGMP accumulation that was paralleled by increased cGMP response to a heme- and NO-independent activator of soluble guanylate cyclase [4-([(4-carboxybutyl)[2-(5-fluoro-2-([4'-(trifluoromethyl)biphenyl-4-yl]methoxy)phenyl)ethyl]amino]methyl)benzoic acid (BAY 60-2770)]. Whereas scavenging of superoxide and/or peroxynitrite with superoxide dismutase, tiron, Mn(III)tetrakis(4-benzoic acid)porphyrin, and urate had no protective effects, supplementation of the cells with BH4, either by application of BH4 directly or of its precursors dihydrobiopterin or sepiapterin, completely prevented the inhibition of NO-induced cGMP accumulation by GTN and ODQ. Tetrahydroneopterin had the same effect, and virtually identical results were obtained with RFL-6 fibroblasts, suggesting that our observation reflects a general feature of tetrahydropteridines that is unrelated to NO synthase function and not limited to endothelial cells. Protection of sGC against oxidative inactivation may contribute to the known beneficial effects of BH4 in cardiovascular disorders associated with oxidative stress.  相似文献   

2.
The underlying cause of the selective death of the nigral dopaminergic neurons in Parkinson's disease is not fully understood. Tetrahydrobiopterin (BH4) is synthesized exclusively in the monoaminergic, including dopaminergic, cells and serves as an endogenous and obligatory cofactor for syntheses of dopamine and nitric oxide. Because BH4 contributes to the syntheses of these two potential oxidative stressors and also undergoes autoxidation, thereby producing reactive oxygen species, it was possible that BH4 may play a role in the selective vulnerability of dopaminergic cells. BH4 given extracellularly was cytotoxic to catecholamine cells CATH. a, SK-N-BE(2)C, and PC12, but not to noncatecholamine cells RBL-2H3, CCL-64, UMR-106-01, or TGW-nu-1. This was not caused by increased dopamine or nitric oxide, because inhibition of their syntheses did not attenuate the damage and BH4 did not raise their cellular levels. Dihydrobiopterin and biopterin were not toxic, indicating that the fully reduced form is responsible. The toxicity was caused by generation of reactive oxygen species, because catalase, superoxide dismutase, and peroxidase protected the cells from the BH4-induced demise. Furthermore, thiol agents, such as reduced glutathione, dithiothreitol, beta-mercaptoethanol, and N-acetylcysteine were highly protective. The BH4 toxicity was initiated extracellularly, because elevation of intracellular BH4 by sepiapterin did not result in cell damage. BH4 was spontaneously released from the cells of its synthesis to a large extent, and the release was not further enhanced by calcium influx. This BH4-induced cytotoxicity may represent a mechanism by which selective degeneration of dopaminergic terminals and neurons occur.  相似文献   

3.
Vitamin C has long been known for its beneficial vascular effects, but its mechanism of action remains unclear. Recent reports suggest that vitamin C may prevent endothelial dysfunction by scavenging free radicals and increasing the bioavailability of nitric oxide. To investigate this area further, we studied the effect of vitamin C (10(-4) M) and Mn(III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP; 10(-5) M), a scavenger of superoxide, hydrogen peroxide, and peroxynitrite, on endothelial nitric oxide synthase (eNOS) enzymatic activity in cultured human umbilical vein endothelial cells. L-Citrulline formation (a measure of eNOS enzymatic activity) was significantly increased in cells treated for 24 h with vitamin C. No effect was observed after MnTBAP treatment. Chronic administration of vitamin C also had no effect on eNOS protein expression. Treatment with vitamin C for 24 h significantly increased levels of the eNOS co-factor tetrahydrobiopterin (BH4), whereas MnTBAP did not affect its levels. Sepiapterin (10(-4) M), a precursor of BH4, significantly increased eNOS activity, whereas addition of vitamin C to cells treated with sepiapterin did not cause any further increase in eNOS activity. Our results suggest that the beneficial effect of vitamin C on endothelial function is best explained by increased intracellular BH4 content and subsequent enhancement of eNOS activity. This effect appears to be independent of the ability of vitamin C to scavenge superoxide anions.  相似文献   

4.
We previously demonstrated that the addition of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma) caused induction of mRNAs for inducible nitric oxide (NO) synthase and GTP cyclohydrolase I, a rate-limiting enzyme for 5,6,7,8-tetrahydrobiopterin (BH4) biosynthesis, and produced their end-products, NO and BH4, in osteoblastic cells. In the present study, we examined whether NO and BH4, biologically active substances produced in response to proinflammatory cytokines, are involved in the effect of these cytokines on cell viability and apoptotic cell death involving DNA fragmentation. Cytokines as well as S-nitroso-N-acetyl-d,l-penicillamine, an NO generator, decreased cell viability, whereas sepiapterin, which was converted intracellularly to BH4, increased it. The examination of cytotoxicity measured in terms of lactate dehydrogenase release and apoptotic cell death assessed by flow cytometric analysis showed that cytokine-induced reduction of cell viability may be based upon cell death by apoptosis, but not lytic death as in necrosis. In the presence of sepiapterin, cytokine treatment resulted in a statistically pronounced reduction in the amount of DNA fragmentation. Furthermore, this fragmentation could be blocked by 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide, an NO scavenger. These results suggest that cytokine-induced apoptotic cell death is attributed to NO and is protected by BH4, and that osteoblastic cells in response to proinflammatory cytokines operate both a stimulatory process resulting in NO production and an inhibitory one resulting in BH4 production for apoptotic cell death. Cytokine-induced apoptotic cell death may be a consequence of the predominance of the stimulatory process over the inhibitory process.  相似文献   

5.
The mechanism by which exogenous tetrahydrobiopterin (BH(4)) impairs the action of endothelial nitric oxide (NO) in the presence of platelets was investigated. The endothelial NO generated by shear stress was determined by the anti-aggregating activity of indomethacin-treated endothelial cells and the cyclic GMP concentration in platelets. The inhibitory effect of exogenous BH(4) was suppressed by superoxide dismutase (SOD), or diclofenac sodium at concentrations inhibiting O(2)(-) generation, but not by allopurinol, a xanthine oxidase inhibitor. BH(4) similarly inhibited the anti-aggregatory effect of sodium nitroprusside (SNP), a NO donor. The inhibitory effect was suppressed by diphenyleneiodonium, a specific inhibitor of NADPH oxidase. Six(S)-BH(4), an inactive diastereoisomer of 6(R)-BH(4), and the 5,6,7,8-tetrahydropterin compounds inhibited the endothelial NO action, whereas sepiapterin and 7,8-dihydrobiopterin (BH(2)), 5,6-double bond pterins, were inactive. These tetrahydropterins, but not sepiapterin and BH(2), scavenged superoxide (O(2)(-)) generated by the hypoxanthine-xanthine oxidase reaction, possibly due to electron transfer during oxidation to its quinonoid-form. BH(4) markedly stimulated the O(2)(-) generation from platelets, in the presence of NADH, rather than that of NADPH. These findings suggest that BH(4) stimulates platelet NAD(P)H oxidase to generate O(2)(-), and inhibits the anti-aggregating effect of NO. SOD activity in the local environment may modify the effect of BH(4) on the endothelial NO activity.  相似文献   

6.
The objective of this study was to determine whether the metalloporphyrin, 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrinato iron (III) chloride (FeTPPS), antagonized the effect of peroxynitrite, oxygen-free radicals, and the combination of the two, on cardiomyocyte cell viability. We further sought to compare the effects of FeTPPS to an inhibitor of the mitochondrial transmembrane permeability transition pores (PTP)—cyclosporin A. Cardiomyocytes from embryonic chick heart were treated with 3-morpholinosydnonimine (SIN-1), which decomposes to liberate NO and superoxide anion (O2 ) which in turn generates peroxynitrite. FeTPPS antagonized cell death induced by either SIN-1 or H2O2. The combination of H2O2 plus SIN-1 further enhanced the amount of cell death over SIN-1 alone. FeTPPS rescued cells from almost complete cell death with the combination of SIN-1 plus H2O2. SIN-1 induced cardiac protein nitration, including mitochondrial proteins as demonstrated by Western blotting with nitrotyrosine-specific antibodies. FeTPPS reduced cellular protein nitration. SIN-1-induced loss of mitochondrial transmembrane permeability transition pores potential was visualized with fluorescent dye staining and was reversed by FeTPPS. In contrast, the mitochondrial PTP blocker cyclosporin A did not alter SIN-1-induced cell death. In summary, these data demonstrate the enhanced cellular lethality of the combination of peroxynitrite and reactive oxygen species from hydrogen peroxide. A mitochondrial death pathway was implicated as nitration of mitochondrial proteins was induced by peroxynitrite that also induced a loss of ΔΨm that was prevented by FeTPPS. In contrast, cyclosporin did not antagonize the effects of SIN-1. The ability of FeTPPS to reduce reactive nitrogen-induced cell death, and protein nitration suggests that FeTPPS is a useful agent to maintain cell viability and is better than cyclosporin in this situation.  相似文献   

7.
1. The effects of three analogues of NG-nitro-L-arginine (L-NOARG) and NG-monomethyl-L-arginine (L-NMMA), inhibitors of nitric oxide (NO) synthase, on hydrogen peroxide (H2O2)-induced endothelial cell injury were studied. 2. Endothelial cell injury was assessed by measuring the release of intracellular lactate dehydrogenase (LDH) and 51Cr. 3. Addition of H2O2 (250-1,000 microM) to endothelial cells induced the release of LDH dose-dependently. The release of LDH was reduced by pretreatment with NG-nitro-L-arginine methyl ester (L-NAME, 10(-4)-4 x 10(-3) M), L-NOARG (10(-4)-4 x 10(-3) M) and NG-nitro-L-arginine benzyl ester (L-NABE, 10(-4)-4 x 10(-3) M), inhibitors of NO synthase. 4. L-NOARG analogues also reduced H2O2-induced 51Cr release from endothelial cells, while L-NMMA had no effect. 5. The protective effect of L-NAME was not reversed by addition of L-arginine (L-Arg, 1-10 mM). 6. Both L-NAME and L-NMMA completely inhibited L-Arg metabolism to L-citrulline coupled with NO synthesis. 7. These findings suggest that L-NOARG analogues but not L-NMMA reduced H2O2-induced endothelial cell injury, and that these effects may not be related to inhibition of NO production.  相似文献   

8.
Tetrahydrobiopterin (BH4) has been known to be an essential cofactor for the activities of nitric oxide (NO) synthase and aromatic amino acid hydroxylases, which are involved in physiological and pathological processes. In the present study, we report that sepiapterin, the more stable form of BH4 precursor, modulates vascular endothelial growth factor-A (VEGF-A)-induced cell proliferation and adhesion in human umbilical vein endothelial cells (HUVECs). The antiproliferative activity of sepiapterin in VEGF-A-treated HUVECs is associated with inhibition of the expression of cyclin-dependent kinases (Cdks) such as Cdk4 and Cdk2. Pretreatment with NO synthase inhibitor does not abrogate the ability of sepiapterin to inhibit VEGF-A-induced cell proliferation and adhesion, indicating that the suppressive effects of sepiapterin on VEGF-Ainduced responses are mediated by NO-independent mechanism. Finally, we show that sepiapterin modulates VEGF-A-induced cell proliferation and adhesion through down-regulation of VEGF receptor-2 downstream signaling pathways. Taken together, these findings represent a novel function of sepiapterin in the regulation of angiogenesis, supporting further development and evaluation of sepiapterin as an antiangiogenic agent.  相似文献   

9.
Abstract: The purpose of this study was to examine the effect of tetrahydrobiopterin, a co–factor of nitric oxide synthase, on H2O2–induced endothelial cell injury. Pretreatment with sepiapterin, a precursor of tetrahydrobiopterin biosynthesis, increased tetrahydrobiopterin content of endothelial cells, and reduced H2O2–induced endothelial cell injury, which was measured by leakage of lactate dehydrogenase. Both the increase in tetrahydrobiopterin content and the protective effect of sepiapterin were prevented by co–pretreatment with N–acetylserotonin, an inhibitor of sepiapterin reductase. Although Ca2+ ionophore ionomycin–induccd nitric oxide synthesis was increased by pretreatment with sepiapterin, the protective effect of sepiapterin was not affected by an inhibitor of nitric oxide synthesis. On the other hand, pretreatment with sepiapterin also reduced H2O2–induced rat foetal lung fibroblast cell injury via an increase in tetrahydrobiopterin content, despite rat foetal lung fibroblast cells lacking nitric oxide synthase. Moreover, increase in tetrahydrobiopterin strongly reduced H2O2–induced intracellular oxidative stress. These findings indicate that sepiapterin reduces H2O2–induced endothelial cell injury via an increase in tetrahydrobiopterin content. Although increase in endothelial tetrahydrobiopterin content stimulated nitric oxide production, the protective effect of tetrahydrobiopterin against H2O2–induced endothelial cell injury is unlikely to be related to the stimulation of nitric oxide release from nitric oxide synthase. The protective effect of tetrahydrobiopterin may involve reactive oxygen species–scavenging activity.  相似文献   

10.
We previously reported that acute incubation with tetrahydrobiopterin (BH4) or sepiapterin, a cofactor for endothelial nitric oxide synthase and a stable precursor of BH4, respectively, enhanced the acetylcholine (Ach)-induced relaxation of isolated small mesenteric arteries (SMA) from diabetic (db/db) mice. In this study, we investigated the effect of chronic oral supplementation of sepiapterin (10 mg x kg-1 x day-1) to db/db mice on endothelium function, biopterin levels and lipid peroxidation in SMA. Oral dietary supplementation with sepiapterin had no effect on glucose, triglyceride, cholesterol levels and body weight. SMA from db/db mice showed enhanced vascular reactivity to phenylephrine, which was corrected with sepiapterin supplementation. Furthermore, Ach, but not sodium nitroprusside-induced relaxation, was improved with sepiapterin supplementation in db/db mice. BH4 levels and guanosine triphosphate cyclohydrolase I activity in SMA were similar in db/+ and db/db mice. Sepiapterin treatment had no effects on BH4 or guanosine triphosphate cyclohydrolase I activity. However, the level of dihydrobiopterin+biopterin was higher in SMA from db/db mice, which was corrected following sepiapterin treatment. Thiobarbituric acid reactive substance, malondialdehyde, a marker of lipid peroxidation, was higher in SMA from db/db mice, and was normalized by sepiapterin treatment. These results indicate that sepiapterin improves endothelial dysfunction in SMA from db/db mice by reducing oxidative stress. Furthermore, these results suggest that decreased biosynthesis of BH4 may not be the basis for endothelial dysfunction in SMA from db/db mice.  相似文献   

11.

Background and Purpose

Nitric oxide (NO) derived from eNOS is mostly responsible for the maintenance of vascular homeostasis and its decreased bioavailability is characteristic of reactive oxygen species (ROS)-induced endothelial dysfunction (ED). Because 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a commonly used spin trap, can control intracellular nitroso-redox balance by scavenging ROS and donating NO, it was employed as a cardioprotective agent against ED but the mechanism of its protection is still not clear. This study elucidated the mechanism of protection by DMPO against SIN-1-induced oxidative injury to bovine aortic endothelial cells (BAEC).

Experimental Approach

BAEC were treated with SIN-1, as a source of peroxynitrite anion (ONOO), and then incubated with DMPO. Cytotoxicity following SIN-1 alone and cytoprotection by adding DMPO was assessed by MTT assay. Levels of ROS and NO generation from HEK293 cells transfected with wild-type and mutant eNOS cDNAs, tetrahydrobiopterin bioavailability, eNOS activity, eNOS and Akt kinase phosphorylation were measured.

Key Results

Post-treatment of cells with DMPO attenuated SIN-1-mediated cytotoxicity and ROS generation, restoration of NO levels via increased in eNOS activity and phospho-eNOS levels. Treatment with DMPO alone significantly increased NO levels and induced phosphorylation of eNOS Ser1179 via Akt kinase. Transfection studies with wild-type and mutant human eNOS confirmed the dual role of eNOS as a producer of superoxide anion (O2) with SIN-1 treatment, and a producer of NO in the presence of DMPO.

Conclusion and Implications

Post-treatment with DMPO of oxidatively challenged cells reversed eNOS dysfunction and could have pharmacological implications in the treatment of cardiovascular diseases.  相似文献   

12.
The effect of six anthocyanidins and seven anthocyanins against doxorubicin (Dox)-induced cardiotoxicity in relation to their antioxidant properties was investigated in H9c2 cardiomyocytes. The exposure to Dox, a highly effective cytotoxic agent against cancer cells, induced significant cell death, intracellular reactive oxygen species (ROS), and lipid peroxidation in non-tumorigenic cardiac cell culture. All anthocyanidins (50 and/or 100 microM) significantly increased cell survival up to 40% compared to the Dox-treated controls. Especially, cyanidin and delphinidin, which have an ortho-dihydroxyl moiety (3',4'-OH) on the flavylium skeleton, demonstrated the most potent protection against cytotoxicity (EC(50) of 113 and 179 microM, respectively) as well as lipid peroxidation induced by Dox treatment. In contrast, seven anthocyanins having a glycosidic moiety showed little effect in cytoprotection and lipid peroxidation, although they markedly blocked intracellular ROS generation. All anthocyanidins and anthocyanins had higher TEAC values than ascorbic acid, and efficaciously scavenged superoxide anion (O(2)(-)), hydrogen peroxide (H(2)O(2)), peroxynitrite (ONOO(-)) and nitric oxide (NO), but not hydroxyl radical (OH()). Their O(2)(-) scavenging activity was well correlated with the observed cytoprotection (r=0.67, p<0.05). These results suggest that anthocyanidins can ameliorate Dox-induced cardiotoxicity by, at least in part, scavenging of O(2)(-) generated by Dox.  相似文献   

13.
We investigated the effects of Wen-Pi-Tang extract on the protective mechanisms of renal tubular LLC-PK1 cells, as renal tubular cells are the most vulnerable renal tissue to oxidative stress. Exposure to 800 microM 3-morpholinosydnonimine (SIN-1) resulted in a marked increase in cellular peroxynitrite (ONOO-), which converted nonfluorescent dihydrorhodamine 123 to fluorescent rhodamine 123, a detectable probe for the long-lived ONOO-. In addition, it resulted in apoptotic cell death, assessed by a DNA fragmentation assay. However, treatment with Wen-Pi-Tang extract, at concentrations of 50 and 100 microg mL(-1) together with SIN-1 protected renal tubular cells against ONOO- through scavenging ONOO- and inhibiting apoptotic cell death in a dose-dependent manner. Moreover, treatment with Wen-Pi-Tang extract both before and after exposure to SIN-1 was also protective: it reduced cellular ONOO- levels, increased cell viability and decreased the DNA fragmentation rate. These results suggest that Wen-Pi-Tang would have protective activity against ONOO- -induced renal tubular injury through the inhibition of ONOO- production and apoptotic cell death by both preventing and treating renal injury. Furthermore, morphological characteristics of apoptosis were observed in SIN-1 treated tubular cells, while the addition of Wen-Pi-Tang extract with SIN-1 attenuated these morphological changes. ONOO- generated by SIN-1 also disturbed the cell cycle by decreasing the cellular G2/M phase ratio, while Wen-Pi-Tang extract regulated the cell cycle by G2/M phase arrest.  相似文献   

14.
Opiates, such as morphine, have been used extensively in the clinical management of pain due to their potent analgesic effect. Astrocytes, representing a major non-neuronal cell population in the CNS, contain opioid receptors that are actively involved in several brain functions. This study was designed to evaluate the effects by which morphine, a preferential mu-opioid receptor agonist, contributes to cytotoxicity of nitric oxide (NO) species, including NO and peroxynitrite (ONOO-), in primary rat neonatal astrocytes. Primary astrocytes isolated from the cerebral cortex of 1- to 2-day-old Sprague-Dawley rats were treated with morphine, naloxone, and 3-morpholinosydnonimine (SIN-1), a donor of peroxynitrite. Morphine significantly protected primary rat astrocytes from apoptosis mediated by sodium nitroprusside, an NO donor, and SIN-1 in a dose-dependent manner, whereas it did not in other types of cells including C6 glioma, RAW 264.7, and HL-60 cells. Moreover, naloxone antagonized the protective effects of morphine on SIN-1-induced apoptosis. Morphine also inhibited the nuclear condensation and fragmentation of SIN-1-treated cells that was antagonized by naloxone pretreatment. The protective role of morphine in SIN-1-induced apoptosis was dependent on an intracellular antioxidant system such as GSH. Furthermore, the effects of morphine on SIN-1-induced cytotoxicity were prohibited by pretreatment with the G(i) protein inhibitor, pertussis toxin, and the phosphatidylinositol 3-kinase (PI3 kinase) inhibitors, wortmannin and LY294002. Taken together, these results suggest that morphine may protect primary rat astrocytes from apoptosis by NO species via the signaling cascades that involve both G protein and PI3 kinase.  相似文献   

15.
《Biochemical pharmacology》2014,87(12):1762-1774
Elevated levels of the glycolysis metabolite methylglyoxal (MG) have been implicated in impaired leukocyte–endothelial interactions and vascular complications in diabetes, putative mechanisms of which remain elusive. Uncoupling of endothelial nitric oxide synthase (eNOS) was shown to be involved in endothelial dysfunction in diabetes. Whether MG contributes to these effects has not been elucidated. By using intravital microscopy in vivo, we demonstrate that MG-triggered reduction in leukocyte rolling velocity and increases in rolling flux, adhesion, emigration and microvascular permeability were significantly abated by scavenging reactive oxygen species (ROS). In murine cremaster muscle, MG treatment reduced tetrahydrobiopterin (BH4)/total biopterin ratio, increased arginase expression and stimulated ROS and superoxide production. The latter was significantly blunted by ROS scavengers Tempol (300 μM) or MnTBAP (300 μM), by BH4 supplementation (100 μM) or by NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 20 μM). In these tissues and cultured murine and human primary endothelial cells, MG increased eNOS monomerization and decreased BH4/total biopterin ratio, effects that were significantly mitigated by supplementation of BH4 or its precursor sepiapterin but not by l-NAME or tetrahydroneopterin, indicative of MG-triggered eNOS uncoupling. MG treatment further decreased the expression of guanosine triphosphate cyclohydrolase I in murine primary endothelial cells. MG-induced leukocyte recruitment was significantly attenuated by supplementation of BH4 or sepiapterin or suppression of superoxide by l-NAME confirming the role of eNOS uncoupling in MG-elicited leukocyte recruitment. Together, our study uncovers eNOS uncoupling as a pivotal mechanism in MG-induced oxidative stress, microvascular hyperpermeability and leukocyte recruitment in vivo.  相似文献   

16.
(6R)-5,6,7,8-Tetrahydro-l-biopterin (BH4) availability regulates nitric oxide and superoxide formation by endothelial nitric oxide synthase (eNOS). At low BH4 or low BH4 to 7,8-dihydrobiopterin (BH2) ratios the enzyme becomes uncoupled and generates superoxide at the expense of NO. We studied the effects of exogenously added BH2 on intracellular BH4/BH2 ratios and eNOS activity in different types of endothelial cells. Incubation of porcine aortic endothelial cells with BH2 increased BH4/BH2 ratios from 8.4 (controls) and 0.5 (BH4-depleted cells) up to ∼20, demonstrating efficient reduction of BH2. Uncoupled eNOS activity observed in BH4-depleted cells was prevented by preincubation with BH2. Recycling of BH4 was much less efficient in human endothelial cells isolated from umbilical veins or derived from dermal microvessels (HMEC-1 cells), which exhibited eNOS uncoupling and low BH4/BH2 ratios under basal conditions and responded to exogenous BH2 with only moderate increases in BH4/BH2 ratios. The kinetics of dihydrofolate reductase-catalyzed BH4 recycling in endothelial cytosols showed that the apparent BH2 affinity of the enzyme was 50- to 300-fold higher in porcine than in human cell preparations. Thus, the differential regulation of eNOS uncoupling in different types of endothelial cells may be explained by striking differences in the apparent BH2 affinity of dihydrofolate reductase.  相似文献   

17.
Peroxynitrite is a potent neurotoxic molecule produced from a reaction between NO and superoxide and induces NO-mediated inflammation under neuropathological conditions. Previously, we reported that glucose deprivation induced ATP depletion and cell death in immunostimulated astrocytes, which was mainly due to peroxynitrite. In this study, the role of MAPKs (ERK1/2, p38MAPK, and JNK1SAPK) signal pathway in the SIN-1/glucose deprivation-induced death of astrocytes was examined. A combined treatment with glucose deprivation and 50 microM SIN-1, an endogenous peroxynitrite generator, rapidly and markedly increased the death in rat primary astrocytes. Also, SIN-1/glucose deprivation resulted in the activation of MAPKs, which was significantly blocked by the treatment with 20 microM MAPKs inhibitors (ERK1/2, PD98059; p38MAPK, SB203580; JNK/SAPK, SP600125). Interestingly, SIN-1/glucose deprivation caused the loss of intracellular ATP level, which was significantly reversed by MAPKs inhibitors. These results suggest that the activation of MAPKs plays an important role in SIN-1/glucose deprivation-induced cell death by regulating the intracellular ATP level.  相似文献   

18.
Exogenous BH4 (tetrahydrobiopterin) has been shown to improve endothelial function in cardiovascular disease; however, in the presence of elevated superoxide levels and decreased nitric oxide synthase (NOS) activity, BH4 may become autoxidized, resulting in reduced vasodilation. The authors tested the hypothesis that increasing BH4 will further reduce endothelium-dependent relaxation in aortas from rats made hypertensive by NOS inhibition. N omega-nitro-L-arginine (L-NNA, approximately 49 mg/kg/d) was administered in the rats' drinking water for 4 days. Systolic blood pressures, measured by tail-cuff technique, were significantly increased in L-NNA-treated rats. Endothelium-intact aortic segments were isolated and hung in organ chambers for the measurement of isometric force generation. Aortas from L-NNA-treated rats had decreased relaxation to acetylcholine compared with controls, and this was further decreased after incubation with sepiapterin. Superoxide dismutase (SOD) restored relaxation in aortas from L-NNA-treated rats to that of control. In addition, SOD or ascorbic acid reversed the sepiapterin-induced decrease in relaxation in aortas from L-NNA treated rats. Aortas from L-NNA-treated rats in the absence and presence of sepiapterin, and sepiapterin-treated control aortas, had increased dihydroethidium staining for superoxide compared with untreated controls. These results support the hypothesis that sepiapterin further reduces vasodilation in the presence of NOS inhibition and may be caused by BH4 autoxidation.  相似文献   

19.
探讨淫羊藿苷对血管紧张素Ⅱ(AngⅡ)诱导损伤人脐静脉内皮细胞株(ECV-304)的影响。培养内皮细胞,淫羊藿苷作用24h后,采用AngII诱导制备内皮细胞损伤模型,测定细胞存活率(MTT法)、培养液中乳酸脱氢酶(LDH)释放量、NO值、清除超氧阴离子自由基(O2^-)和羟自由基(·OH)的能力,测定胞内超氧化物歧化酶(SOD)活性、T-NOS、iNOS以及eNOS的含量。与AngⅡ单独处理组相比,淫羊藿苷能明显提高细胞存活率,提高SOD、T-NOS和cNOS活力,提高NO含量,增强清除O2^-和·OH的能力,降低LDH和iNOS的量。结果表明淫羊藿苷对AngⅡ损伤的内皮细胞有一定的保护作用。  相似文献   

20.
This study investigates the effects of exogenous and endogenous nitric oxide (NO) on human circulating and endothelial angiotensin-converting enzyme activity and platelet aggregation. The NO donor S-nitroso-N-acetylpenicillamine (10(-8)-10(-6) M) significantly and dose-dependently inhibited serum angiotensin-converting enzyme activity. The concomitant addition of S-nitroso-N-acetylpenicillamine to angiotensin-converting enzyme inhibitor-treated (captopril or enalaprilat) serum, further reduced angiotensin-converting enzyme activity. In cultured endothelial cells from human umbilical veins (HUVECs), both S-nitroso-N-acetylpenicillamine and 3-morpholinosydnonimine (SIN-1) significantly reduced angiotensin-converting enzyme activity. An additative effect was seen with a combined treatment of captopril and S-nitroso-N-acetylpenicillamine. Treatment with the NO synthase inhibitor N(G)-monomethyl-L-arginine (L-NMMA) did not affect angiotensin-converting enzyme activity. Thrombin inhibited endothelial angiotensin-converting enzyme activity, an effect that was abolished when cells were pretreated with L-NMMA. Adenosine 5'-diphosphate (ADP)-induced platelet aggregation was inhibited with S-nitroso-N-acetylpenicillamine, SIN-1 and nitroglycerine. Captopril did not affect aggregation, while a high concentration of enalaprilat (10(-4) M) reduced it. The concomitant addition of 10(-5) M angiotensin-converting enzyme inhibitor to NO donor-treated platelets resulted in a further reduction of platelet aggregation. This effect was most evident with SIN-1 and enalaprilat. In conclusion, both exogenous and endogenous NO inhibit human angiotensin-converting enzyme activity. NO donors and angiotensin-converting enzyme inhibitors act in concert to inhibit angiotensin-converting enzyme and platelet aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号