共查询到20条相似文献,搜索用时 11 毫秒
1.
Histochemical and immunohistochemical analysis of the mechanism of calcification of Meckel's cartilage during mandible development in rodents 总被引:2,自引:1,他引:1
It is widely accepted that Meckel's cartilage in mammals is uncalcified hyaline cartilage that is resorbed and is not involved in bone formation of the mandible. We examined the spatial and temporal characteristics of matrix calcification in Meckel's cartilage, using histochemical and immunocytochemical methods, electron microscopy and an electron probe microanalyser. The intramandibular portion of Meckel's cartilage could be divided schematically into anterior and posterior portions with respect to the site of initiation of ossification beneath the mental foramen. Calcification of the matrix occurred in areas in which alkaline phosphatase activity could be detected by light and electron microscopy and by immunohistochemical staining. The expression of type X collagen was restricted to the hypertrophic cells of intramandibular Meckel's cartilage, and staining with alizarin red and von Kossa stain revealed that calcification progressed in both posterior and anterior directions from the primary centre of ossification. After the active cellular resorption of calcified cartilage matrix, new osseous islands were formed by trabecular bone that intruded from the perichondrial bone collar. Evidence of such formation of bone was supported by results of double immunofluorescence staining specific for type I and type II collagens, in addition to results of immunostaining for osteopontin. Calcification of the posterior portion resembled that in the anterior portion of intramandibular Meckel's cartilage, and our findings indicate that the posterior portion also contributes to the bone formation of the mandible by an endochondral-type mechanism of calcification. 相似文献
2.
Srinivas R. Pallerla Yi Pan Xin Zhang Jeffrey D. Esko Kay Grobe 《Developmental dynamics》2007,236(2):556-563
Disruption of heparan sulfate (HS) synthesis in vertebrate development causes malformations that are composites of those caused by mutations of multiple HS binding growth factors and morphogens. We previously reported severe developmental defects of the forebrain and the skull in mutant mice bearing a targeted disruption of the heparan sulfate‐generating enzyme GlcNAc N‐deacetylase/GlcN N‐sulfotransferase 1 (Ndst1). Here, we further characterize the molecular mechanisms leading to frontonasal dysplasia in Ndst1 mutant embryos and describe additional malformations, including impaired spinal and cranial neural tube fusion and skeletal abnormalities. Of the numerous proteins that bind HS, we show that impaired fibroblast growth factor, Hedgehog, and Wnt function may contribute to some of these phenotypes. Our findings, therefore, suggest that defects in HS synthesis may contribute to multifactor types of congenital developmental defects in humans, including neural tube defects. Developmental Dynamics 236:556–563, 2007. © 2006 Wiley‐Liss, Inc. 相似文献
3.
Julianne Huegel Federica Sgariglia Motomi Enomoto‐Iwamoto Eiki Koyama John P. Dormans Maurizio Pacifici 《Developmental dynamics》2013,242(9):1021-1032
Heparan sulfate (HS) is an essential component of cell surface and matrix‐associated proteoglycans. Due to their sulfation patterns, the HS chains interact with numerous signaling proteins and regulate their distribution and activity on target cells. Many of these proteins, including bone morphogenetic protein family members, are expressed in the growth plate of developing skeletal elements, and several skeletal phenotypes are caused by mutations in those proteins as well as in HS‐synthesizing and modifying enzymes. The disease we discuss here is hereditary multiple exostoses (HME), a disorder caused by mutations in HS synthesizing enzymes EXT1 and EXT2, leading to HS deficiency. The exostoses are benign cartilaginous‐bony outgrowths, form next to growth plates, can cause growth retardation and deformities, chronic pain and impaired motion, and progress to malignancy in 2–5% of patients. We describe recent advancements on HME pathogenesis and exostosis formation deriving from studies that have determined distribution, activities and roles of signaling proteins in wild‐type and HS‐deficient cells and tissues. Aberrant distribution of signaling factors combined with aberrant responsiveness of target cells to those same factors appear to be a major culprit in exostosis formation. Insights from these studies suggest plausible and cogent ideas about how HME could be treated in the future. Developmental Dynamics 242:1021–1032, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
4.
Doris Allerstorfer Stefano Longato Christoph Schwarzer Reiner Fischer-Colbrie Alison R Hayman Michael J F Blumer 《Journal of anatomy》2010,216(5):611-624
In long bones of murine species, undisturbed development of the epiphysis depends on the generation of vascularized cartilage canals shortly after birth. Despite its importance, it is still under discussion how this event is exactly regulated. It was suggested previously that, following increased hypoxia in the epiphyseal core, angiogenic factors are expressed and hence stimulate the ingrowth of the vascularized canals. In the present study, we tested this model and examined the spatio‐temporal distribution of two angiogenic molecules during early development in mice. In addition, we investigated the onset of cartilage hypertrophy and mineralization. Our results provide evidence that the vascular endothelial growth factor is expressed in the epiphyseal resting cartilage prior to the moment of canal formation and is continuously expressed until the establishment of a large secondary ossification centre. Interestingly, we found no expression of secretoneurin before the establishment of the canals although this factor attracts blood vessels under hypoxic conditions. Epiphyseal development further involves maturation of the resting chondrocytes into hypertrophic ones, associated with the mineralization of the cartilage matrix and eventual death of the latter cells. Our results suggest that vascular endothelial growth factor is the critical molecule for the generation of the epiphyseal vascular network in mice long bones. Secretoneurin, however, does not appear to be a player in this event. Hypertrophic chondrocytes undergo cell death by a mechanism interpreted as chondroptosis. 相似文献
5.
Study of Endochondral Ossification in Human Fetalcartilage Anlagen of Metacarpals: Comparative Morphology of Mineral Deposition in Cartilage and in the Periosteal Bone Matrix 下载免费PDF全文
Ugo E. Pazzaglia Marcella Reguzzoni Francesca Pagani Valeria Sibilia Terenzio Congiu Andrea G. Salvi Anna Benetti 《Anatomical record (Hoboken, N.J. : 2007)》2018,301(4):571-580
The progression of mineral phase deposition in hypertrophic cartilage and periosteal bone matrix was studied in human metacarpals primary ossification centers before vascular invasion began. This study aimed to provide a morphologic/morphometric comparative analysis of the calcification process in cartilage and periosteal osteoid used as models of endochondral ossification. Thin, sequential sections from the same paraffin inclusions of metacarpal anlagen (gestational age between the 20th and 22nd weeks) were examined with light microscopy and scanning electron microscopy, either stained or heat‐deproteinated. This process enabled the analysis of corresponding fields using the different methods. From the initial CaPO4 nucleation in cartilage matrix, calcification progressed increasing the size of focal, globular, randomly distributed deposits (size range 0.5–5 µm), followed by aggregation into polycyclic clusters and finally forming a dense, compact mass of calcified cartilage. At the same time, the early osteoid calcification was characterized by a fine granular pattern (size range 0.1–0.5 µm), which was soon compacted in the layer of the first periosteal lamella. Scanning electron microscopy of heat‐deproteinated sections revealed a rod‐like hydroxyapatite crystallite pattern, with only size differences between the early globular deposits of the two calcifying matrices. The morphology of the early calcium deposits was similar in both cartilage and osteoid, with variations in size and density only. However, integration of the reported data with the actual hypotheses of the mechanisms of Ca concentration suggested that ion transport was linked to the progression of the chondrocyte maturation cycle (with recall of H2O from the matrix) in cartilage, while ions transport was an active process through the cell membrane in osteoid. Other considered factors were the collagen type specificity and the matrix fibrillar texture. Anat Rec, 301:571–580, 2018. © 2017 Wiley Periodicals, Inc. 相似文献
6.
Pierre Moffatt Eunice R. Lee Benoit St‐Jacques Kazu Matsumoto Yu Yamaguchi Peter J. Roughley 《Developmental dynamics》2011,240(2):404-412
Mice possessing no Has2 expression in chondrocytes died near birth and displayed abnormalities throughout their skeleton. By embryonic day 18.5, the long bones were short and wide, and possessed excessive mineralization within their diaphysis, with little evidence of diaphyseal bone modeling. However, this does not appear to be associated with an absence of blood vessel invasion or the reduced presence of osteoclasts. There was no evidence for the formation of an organized growth plate between the epiphysis and diaphysis, and while hypertrophic chondrocytes were present in this region they were abnormal in both appearance and organization. There was also increased cellularity in the epiphyseal cartilage and a corresponding decrease in the abundance of extracellular matrix, but aggrecan was still present. Thus, hyaluronan production by chondrocytes is not only essential for formation of an organized growth plate and subsequent long bone growth but also for normal modeling of the diaphyseal bone. Developmental Dynamics 240:404–412, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
7.
8.
Michael J F Blumer Stefano Longato Christoph Schwarzer Helga Fritsch 《Developmental dynamics》2007,236(8):2077-2088
In mammals, the exact role of cartilage canals is still under discussion. Therefore, we studied their development in the distal femoral epiphysis of mice to define the importance of these canals. Various approaches were performed to examine the histological, cellular, and molecular events leading to bone formation. Cartilage canals started off as invaginations of the perichondrium at day (D) 5 after birth. At D 10, several small ossification nuclei originated around the canal branched endings. Finally, these nuclei coalesced and at D 18 a large secondary ossification centre (SOC) occupied the whole epiphysis. Cartilage canal cells expressed type I collagen, a major bone-relevant protein. During canal formation, several resting chondrocytes immediately around the canals were active caspase 3 positive but others were freed into the canal cavity and appeared to remain viable. We suggest that cartilage canal cells belong to the bone lineage and, hence, they contribute to the formation of the bony epiphysis. Several resting chondrocytes are assigned to die but others, after freeing into the canal cavity, may differentiate into osteoblasts. 相似文献
9.
10.
Japanese encephalitis (JE) virus infects a number of host cells, either mosquitoes or vertebrates, in nature. The viral envelope (E) protein is known to interact with molecule(s) on the cell membrane during the early stage of virus infection. In this study, two sets of virus variants including T1P1-L4/T1P1-S1 and CJN-L1/CJN-S1 derived from two strains (T1P1 and CJN) of the JE virus were used to evaluate the effects of genomic variations on virus entry. Each set of virus variant (T1P1-L4/T1P1-S1 or CJN-L1/CJN-S1) possessed a single amino acid variation in the E protein. The variation of Glu/Lys at E-306 was found between T1P1-L4 and T1P1-S1 whereas the same variation at E-138 was seen between CJN-L1 and CJN-S1. The results showed that heparan sulfate (HS) differentially expressed on the surface of different types of host cells was essential for JE virus infection as shown in an evident difference in attachment efficiency between CHO-K1 cells and its mutant with defects in GAG biosynthesis. Furthermore, differential interaction of heparin with the envelope protein of JE virus variants implies the significance of virus mutations (especially Lys for E-138 and/or E306 in this case) that are rather likely involved in determining efficiencies of viral attachment, penetration, and eventual infection. 相似文献
11.
Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains, termed the HS fine structure, which give HS specific binding affinities for extracellular ligands. HS 2-O-sulfotransferase (2-OST) catalyzes the transfer of sulfate groups to the 2-O position of uronic acid residues of HS. We report here the characterization and developmental expression patterns of 2-OST in several tissues/organs throughout early zebrafish development, including early cleavage stages, eyes, somites, brain, internal organ primordial, and pectoral fin. The 2-OST gene has spatially and temporally distinct expression, which is a surprise given the essential role of 2-OST in HS fine structure formation. Furthermore, although 2-OST and C5-epimerase are predicted to be interdependent for protein translocation from the endoplasmic reticulum to the Golgi, their expression is not coordinately regulated during zebrafish development. 相似文献
12.
Shunichi Shibata Masato Takahashi Kaoru Fujikawa 《Anatomical record (Hoboken, N.J. : 2007)》2019,302(11):1916-1933
Development of mouse gonial bone and initial ossification process of malleus were investigated. Before the formation of the gonial bone, the osteogenic area expressing alkaline phosphatase and Runx2 mRNA was widely recognized inferior to Meckel's cartilage. The gonial bone was first formed within the perichondrium at E16.0 via intramembranous ossification, surrounded the lower part of Meckel's cartilage, and then continued to extend anteriorly and medially until postnatal day (P) 3.0. At P0, multinucleated chondroclasts started to resorb the mineralized cartilage matrix with ruffled borders at the initial ossification site of the malleus (most posterior part of Meckel's cartilage). Almost all CD31-positive capillaries did not run through the gonial bone but entered the cartilage through the site where the gonial bone was not attached, indicating the forms of the initial ossification site of the malleus are similar to those at the secondary ossification center rather than the primary ossification center in the long bone. Then, the reducing process of the posterior part of Meckel's cartilage with extending gonial bone was investigated. Numerous tartrate-resistant acid phosphatase-positive mononuclear cells invaded the reducing Meckel's cartilage, and the continuity between the malleus and Meckel's cartilage was completely lost by P3.5. Both the cartilage matrix and the perichondrium were degraded, and they seemed to be incorporated into the periosteum of the gonial bone. The tensor tympani and tensor veli palatini muscles were attached to the ligament extending from the gonial bone. These findings indicated that the gonial bone has multiple functions and plays important roles in cranial formation. Anat Rec, 302:1916–1933, 2019. © 2019 American Association for Anatomy 相似文献
13.
14.
Heparan sulfate (HS) 3-O-sulfotransferase isoform-2 (3-OST-2), which belongs to a family of enzymes capable of generating herpes simplex virus type-1 (HSV-1) entry and spread receptors, is predominantly expressed in human brain. Despite its unique expression pattern, the ability of 3-OST-2 to mediate HSV-1 entry and cell-to-cell fusion is not known. Our results demonstrate that expression of 3-OST-2 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and mutant strains of HSV-1. Evidence for generation of gD receptors by 3-OST-2 were suggested by gD-mediated interference assay and the ability of 3-OST-2-expressing CHO-K1 cells to preferentially bind HSV-1 gD, which could be reversed by prior treatment of cells with HS lyases (heparinases II/III). In addition, 3-OST-2-expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins, a phenomenon that mimics a way of viral spread in vivo. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together, our results raise the possibility of a role of 3-OST-2 in the spread of HSV-1 infection in the brain. 相似文献
15.
16.
Heparan sulfate proteoglycans play important roles in embryogenesis, including the development of the central nervous system. However, their function in nerve regeneration is not yet understood. We previously reported that nerve injury induces the expression of heparan sulfate glycosaminoglycans and syndecan-1, a heparan sulfate proteoglycan, in injured hypoglossal motor neurons. In this study, we examined the expression of syndecan family members, including syndecan-1, in injured hypoglossal motor neurons after hypoglossal nerve axotomy. We could not detect any changes in expression after axotomy, except for syndecan-1. The expression of syndecan-1 was markedly increased on post-operative day 7. Syndecan-1 was localized not only in the cell bodies of hypoglossal motor neurons, but also in the injured hypoglossal nerve, and it accumulated in the terminals of regenerating fibers. Similarly, facial nerve axotomy and vagus nerve axotomy induced the expression of syndecan-1 in the facial nucleus, dorsal nucleus of vagus and ambiguous nucleus, respectively. However, sciatic nerve axotomy induced very little syndecan-1 expression in injured spinal motor neurons. These results suggest that syndecan-1 may have a crucial role in the survival of injured motor neurons and in nerve regeneration after injury. Our observations also reveal the diversity of peripheral motor neurons. 相似文献
17.
Martina Weissenbck Richard Latham Michiru Nishita Lena Ingeborg Wolff Hsin‐Yi Henry Ho Yasuhiro Minami Christine Hartmann 《Genes to cells : devoted to molecular & cellular mechanisms》2019,24(4):307-317
Mutations in the human receptor tyrosine kinase ROR2 are associated with Robinow syndrome (RRS) and brachydactyly type B1. Amongst others, the shortened limb phenotype associated with RRS is recapitulated in Ror2?/? mutant mice. In contrast, Ror1?/? mutant mice are viable and show no limb phenotype. Ror1?/?;Ror2?/? double mutants are embryonic lethal, whereas double mutants containing a hypomorphic Ror1 allele (Ror1hyp) survive up to birth and display a more severe shortened limb phenotype. Both orphan receptors have been shown to act as possible Wnt coreceptors and to mediate the Wnt5a signal. Here, we analyzed genetic interactions between the Wnt ligand, Wnt9a, and Ror2 or Ror1, as Wnt9a has also been implicated in skeletal development. Wnt9a?/? single mutants display a mild shortening of the long bones, whereas these are severely shortened in Ror2?/? mutants. Ror2?/?;Wnt9a?/? double mutants displayed even more severely shortened long bones, and intermediate phenotypes were observed in compound Ror2;Wnt9a mutants. Long bones were also shorter in Ror1hyp/hyp;Wnt9a?/? double mutants. In addition, Ror1hyp/hyp;Wnt9a?/? double mutants displayed a secondary palate cleft phenotype, which was not present in the respective single mutants. Interestingly, 50% of compound mutant pups heterozygous for Ror2 and homozygous mutant for Ror1 also developed a secondary palate cleft phenotype. 相似文献
18.
19.
Expression of parathyroid hormone-related peptide (PthrP) and its receptor (PTH1R) during the histogenesis of cartilage and bone in the chicken mandibular process 总被引:2,自引:0,他引:2 下载免费PDF全文
The purpose of this study was to examine the expression and actions of parathyroid hormone-related protein (PTHrP) when skeletal histogenesis occurs in the chicken mandible. Prior to the appearance of skeletal tissues, PTHrP and PTH1R were co-expressed by cells in the ectoderm, skeletal muscle, peripheral nerve and mesenchyme. Hyaline cartilage was first observed at HH stage 27 when many but not all chondroblasts expressed PTHrP and PTH1R. By stage 34, PTHrP and PTH1R were not detected in chondrocytes but were expressed in the perichondrium. Alkaline phosphatase (AP)-positive preosteoblasts and woven bone appeared at stages 31 and 34, respectively. Preosteoblasts, osteoblasts and osteocytes co-expressed PTHrP and PTH1R. Treatment with chicken PTHrP (1-36) increased cAMP in mesenchyme from stage 26 embryos. Continuous exposure to chicken PTHrP (1-36) for 14 days increased cartilage nodule number and decreased AP while intermittent exposure did not affect cartilage nodule number and increased AP in cultures of stage 26 mesenchymal cells. Adding a neutralizing anti-PTHrP antibody to the cultures reduced cartilage nodule number and did not affect AP. These findings show that PTHrP and PTH1R are co-expressed by extraskeletal and skeletal cells before and during skeletal tissue histogenesis, and that PTHrP may influence skeletal tissue histogenesis by affecting the differentiation of mandibular mesenchymal cells into chondroblasts and osteoblasts. 相似文献
20.
Hameetman L David G Yavas A White SJ Taminiau AH Cleton-Jansen AM Hogendoorn PC Bovée JV 《The Journal of pathology》2007,211(4):399-409
Mutational inactivation of EXT1 or EXT2 is the cause of hereditary multiple osteochondromas. These genes function in heparan sulphate proteoglycan (HSPG) biosynthesis in the Golgi apparatus. Loss of heterozygosity of the EXT1 locus at 8q24 is frequently found in solitary osteochondromas, whereas somatic mutations are rarely found. We investigated the expression of EXT1 and EXT2 (quantitative RT-PCR) and of different HSPGs (immunohistochemistry) in solitary and hereditary osteochondromas and in cases with malignant progression to secondary peripheral chondrosarcoma, in relation to possible mutations and promoter methylation. The mutation status of patients with multiple osteochondromas correlated with decreased EXT1 or EXT2 expression found in their resected tumours. We could not show somatic point mutations or promoter hypermethylation in 17 solitary tumours; however, EXT1 expression was decreased in 15 cases, whereas EXT2 was not. Intracellular accumulation of syndecan-2 and heparan sulphate-bearing isoforms of CD44 (CD44v3) was found in most tumours, which concentrated in the Golgi apparatus as shown by confocal microscopy. This contrasted with the extracellular expression found in normal growth plates. In conclusion, mutational inactivation of either EXT1 or EXT2 leads to loss of mRNA expression of the corresponding gene. We hypothesize that loss of EXT expression disrupts the function of the EXT1/2 complex in HSPG biosynthesis, resulting in the intracellular accumulation of HSPG core proteins that we found in these tumours. 相似文献