首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypoxic cell cytotoxins SR 4233, benznidazole (Benzo), and CB 1954 were readily reduced by anaerobic mouse liver microsomes in vitro to their respective amino or single N-oxide derivatives. The reactions were inhibited in air and required reduced cofactors, particularly NADPH. The rates of reductive bioactivation were markedly different for each drug, with SR 4233 much greater than CB 1954 greater than Benzo. Using purified cytochrome P-450 reductase (P-450 reductase) and an inhibitory antibody to this enzyme, we demonstrated that P-450 reductase was involved in the reductive bioactivation of all 3 compounds. It had a minor role in SR 4233 reduction, but a more important involvement in CB 1954 metabolism to its 4-amino metabolite. Using carbon monoxide, a specific inhibitor of cytochrome P-450 (P-450), we demonstrated that P-450 was involved in both SR 4233 and Benzo reduction. P-450 had a major role both in SR 4233 conversion to SR 4317 and in the latter steps of Benzo amine formation. Purified xanthine oxidase was shown to reduce SR 4233 and Benzo in vitro, but cytosolic aldehyde oxidase activity was only detectable with Benzo as substrate. Characterizing the relative participation of the various reductases in tumor versus normal tissues may allow a more rational selection and application of hypoxic cell cytotoxins in cancer therapy.  相似文献   

2.
SR 4233 (3-amino-1,2,4-benzotriazine-1,4-dioxide) is the lead compound of the benzotriazene-di-N oxides which are selectively toxic to tumour cells under hypoxic conditions. However much higher concentrations given to rats caused bone marrow toxicity and necrosis of the low oxygen Zone 3 part of the liver. In the following effects of SR 4233 on hepatocytes under hypoxic vs aerobic conditions have been compared. (1) SR 4233 did not affect hepatocyte viability (as determined by plasma membrane disruption) or glutathione levels under aerobic conditions. SR 4233 however induced cyanide-resistant respiration, an indicator of redox cycling mediated oxidative stress and became cytotoxic if hepatocyte catalase or glutathione reductase was inactivated. Glutathione oxidation occurred well before cytotoxicity ensued. Addition of ascorbate markedly enhanced SR 4233 cytotoxicity to these compromised hepatocytes. (2) In contrast, SR 4233 was highly toxic to hypoxic hepatocytes. Addition of ascorbate to enhance SR 4233 reduction also caused a marked increase in hepatocyte toxicity and an SR 4233 radical was detected with ESR spectroscopy. SR 4233 cellular reduction and toxicity was prevented with fructose or inhibitors of NADPH:cytochrome P-450 reductase. Inactivation of catalase or glutathione reductase had no effect on SR 4233 toxicity and hepatocyte GSH was not oxidised indicating oxidative stress did not occur during hypoxic SR 4233 hepatocyte toxicity. (3) The lack of SR 4233 cytotoxicity under aerobic conditions could probably be attributed to the detoxification of the SR 4233 radical by mitochondrial oxidation as SR 4233, but not its metabolite SR 4317 markedly increased state III and IV mitochondrial respiration in the presence of NADH. The increased respiration was inhibited by the respiratory inhibitors KCN and antimycin A but not by rotenone. Furthermore SR 4233 cytotoxicity under aerobic conditions was markedly increased by partially inhibiting hepatocytes respiration with cyanide but not rotenone.  相似文献   

3.
P450 reductase (NADPH:cytochrome P450 reductase, EC 1.6.2.4) is known to be important in the reductive activation of the benzotriazene-di-N-oxide tirapazamine (SR 4233). Using a panel of six human breast adenocarcinoma cell lines we have examined the relationship between P450 reductase activity and sensitivity to tirapazamine. The toxicity of tirapazamine was found to correlate strongly with P450 reductase activity following an acute (3 h) exposure under hypoxic conditions, the drug being most toxic in the cell lines with the highest P450 reductase activity. A similar correlation was also observed following a chronic (96 h) exposure to the drug in air but not following acute (3 h) exposure in air. We have also determined the ability of lysates prepared from the cell lines to metabolise tirapazamine to its two-electron reduced product, SR 4317, under hypoxic conditions using NADPH as an electron donor. The rate of SR 4317 formation was found to correlate both with P450 reductase activity and with sensitivity to tirapazamine, the highest rates of SR 4317 formation being associated with the highest levels of P450 reductase activity and the greatest sensitivity to the drug. These findings indicate a major role for P450 reductase in determining the hypoxic toxicity of tirapazamine in breast tumour cell lines.  相似文献   

4.
A novel route for the microsomal generation of nitrogen mustard from its N-oxide nitromin is demonstrated. The mustard was trapped as an adduct with diethyldithiocarbamate and estimated by capillary GLC. The enzyme responsible for this reduction could utilize either NADPH or NADH. Reduction occurred preferentially under anaerobic conditions. Purified cytochrome P450 reductase could carry out this reaction. Similar activities were seen using microsomal fractions from rat liver or liver derived BL8, JB1 or Walker 256 carcinoma cells, when these were expressed on a per mg of protein basis. Unscheduled DNA synthesis (UDS) was used as an index of activation of nitromin in these cell systems. In all instances, greater induction of UDS occurred in cells incubated with nitromin under anaerobic conditions.  相似文献   

5.
SR 4233 (3-amino-1,2,4-benzotriazine 1,4-dioxide) is an anti-tumour agent that has a highly selective toxicity to hypoxic cells. In this study we delineate the role of several different bioreductive enzymes in the metabolism of SR 4233 by two tumour cell lines HT 1080 (human fibrosarcoma) and SCCVII (mouse carcinoma). Enzyme kinetics demonstrates similar KM of HT 1080 and SCCVII cell sonicates and differing Vmax. Among all cofactors tested, NADPH was the most important one in reducing SR 4233 by both tumour cell sonicates. NADH was the second most important cofactor while hypoxanthine and N-methylnicotinamide were less involved in the reduction of SR 4233. Carbon monoxide inhibited the reduction by about 60% suggesting that cytochrome P-450 may play a major role in the reduction of SR 4233 under hypoxia in both SCCVII and HT 1080 cells. DT diaphorase is also involved, particularly in HT 1080 cells, in this drug reduction. The level of functional cytochrome P-450, cytochrome P-450 reductase activity and DT diaphorase activity in both cell lines were assayed. These enzyme levels were all higher in SCCVII cells than in HT 1080 cells. This result correlated the higher Vmax of SR 4233 reduction in SCCVII cells than in HT 1080 cells.  相似文献   

6.
Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol 54: 249-257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug.  相似文献   

7.
Nitrofluoranthenes (NFs) are mutagenic and carcinogenic environmental pollutants found in incomplete combustion products and urban air particulate. We have studied both oxidative and reductive metabolism in vitro of different NF isomers mediated by subcellular rat liver fractions. Under aerobic conditions only ring hydroxylation of NFs by rat liver microsomes occurred and the isomeric position of the nitro group affected both the amount and the type of phenolic metabolites formed. Liver microsomes from 3-methylcholanthrene-induced rats were most effective in giving ring hydroxylated 7- and 8-nitrofluoranthene, whereas liver microsomes from phenobarbital-pretreated rats were the most active in metabolizing 1- and 3-nitrofluoranthene. Under anaerobic conditions, only reduction of NFs mediated by both cytosolic and microsomal rat liver enzymes occurred. Cofactor requirements and inhibition experiments indicated that the reductase activity in rat liver cytosolic fractions could be ascribed to DT-diaphorase, aldehyde oxidase and/or other unknown enzymes. The microsomal reductase activity was inhibited by oxygen, carbon monoxide, 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride and n-octylamine, and slightly by cytochrome c; flavin mononucleotide greatly enhanced this activity. 3-Nitrofluoranthene microsomal nitroreductase activity was increased by phenobarbital rat pretreatment and this increment correlated well with the content of cytochrome P450. These results indicate a participation of cytochrome P450 in the reductive metabolism of NFs by rat liver microsomes.  相似文献   

8.
DT-diaphorase is a unique two electron (2e) donating reductase catalyzing either bioactivation or bioprotection reactions. Using human and rodent DT-diaphorase preparations (cell extracts and purified enzyme) we have characterized the reductive metabolism of the hypoxic cell cytotoxins EO9, mitomycin C (MMC), CB 1954, and SR 4233 in vitro. Drug metabolism was assayed spectrophotometrically or by HPLC, with dicoumarol as a selective inhibitor. DNA damage was measured using an agarose gel mobility technique with plasmid pBR322 DNA. The developmental indoloquinone, EO9, was metabolized by both rat Walker and human HT29 tumor DT-diaphorases. Reduction proceeded 5-fold more efficiently with the rat than the human tumor enzyme and resulted in single-strand breaks in plasmid DNA. The structurally related MMC was metabolized much more slowly than EO9 by the rat Walker tumor enzyme and there was no detectable reaction with the human HT29 tumor DT-diaphorase. No DNA damage was seen with MMC for either enzyme. The dinitrophenylaziridine CB 1954 was reduced by both human and rat enzymes forming, preferentially, the highly toxic 4-hydroxylamine as a 4e reduction product. Rates were 3-fold lower than for the human tumor enzyme. SR 4233 was also reduced by the rat tumor enzyme predominantly via 4e reduction to the benzotriazine SR 4330, in a novel reaction mechanism. This appears to be a bioprotection pathway that bypasses the toxic 1e radical formed by other reductases. Such information may be valuable in the selection of hypoxic cell cytoxins to treat human tumors high or low in DT-diaphorase and should facilitate 'enzyme-directed' analogue development.  相似文献   

9.
SR 4233 (3-amino-1,2,4-benzotriazine-1,4-dioxide) is presently undergoing investigation as an antitumor agent because of its high selective toxicity for hypoxic cells in vitro and in vivo. It has been found to be 15 to 200 times more toxic to hypoxic rodent and human cell lines than their normoxic counterparts. We investigated the toxicity of SR 4233 in primary cultures of hepatocytes under various oxygen tensions, ranging from 1% to 20% oxygen. The 50% lethal dose of SR 4233 was found to be 50 times lower in hepatocyte monolayers at 1% O2 versus 20% O2. Even at 4% O2, a concentration that prevails in the pericentral area of the liver under conditions of normal blood flow, SR 4233 was an order of magnitude more toxic than at 20% O2. All samples were analyzed for metabolites, and metabolism was found to be dependent on both the SR 4233 concentration and the oxygen tension. Formation of the major metabolite SR 4317 occurred to the greatest extent at the lowest oxygen concentration and the highest SR 4233 concentration. Very little metabolism occurred at 10 to 20% O2, which is in agreement with data in Chinese hamster ovary cells under aerobic conditions.  相似文献   

10.
One approach to understanding the mechanism of selective hypoxic cell killing by the benzotriazine-di-N-oxide, SR 4233, is to characterize cell lines that exhibit increased resistance to killing by this drug. The Chinese Hamster Ovary cell line BL-10 was originally isolated on the basis of its hypersensitivity to killing by bleomycin. It is 2.7-fold more resistant to hypoxic cell killing by SR 4233 than wild-type CHO on comparison of D0's. However, both BL-10 and CHO possess the same sensitivity to killing by SR 4233 under aerobic conditions. We have excluded the explanation that differential metabolism of SR 4233 is responsible for its increased survival as both BL-10 and CHO produce the two-electron product SR 4317 at the same rate (3 nmoles/hr/10(6) cells). Analysis of free radical production, DNA double-strand break induction, and glutathione (GSH) levels suggested that the resistance of BL-10 to killing by SR 4233 might result from increased intracellular radical scavenger pathways. Using buthionine sulfoximine (BSO) to decrease cellular GSH levels, we found a marked increase in the sensitivity of BL-10 cells to SR 4233 killing under hypoxia, but a much smaller increase in the sensitivity of CHO cells. Taken together, these data imply that the high GSH levels in BL-10 cells is responsible for its resistance to SR 4233 cytotoxicity.  相似文献   

11.
N-hydroxy-2-acetylaminofluorene (N-OH-AAF) was reduced to 2-acetylaminofluorene by rat liver microsomes in the presence of both NAD(P)H and FAD under anaerobic conditions. The microsomal reduction proceeds as if it were an enzymatic reaction. However, when the microsomes were boiled, the activity was not abolished, but was enhanced. The activity was also observed with cytochrome P450 2B1 alone, without NADPH-cytochrome P450 reductase, in the presence of these cofactors. Hematin also exhibited a significant reducing activity in the presence of both a reduced pyridine nucleotide and FAD. The activities of microsomes, cytochrome P450 2B1 and hematin were also observed upon the addition of photochemically reduced FAD instead of both NAD(P)H and FAD. The microsomal reduction of N-OH-AAF appears to be a non-enzymatic reaction by the reduced flavin, catalyzed by the heme group of cytochrome P450.  相似文献   

12.
P450 reductase (NADPH: cytochrome c (P450) reductase, EC 1.6.2.4) plays an important role in the reductive activation of the bioreductive drug tirapazamine (SR4233). Thus, in a panel of human breast cancer cell lines, expression of P450 reductase correlated with both the hypoxic toxicity and the metabolism of tirapazamine [Patterson et al (1995) Br J Cancer 72: 1144-1150]. To examine this dependence in more detail, the MDA231 cell line, which has the lowest activity of P450 reductase in our breast cell line panel, was transfected with the human P450 reductase cDNA. Isolated clones expressed a 78-kDa protein, which was detected with anti-P450 reductase antibody, and were shown to have up to a 53-fold increase in activity of the enzyme. Using six stable transfected clones covering the 53-fold range of activity of P450 reductase, it was shown that the enzyme activity correlated directly with both hypoxic and aerobic toxicity of tirapazamine, and metabolism of the drug under hypoxic conditions. No metabolism was detected under aerobic conditions. For RSU1069, toxicity was also correlated with P450 reductase activity, but only under hypoxic conditions. Measurable activity of P450 reductase was found in a selection of 14 primary human breast tumours. Activity covered an 18-fold range, which was generally higher than that seen in cell lines but within the range of activity measured in the transfected clones. These results suggest that if breast tumours have significant areas of low oxygen tension, then they are likely to be highly sensitive to the cytotoxic action of tirapazamine and RSU 1069.  相似文献   

13.
K Saito  T Kamataki  R Kato 《Cancer research》1984,44(8):3169-3173
Reductive metabolism of carcinogenic 1-nitropyrene by rat liver microsomes and reconstituted cytochrome P-450 systems was investigated. Under the nitrogen atmosphere, 1-aminopyrene was the only detected metabolite of 1-nitropyrene. The reductase activity in liver 105,000 X g supernatant fraction was ascribed to DT-diaphorase, aldehyde oxidase, and other unknown enzyme(s) from the results of cofactor requirements and inhibition experiments. The microsomal reductase activity was inhibited by oxygen, carbon monoxide, 2,4-dichloro-6-phenylphenoxyethylamine, and n-octylamine. Flavin mononucleotide markedly enhanced the activity, and 2-diethylaminoethyl-2,2-diphenylvalerate hydrochloride also enhanced it, but slightly. The microsomal activity was induced by the pretreatment of rats with 3-methylcholanthrene, sodium phenobarbital, or polychlorinated biphenyl, and the increments of the activity correlated well with those of the specific contents of cytochrome P-450 in microsomes. The reductase activity could be reconstituted by NADPH-cytochrome P-450 reductase and forms of cytochrome P-450 purified from liver microsomes of polychlorinated biphenyl-induced rats. Among four forms of cytochrome P-450 examined, an isozyme P-448-IId which showed high activity in hydroxylation of benzo(a)pyrene catalyzed most efficiently the reduction of 1-nitropyrene. The results of this study indicate the central role of cytochrome P-450 in the reductive metabolism of 1-nitropyrene in liver microsomes.  相似文献   

14.
SR 4233 (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a bioreductive agent which exhibits highly selective killing of hypoxic cells in a variety of mammalian cell lines in vitro and in murine tumors in vivo. The selective toxicity of the drug results from its one-electron reduction under hypoxic conditions to form a free radical intermediate capable of damaging DNA, through the formation of strand breaks. Using the neutral filter elution assay, SR 4233 was found to be more efficient at producing DNA double strand breaks in Chinese hamster ovary (CHO) cells than an equitoxic dose of gamma-rays. Drug and radiation sequencing experiments were also performed, with both cell survival and DNA strand break rejoining used as endpoints. As a result of these studies, we now describe two additional properties of SR 4233: (a) radiosensitization of aerobic cells in culture produced by hypoxic incubation with drug either before or after irradiation, and (b) the inhibition of subsequent rejoining of radiation-induced DNA double strand breaks after hypoxic pretreatment with drug. The magnitude of the radiosensitization produced did not vary for drug treatments which, when given alone, reduced cell survival over a range from 30% to 2%. The extent of DNA repair inhibition increased with increasing severity of the SR 4233 pretreatment, but was quite small for non-lethal drug exposures.  相似文献   

15.
The genotoxic potential of oral contraceptive steroids suchas norethindrone was investigated in short-term rat hepatocytecultures by measurement of unscheduled DNA synthesis. Norethindronecaused a small dose-dependent increase in unscheduled DNA synthesisin male rat hepatocytes as judged by the incorporation of [methyl-3H]thymidineinto DNA. This was assessed either by liquid scintillation countingfollowing isolation of DNA or by autoradiography. No increasein unscheduled DNA synthesis could be detected in female rathepatocytes treated with norethindrone. Pre-treatment of malerats with phenobarbitone prior to hepatocyte preparation decreasedthe norethindrone mediated unscheduled DNA synthesis relativeto control hepatocyte cultures while 3-methylcholanthrene pre-treatmenthad little effect. Unscheduled DNA synthesis in norethindronetreated control male rat hepatocytes was reduced by the mixedfunction oxidase inhibitors SKF 525A or metyrapone. In 24- or52-hourold hepatocyte cultures in which the cytochrome P-450content was lower than in freshly prepared cells, or in a hepatocyte-derivedcell line lacking cytochrome P-450, unscheduled DNA synthesisdue to norethindrone was either decreased or abolished. Structureactivity studies showed that only steroids containing a 17-ethynylsubstituent caused an increase in unscheduled DNA synthesis.  相似文献   

16.
Myers  CR; Myers  JM 《Carcinogenesis》1998,19(6):1029-1038
The NADPH-dependent reduction of chromium (VI), a known carcinogen, by hepatic microsomes was very similar for all five humans examined, with an apparent Km for chromate of 1.04-1.68 microM, and a Vmax of 10.4- 10.7 nmol/min/mg protein. Inhibitor studies indicate no role for cytochrome P450s, but a prominent role for flavoproteins, which could include P450 reductase, flavin-containing mono-oxygenase and cytochrome b5. Relative to anaerobic conditions, Cr(VI) reduction was inhibited only 26-37% by room air, which indicates that human microsomal Cr(VI) reduction could still proceed at significant rates, even in tissues with high O2 tensions. Studies with lung microsomes from one human exhibited Vmax and Km values that were two-thirds lower and 2.8-fold greater, respectively, than those of hepatic microsomes from the same individual; other Cr(VI)-reducing parameters were similar for lung and liver. Various forms of exogenous iron, when present at 0.76-6.3 microM, markedly enhanced both liver and lung microsomal rates and Vmax of Cr(VI) reduction, but did not significantly alter the other Cr(VI)- reducing parameters (Km, effects of O2 and inhibitors). These iron levels were 3.1- to 26-fold lower than the initial Cr(VI) concentration, which suggests that iron is serving a catalytic role. The ratio of human microsomal Cr(VI) reduction rates under aerobic versus anaerobic conditions remained fairly constant, regardless of iron concentration. Small increases in intracellular iron could therefore lead to large increases in the rate and extent of microsomal Cr(VI) reduction. Individuals that are simultaneously exposed to Cr(VI) and to agents that increase intracellular iron could therefore be at potentially greater risk for Cr(VI) toxicity and carcinogenicity.   相似文献   

17.
Tamoxifen induces hepatocellular carcinomas in rats and is convertedby rat hepatic cytochrome P450 enzymes into reactive metabolitescapable of forming adducts with nucleic acids, proteins andchromosomal aberrations. In rats tamoxifen has also been shownto induce liver cytochrome P450 enzymes, to stimulate its ownmetabolism leading to greater covalent binding and to inducea higher degree of unscheduled DNA synthesis. This suggeststhat, at least in the rat, a sensitive species, tamoxifen maycontribute significantly to its genotoxic and carcinogenic potential,by assisting its own metabolic activation. We have now investigatedthe effect of feeding tamoxifen to male and female Rhesus monkeys.A marked induction of the hepatic cytochrome(s) P450 is foundin the monkey but, in spite of this, the in vitro metabolismof 7-ethoxy-resorufin by microsomes from treated animals ismarkedly inhibited and so is the dealkylation of two other 7-alkoxy-resorufinsubstrates. Evidence is presented for the accumulation in theliver of monkeys treated with tamoxifen of a powerful inhibitorof drug metabolism, and the inhibitor is identified as a metaboliteof tamoxifen, its N,N-didesmethyl derivative. The level of 32P-postlabelledDNA adducts was considerably higher in rats given tamoxifenthan in similarly treated monkeys. Also, whereas rats respondedto tamoxifen treatment with a marked increase in covalent bindingto microsomal protein, in the monkeys, where accumulation ofthe inhibitory metabolite in the microsomal fraction was alsoseen, convalent binding was not greater with microsomes fromtreated animals than in the corresponding controls. N, N-Didesmethyl-tamoxifen,added in vitro to human and rat microsomes, reduced significantlythe extent of covalent binding, suggesting that the accumulationof the metabolite observed in the liver of primates may discouragethe cytochrome P450-dependent conversion of tamoxifen into reactivederivatives and in this way protect against the formation ofadducts. This mechanism may also contribute to protecting theprimate against liver cancer.  相似文献   

18.
NADPH-fortified human liver microsomes were examined with regard to ability to detoxicate several chemicals that do not require enzymatic oxidation to elicit a genotoxic response in a Salmonella typhimurium TA1535/pSK1002 system where umu response is used as an indicator of DNA damage. Microsomes did not affect the response seen with daunomycin, mitomycin C, 2,4,7-trinitro-9-fluorene, 1-nitropyrene, doxorubicin, 1-methyl-3-nitro-1-nitrosoguanidine, 2-nitrofluorene, or 1-ethyl-3-nitro-1-nitrosoguanidine (cited in order of decreasing umu response per mol). Human and rat liver microsomes did inactivate 1,3-, 1,6-, and 1,8-dinitropyrene; with human liver microsomes the activity of 1,3-dinitropyrene was most strongly inhibited, while with rat liver microsomes the genotoxicities of all three dinitropyrenes were inhibited to a similar extent. NADPH-cytochrome P-450 reductase was demonstrated to inactivate 1,6- and 1,8-dinitropyrene but not 1,3-dinitropyrene. Both rat cytochrome P-450 beta NF-B (P-450 IA1) and P-450ISF-G (P-450 IA2) inactivated 1,3-dinitropyrene, with the former being more effective. Correlation studies done with liver microsomes prepared from variously treated rats and immunoinhibition studies suggest that cytochrome P-450 beta NF-B and P-450ISF-G are both involved in the detoxication of all three of the dinitropyrenes in rat liver microsomes. In a series of assays done with various human liver microsomal preparations, the inactivation of the three dinitropyrenes was not correlated to each other at all. Correlation analysis and inhibition studies with 7,8-benzoflavone and antibodies indicate that human cytochrome P-450 enzymes in the IA family are most effective in detoxicating this compound; the contribution of cytochrome P-450PA (P-450 IA2, the phenacetin O-deethylase) is deemed more important, but a role for the small amount of cytochrome P1-450 (P-450 IA1) in the liver cannot be ruled out. In contrast to the case of 1,3-dinitropyrene, the inactivation of 1,6-dinitropyrene is well correlated with levels of cytochrome P-450NF (P-450 IIIA4, nifedipine oxidase) and its catalytic activities. The inactivation of 1,8-dinitropyrene was not correlated with any of the above parameters and only correlated with the conversion of benzo(a)pyrene to its 3-hydroxy and 4,5-dihydrodiol products, for which the principal enzymes involved in human liver are unknown. Thus, distinct human cytochrome P-450 enzymes are involved in the detoxication of different dinitropyrene congeners, and the situation appears to contrast with that in rat liver.  相似文献   

19.
The enzymatic cell-free metabolism of the novel hypoxia-selective cytotoxin 4-[3-(2-nitro-1-imidazolyl)-propylamino]-7-chloroquinoline hydrochloride (NLCQ-1) was investigated under hypoxic or aerobic conditions in the presence of purified reductive enzymes or isolated rat liver microsomes by monitoring the parent compound with HPLC-UV analysis. Enzymatic reduction of NLCQ-1 with isolated rat liver microsomes and NADPH or NADH showed that, only under hypoxic conditions, ca. 45% and 60% of the parent compound was reduced, respectively, within 1 h of incubation (37 degrees C). Under identical conditions but in the presence of 2'-AMP (a P450 reductase inhibitor), 6-propyl-2-thiouracil or p-hydroxymercuribenzoate (cytochrome b5 reductase inhibitors), NLCQ-1 reduction was inhibited. Enzymatic cell-free metabolism of NLCQ-1 with recombinant human DT-diaphorase (DTD) and NADPH or NADH under hypoxic or aerobic conditions showed that < or = 5% of the compound was reduced within 2 h. Reduction kinetics with human P450 reductase-expressing microsomes showed ca. 75% or 50% reduction of NLCQ-1 under hypoxic or aerobic conditions, respectively, after 2 h incubation. These results suggest that DTD is not involved in the initial steps of the bioreductive metabolism of NLCQ-1, although it could be involved with metabolites of NLCQ-1, and that cytochrome P450 and cytochrome b5 reductases play a significant role in the bioreductive metabolism of NLCQ-1.  相似文献   

20.
The cytochrome P450-dependent reduction of Cr(VI) using reconstituted phospholipid vesicles containing purified preparation of various forms of rabbit and rat liver microsomal cytochrome P450 has been investigated. The alcohol-induced form of the rat, P450IIE1, was the most efficient enzyme, 7.2 +/- 0.40 nmol Cr/nmol P450/min, whereas the corresponding rates for rat P450IA1, rat IIB1, rabbit IIB4, rabbit IA2 and rabbit IIE1 were 1.7 +/- 0.09, 2.5 +/- 0.08, 1.6 +/- 0.08, 2.5 +/- 0.15 and 1.6 +/- 0.08 nmol Cr/nmol P450/min respectively. NADPH-cytochrome P450 reductase had Cr(VI) reductase activity which was dependent on enzyme concentration. Below 0.15 nmol P450 reductase/ml the sp. act. was low and constant, while at a higher concentration the activity was markedly dependent upon the amount of enzyme present. In a quantitative binding assay it was shown that binding of [51Cr]Cr(VI) to the catalytic enzymes was proportional to the enzyme concentration up to 0.8 nmol P450/ml, which caused binding of 70% of the total radioactivity. Analysis by SDS-PAGE and autoradiography exhibited binding to the individual catalytic proteins of [51Cr]Cr. EDTA treatment removed the radioactivity from the bands matching P450 and P450 reductase, indicating that Cr(III) is bound to the proteins. The reducing activity of both P450 and P450 reductase was potently inhibited by oxygen. The inhibitory effect of oxygen is not due to reoxidation of the reduced Cr and redox cycling. Rat P450IA1 ethoxycoumarin O deethylase activity was inhibited after preincubation with chromate (CrO4(2-). The P450 reductase inhibitor 2'-AMP stimulated the anaerobic P450 reductase dependent Cr(VI) reductase rate approximately 2-fold. Both CO and CCl4 inhibited the different P450 enzymes to various extents. With rabbit P450IIE1 CCl4 stimulated the Cr(VI) reduction approximately 4-fold, whereas the activity of the other enzymes was inhibited when the reconstituted system was incubated with CrO4(2-) and CCl4 prior to NADPH addition. Neither CO nor CCl4 affected the Cr(VI) reducing activity of the P450 reductase. The difference in CrO4(2-) reducing activity of the P450 enzymes and binding to the enzymes may be important for in vivo endoplasmic catalytic metabolism of CrO4(2-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号