首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amyloid beta-peptide (Abeta) plays an early and critical role in the pathogenic cascade leading to Alzheimer's disease (AD). Abeta is typically found in extracellular amyloid plaques that occur in specific brain regions in the AD and Down syndrome brain. Mounting evidence, however, indicates that intraneuronal accumulation of this peptide may also contribute to the cascade of neurodegenerative events that occur in AD and Down syndrome. A pathogenic role for intracellular Abeta is not without precedent, as it is known to be an early and integral component of the human muscle disorder inclusion body myositis (IBM). Therefore, it is plausible that intracellular Abeta may likewise induce cytopathic effects in the CNS, causing neuronal and synaptic dysfunction and perhaps even neuronal loss. Here we review recent evidence supporting a pathogenic role for intracellular Abeta in AD, Down syndrome, and IBM.  相似文献   

2.
Recent evidence indicates that both intraneuronal Abeta and Cu are involved in the pathological processes in Alzheimer's disease (AD). This perspective shows a possible interrelation of these factors. AbetaPP, the precursor of Abeta which represents the main constituent of amyloid plaques, is involved in Cu homeostasis in mammals. In vitro observations and in vivo data obtained from AbetaPP mouse models provide strong evidence that AbetaPP and the resulting Abeta overproduction facilitate intracellular Cu to leave the cell. An increased Cu efflux seems to lead to Cu deficiency and, subsequently, reduced SOD-1 activity. The Cu-dependent SOD-1 activity is the main enzyme involved in detoxifying free radicals. Several reports have shown that oxidative stress is an invariable age-dependent feature in the brain of AD patients. Increased oxidative stress leads to an increase in intraneuronal Abeta accumulation, which has been shown to be the main trigger for neuronal loss in transgenic mouse models. Thus, we conclude that bioavailability of Cu is a crucial point for the pathogenesis of AD.  相似文献   

3.
Abeta accumulation has an important function in the etiology of Alzheimer’s disease (AD) with its typical clinical symptoms, like memory impairment and changes in personality. However, the mode of this toxic activity is still a matter of scientific debate. We used the APP/PS1KI mouse model for AD, because it is the only model so far which develops 50% hippocampal CA1 neuron loss at the age of 1 year. Previously, we have shown that this model develops severe learning deficits occurring much earlier at the age of 6 months. This observation prompted us to study the anatomical and cellular basis at this time point in more detail. In the current report, we observed that at 6 months of age there is already a 33% CA1 neuron loss and an 18% atrophy of the hippocampus, together with a drastic reduction of long-term potentiation and disrupted paired pulse facilitation. Interestingly, at 4 months of age, there was no long-term potentiation deficit in CA1. This was accompanied by reduced levels of pre- and post-synaptic markers. We also observed that intraneuronal and total amount of different Abeta peptides including N-modified, fibrillar and oligomeric Abeta species increased and coincided well with CA1 neuron loss. Overall, these data provide the basis for the observed robust working memory deficits in this mouse model for AD at 6 months of age. H. Breyhan, O. Wirths and K. Duan contributed equally to this work.  相似文献   

4.
It is widely accepted that Abeta plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) [27]. Attention has been focused mainly on how extracellular Abeta exerts its effects on neuronal cells [7,11,16,32]. However, neuronal degeneration from an accumulation of intracellular Abetax-42 (iAbeta42) occurs in presenilin 1 (PS1) mutant mice without extracellular Abeta deposits [5]. In the present study, intracellular deposits of iAbeta42 are correlated with apoptotic cell death in AD and PS-1 familial AD (PS1 FAD) brains by means of triple staining with antibodies to Abeta, TUNEL, and staining with Hoechst 33342. Neurons simultaneously positive for iAbeta42 and the TUNEL assay were significantly more abundant in AD brains than in controls. The number of apoptotic neurons with intracellular neurofibrillary tangles (iNFTs) was insignificant. Our results indicate that intraneuronal deposition of a neurotoxic form of Abeta seems to be an early event in the neurodegeneration of AD.  相似文献   

5.
The causes of neuronal dysfunction and degeneration in Alzheimer's disease (AD) are not fully understood, but increased production of neurotoxic forms of amyloid beta-peptide-42 (Abeta42) seems of major importance. Large extracellular deposits of aggregated Abeta42 (plaques) is a diagnostic feature of AD, but Abeta42 may be particularly cytotoxic when it accumulates inside neurons. The factors that may promote the intracellular accumulation of Abeta42 in AD are unknown, but recent findings suggest that individuals with elevated homocysteine levels are at increased risk for AD. We show that homocysteic acid (HA), an oxidized metabolite of homocysteine, induces intraneuronal accumulation of a Abeta42 that is associated with cytotoxicity. The neurotoxicity of HA can be attenuated by an inhibitor of gamma-secretase, the enzyme activity that generates Abeta42, suggesting a key role for intracellular Abeta42 accumulation in the neurotoxic action of HA. Concentrations of HA in cerebrospinal fluid (CSF) were similar in AD and control subjects. CSF homocysteine levels were elevated significantly in AD patients, however, and homocysteine exacerbated HA-induced neurotoxicity, suggesting a role for HA in the pathogenic action of elevated homocysteine levels in AD. These findings suggest that the intracellular accumulation of Abeta42 plays a role in the neurotoxic action of HA, and suggest a potential therapeutic benefit of agents that modify the production and neurotoxic actions of HA and homocysteine.  相似文献   

6.
Amyloid beta-protein ending at 42 (Abeta42) is the major peptide deposited in Alzheimer's disease (AD) brain. In immunocytochemical studies, formic acid treatment is used to dramatically enhance Abeta immunoreactivity. Recently, Abeta42 has been reported to accumulate in AD neurons. Since heating is known to enhance intracellular protein immunoreactivity, we used an autoclaving protocol to enhance intraneuronal Abeta42 immunoreactivity. Using this protocol, both anti-Abeta42 N-terminal and C-terminal antibodies, but not anti-Abeta40 C-terminal antibody, labeled AD neurons. Moreover, formic acid treatment counteracted such effects of autoclaving. Thus, intraneuronal Abeta42 accumulation may have been underestimated by conventional methods using formic acid only.  相似文献   

7.
The accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles consisting of hyperphosphorylated tau protein are pathological features of Alzheimer’s disease (AD) commonly modeled in mice using known human familial mutations; however, the loss of neurons also found to occur in AD is rarely observed in such models. The mechanism of neuron degeneration remains unclear but is of great interest as it is very likely an important factor for the onset of adverse memory deficits occurring in individuals with AD. The role of Aβ in the neuronal degeneration is a matter of controversial debates. In the present study we investigated the impact of extracellular plaque Aβ versus intraneuronal Aβ on neuronal cell death. The thalamus and the frontal cortex of the APP/PS1KI mouse model were chosen for stereological quantification representing regions with plaques only (thalamus) or plaques as well as intraneuronal Aβ (frontal cortex). A loss of neurons was found in the frontal cortex at the age of 6 months coinciding with the decrease of intraneuronal immunoreactivity, suggesting that the neurons with early intraneuronal Aβ accumulation were lost. Strikingly, no neuron loss was observed in the thalamus despite the development of abundant plaque pathology with levels comparable to the frontal cortex. This study suggests that plaques have no effect on neuron death whereas accumulation of intraneuronal Aβ may be an early transient pathological event leading to neuron loss in AD. O. Wirths and T. A. Bayer have equally contributed to this work.  相似文献   

8.
Increasing evidence suggests that intraneuronal amyloid-beta (Abeta) accumulation may be an early event in Alzheimer's disease (AD) pathogenesis. However direct in vivo evidence regarding initial Abeta seeding is missing. Using an APP transgenic mouse model, our sensitive immunocytochemical procedures revealed a novel intraneuronal Abeta deposition in the somas of hippocampal CA1/subiculum neurons far in advance of the occurrence of extracellular Abetaplaques. These deposits increased exponentially with age and were elevated approximately 4-fold (p < 0.001) by high fat/high cholesterol diet. Abeta40 and Abeta42 were the major constituents of these deposits and were co-localized with lysosomal markers. Our results are consistent with the notion that the earliest Abeta deposition occurs intraneuronally, prior to extracellular amyloid plaque formation.  相似文献   

9.
The amyloid Abeta-peptide (Abeta) is suspected to play a critical role in the cascade leading to AD as the pathogen that causes neuronal and synaptic dysfunction and, eventually, cell death. Therefore, it has been the subject of a huge number of clinical and basic research studies on this disease. Abeta is typically found aggregated in extracellular amyloid plaques that occur in specific brain regions enriched in nAChRs in Alzheimer's disease (AD) and Down syndrome (DS) brains. Advances in the genetics of its familiar and sporadic forms, together with those in gene transfer technology, have provided valuable animal models that complement the traditional cholinergic approaches, although modeling the neuronal and behavioral deficits of AD in these models has been challenging. More recently, emerging evidence indicates that intraneuronal accumulation of Abeta may also contribute to the cascade of neurodegenerative events and strongly suggest that it is an early, pathological biomarker for the onset of AD and associated cognitive and other behavioral deficits. The present review covers these studies in humans, in in vitro and in transgenic models, also providing more evidence that adult 3xTg-AD mice harboring PS1M146V, APPSwe, tauP301L transgenes, and mimicking many critical hallmarks of AD, show cognitive deficits and other behavioral alterations at ages when overt neuropathology is not yet observed, but when intraneuronal Abeta, synaptic and cholinergic deficits can already be described.  相似文献   

10.
Beta-amyloid (Abeta) peptides are key proteins in the pathophysiology of Alzheimer's disease (AD). While Abeta42 aggregates very rapidly to form early diffuse plaques, supplemental Abeta40 deposition is required to form mature neuritic plaques. We here investigated the role of nuclear factor-kappaB (NF-kappaB) pathway in Abeta40-mediated neuronal damage and amyloid pathology. In rat primary neurons and human postmitotic neuronal cells, the Abeta peptide induced a dose-dependent neuronal death, reduced the levels of the anti-apoptotic protein Bcl-XL, enhanced the cytosolic release of cytochrome c, and elicited the intracellular accumulation and secretion of Abeta42 oligomers. Moreover, Abeta40 activated the NF-kappaB pathway by selectively inducing the nuclear translocation of p65 and p50 subunits, and promoted an apoptotic profile of gene expression. As inhibitors of the NF-kappaB pathway, we tested the capability of a double-stranded kappaB decoy oligonucleotide, the anti-inflammatory drug aspirin and the selective IkappaB kinase 2 inhibitor, AS602868, to modify the Abeta40-mediated effects. These treatments, transiently applied before Abeta exposure, completely inhibited p50/p65 nuclear translocation and neuronal damage. The kappaB decoy also inhibited the Abeta-induced release of cytochrome c, restored the levels of Bcl-XL, and prevented intraneuronal accumulation and secretion of Abeta42. These results open up interesting perspectives on the development of novel strategies targeting out NF-kappaB p50/p65 dimers for pharmacological intervention in AD.  相似文献   

11.
Alzheimer's disease is a neurodegenerative disorder characterized by neuronal loss associated with a progressive impairment of cognitive functions. Early consequences of Alzheimer's disease include deficit of cholinergic signalling in particular regions controlling memory processes, such as the cortex and hippocampus, and accumulation of beta-amyloid (Abeta) peptide in neuritic plaques. The cholinergic system depends for its integrity and function on nerve growth factor. Chronic nerve growth factor deprivation in transgenic mice (AD11) engineered to produce recombinant neutralizing anti-nerve growth factor antibodies leads to progressive age-dependent Alzheimer's-like neurodegenerative pathology similar to that found in patients with Alzheimer's disease, associated with a selective loss of cholinergic neurones in the basal forebrain. Here we show that in the hippocampus of 6-month-old AD11 mice, Abeta aggregates started appearing in the CA1 region. The accumulation of Abeta was associated with a loss of cholinergic function at CA3-CA1 synapses. Whereas in wild-type mice nicotine induced a persistent increase of synaptic efficacy via alpha7 nicotine acetylcholine receptors, in AD11 mice this alkaloid failed to modify synaptic strength. Moreover, nicotine failed to transiently enhance the frequency of spontaneous miniature glutamatergic currents (miniature excitatory postsynaptic currents) recorded from CA1 but not from CA3 pyramidal neurones of AD11 mice. However, in CA3 principal cells of AD11 mice, the potentiating effect of nicotine on miniature excitatory postsynaptic currents was prevented when Abeta peptide 1-42 was added to the extracellular solution. These data suggest that in AD11 mice, Abeta interferes with nicotine acetylcholine receptors at the level of presynaptic glutamatergic terminals, inhibiting their function possibly through calcium signalling via presynaptic alpha7 nicotine acetylcholine receptors.  相似文献   

12.
The brains of Alzheimer's disease (AD) patients have large numbers of plaques that contain amyloid beta (Abeta) peptides which are believed to play a pivotal role in AD pathology. Several lines of evidence have established the inhibitory role of Abeta peptides on hippocampal memory encoding, a process that relies heavily on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function. In this study the modulatory effects of the two major Abeta peptides, Abeta(1-40) and Abeta(1-42), on synaptic AMPA receptor function was investigated utilizing the whole cell patch clamp technique and analyses of single channel properties of synaptic AMPA receptors. Bath application of Abeta(1-42) but not Abeta(1-40) reduced both the amplitude and frequency of AMPA receptor mediated excitatory postsynaptic currents in hippocampal CA1 pyramidal neurons by approximately 60% and approximately 45%, respectively, in hippocampal CA1 pyramidal neurons. Furthermore, experiments with single synaptic AMPA receptors reconstituted in artificial lipid bilayers showed that Abeta(1-42) reduced the channel open probability by approximately 42% and channel open time by approximately 65% and increased the close times by several fold. Abeta(1-40), however, did not show such inhibitory effects on single channel properties. Application of the reverse sequence peptide Abeta(42-1) also did not alter the mEPSC or single channel properties. These results suggest that Abeta(1-42) but not Abeta(1-40) closely interacts with and exhibits inhibitory effects on synaptic AMPA receptors and may contribute to the memory impairment observed in AD.  相似文献   

13.
Alzheimer's disease pathogenesis and therapeutic interventions.   总被引:6,自引:0,他引:6  
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system associated with progressive cognitive and memory loss. Molecular hallmarks of the disease are characterized by extracellular deposition of the amyloid beta peptide (Abeta) in senile plaques, the appearance of intracellular neurofibrillary tangles (NFT), cholinergic deficit, extensive neuronal loss and synaptic changes in the cerebral cortex and hippocampus and other areas of brain essential for cognitive and memory functions. Abeta deposition causes neuronal death via a number of possible mechanisms including oxidative stress, excitotoxicity, energy depletion, inflammation and apoptosis. Despite their multifactorial etiopathogenesis, genetics plays a primary role in progression of disease. To date genetic studies have revealed four genes that may be linked to autosomal dominant or familial early onset AD (FAD). These four genes include: amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2) and apolipoprotein E (ApoE). Plaques are formed mostly from the deposition of Abeta, a peptide derived from APP. The main factors responsible for Abeta formation are mutation of APP or PS1 and PS2 genes or ApoE gene. All mutations associated with APP and PS proteins can lead to an increase in the production of Abeta peptides, specifically the more amyloidogenic form, Abeta42. In addition to genetic influences on amyloid plaque and intracellular tangle formation, environmental factors (e.g., cytokines, neurotoxins, etc.) may also play important role in the development and progression of AD. A direct understanding of the molecular mechanism of protein aggregation and its effects on neuronal cell death could open new therapeutic approaches. Some of the therapeutic approaches that have progressed to the clinical arena are the use of acetylcholinesterase inhibitors, nerve growth factors, nonsteroidal inflammatory drugs, estrogen and the compounds such as antioxidants, neuronal calcium channel blockers or antiapoptotic agents. Inhibition of secretase activity and blocking the formation of beta-amyloid oligomers and fibrils which may inhibit fibrilization and fibrilization-dependent neurotoxicity are the most promising therapeutic strategy against the accumulation of beta-amyloid fibrils associated with AD. Furthermore, development of immunotherapy could be an evolving promising therapeutic approach for the treatment of AD.  相似文献   

14.
Transgenic mouse models of Alzheimer's disease (AD) exhibit amyloid-beta (Abeta) accumulation and related cognitive impairments. Although deficits in hippocampus-dependent place learning have been well characterized in Alzheimer's transgenic mice, little is known about temporal memory function in these AD models. Here, we applied trace fear conditioning to two different Alzheimer's mouse models and investigated the relationship between pathogenic Abeta and temporal memory deficits. This behavioral test requires hippocampus-dependent temporal memory processing as the conditioned and unconditioned stimuli are separated by a trace interval of 30 s. We found that both amyloid precursor protein (APP) transgenic (Tg2576) and APP/presenilin (PS)1 transgenic (Tg6799) mice were impaired in memorizing this association across the time gap. Both transgenic groups performed as well as wild-type control mice in delay fear conditioning when the trace interval was removed, indicating that the trace conditioning deficits are hippocampus-specific. Importantly, Tg6799 mice engineered to lack the major Alzheimer's beta-secretase (beta-site APP-cleaving enzyme 1: BACE1) showed behavioral rescue from temporal memory deficits. Elevated levels of soluble Abeta oligomers found in Tg6799+ mouse brains returned to wild-type control levels without changes in APP/PS1 transgene expression in BACE1-/- * Tg6799+ bigenic mouse brains, suggesting Abeta oligomers as potential mediators of memory loss. Thus, trace fear conditioning is a useful assay to test the mechanisms and therapeutic interventions for Abeta-dependent deficits in temporal associative memory. Our gene-based approach suggests that lowering soluble Abeta oligomers by inhibiting BACE1 may be beneficial for alleviating cognitive disorders in AD.  相似文献   

15.
16.
Amyloid beta-peptide (Abeta) is the major constituent of senile plaques, a pathological hallmark of Alzheimer's disease (AD) brain. It is generally accepted that Abeta plays a central role in the pathophysiology of AD. Abeta is released from cells under entirely normal cellular conditions during the internalization and endosomal processing of amyloid precursor protein (APP). However, accumulation of Abeta can induce neurotoxicity. Our previous reports showed that decreasing the production of Abeta by giving an intracerebroventricular injection of a 42-mer phosphorothiolated antisense oligonucleotide (AO) directed at the Abeta region of the APP gene reduces lipid peroxidation and protein oxidation and improves cognitive deficits in aged senescence-accelerated mice prone 8 (SAMP8) mice. In order to investigate how Abeta level reduction improves learning and memory performance of SAMP8 mice through reduction of oxidative stress in brains, we used proteomics to identify the proteins that are less oxidized in 12-month-old SAMP8 mice brains treated with AO against the Abeta region of APP (12 mA) compared to that of the age-control SAMP8 mice. We found that the specific protein carbonyl levels of aldoase 3 (Aldo3), coronin 1a (Coro1a) and peroxiredoxin 2 (Prdx2) are significantly decreased in the brains of 12 mA SAMP8 mice compared to the age-controlled SAMP8 treated with random AO (12 mR). We also found that the expression level of alpha-ATP synthase (Atp5a1) was significantly decreased, whereas the expression of profilin 2 (Pro-2) was significantly increased in brains from 12 mA SAMP8 mice. Our results suggest that decreasing Abeta levels in aged brain in aged accelerated mice may contribute to the mechanism of restoring the learning and memory improvement in aged SAMP8 mice and may provide insight into the role of Abeta in the memory and cognitive deficits in AD.  相似文献   

17.
In Alzheimer disease (AD) patients, early memory dysfunction is associated with glucose hypometabolism and neuronal loss in the hippocampus. Double transgenic (Tg) mice co-expressing the M146L presenilin 1 (PS1) and K670N/M671L, the double "Swedish" amyloid precursor protein (APP) mutations, are a model of AD amyloid-beta deposition (Abeta) that exhibits earlier and more profound impairments of working memory and learning than single APP mutant mice. In this study we compared performance on spatial memory tests, regional glucose metabolism, Abeta deposition, and neuronal loss in APP/PS1, PS1, and non-Tg (nTg) mice. At the age of 2 months no significant morphological and metabolic differences were detected between 3 studied genotypes. By 8 months, however, APP/PS1 mice developed selective impairment of spatial memory, which was significantly worse at 22 months and was accompanied by reduced glucose utilization in the hippocampus and a 35.8% dropout of neurons in the CA1 region. PS1 mice exhibited a similar degree of neuronal loss in CA1 but minimal memory deficit and no impairment of glucose utilization compared to nTg mice. Deficits in 22 month APP/PS1 mice were accompanied by a substantially elevated Abeta load, which rose from 2.5% +/- 0.4% at 8 months to 17.4% +/- 4.6%. These findings implicate Abeta or APP in the behavioral and metabolic impairments in APP/PS1 mice and the failure to compensate functionally for PS1-related hippocampal cell loss.  相似文献   

18.
One pathogenic characteristic of Alzheimer's disease (AD) is the formation of extracellular senile plaques with accumulated microglia. According to the amyloid hypothesis, the increase or accumulation of amyloid-beta (Abeta) peptides in the brain parenchyma is the primary event that influences AD pathology. Although the role of microglia in AD pathology has not been clarified, their involvement in Abeta clearance has been noted. High mobility group box protein-1 (HMGB1) is an abundant nonhistone chromosomal protein. We reported recently that HMGB1 was associated with senile plaques and the total protein level significantly increased in AD brain. In this study, diffuse HMGB1 immunoreactivity was observed around dying neurons in the kainic acid- and Abeta1-42 (Abeta42)-injected rat hippocampi. HMGB1 also colocalized with Abeta in the Abeta42-injected rats but not in transgenic mice, which show massive Abeta production without neuronal loss in their brains. Furthermore, coinjection of HMGB1 delayed the clearance of Abeta42 and accelerated neurodegeneration in Abeta42-injected rats. These results suggest that HMGB1 released from dying neurons may inhibit microglial Abeta42 clearance and enhance the neurotoxicity of Abeta42. HMGB1 may thus be another target in the investigation of a therapeutic strategy for AD.  相似文献   

19.
In Alzheimer's disease (AD), loss of synapses exceeds neuronal loss and some evidence suggests a role of beta-amyloid protein (Abeta) in synaptic degeneration through a mechanism which may involve intraneuronal Ca2+ dyshomeostasis. Emerging evidence points to the participation of the internal Ca2+ stores in the pathophysiology of neurodegeneration in AD. To test the involvement of intrasynaptic Ca2+ mobilization in A toxicity, we explored the role of ryanodine receptor activation in rat cortical synaptosomes taken as a model system for the central presynapses. Evaluation of synaptosomal mitochondrial redox capacity was assessed by the MTT reduction technique, and ultrastructural changes of synaptosomes after exposure to Abeta and ryanodine were evaluated by electron microscopy. Our results show that Abeta potentiates mitochondrial dysfunction in the presence of ryanodine and induces morphological changes consisting of mitochondrial swelling and intense small synaptic vesicles depletion. These changes were accompanied by a reduction in the content of synaptophysin and actin proteins. The reduction of actin immunoreactivity was reversed in the presence of a wide range caspase inhibitors, suggesting the activation of synaptic apoptotic mechanisms.  相似文献   

20.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in the growing population of elderly people. A characteristic of AD is the accumulation of plaques in the brain of AD patients, and theses plaques mainly consist of aggregates of amyloid beta-peptide (Abeta). All converging lines of evidence suggest that progressive accumulation of the Abeta plays a central role in the genesis of Alzheimer's disease and it was long understood that Abeta had to be assembled into extracellular amyloid fibrils to exert its cytotoxic effects. This process could be modulated by molecular chaperones which inhibit or accelerate the amyloid formation. The enzyme Acetylcholinesterase (AChE) induces Abeta fibrils formation, forming a stable complex highly neurotoxic. On the other hand, laminin inhibit the Abeta fibrils formation and depolymerizate Abeta fibrils also. Over the past decade, data have emerged from the use of several sources of Abeta (synthetic, cell culture, transgenic mice and human brain) to suggest that intermediate species called Abeta oligomers are also injurious. Accumulating evidence suggests that soluble forms of Abeta are indeed the proximate effectors of synapse loss and neuronal injury. On the other hand, the member of the Wnt signaling pathway, beta-catenin was markedly reduced in AD patients carrying autosomal dominant PS-1. Also, neurons incubated with Abeta revealed a significant dose-dependent decrease in the levels of cytosolic beta-catenin an effect which was reversed in cells co-incubated with increasing concentrations of lithium, an activator of Wnt signaling pathway. Wnt signaling blocks the behavioural impairments induced by hippocampal injection of Abeta, therefore the activation of Wnt signaling protects against the Abeta neurotoxicity. Here we review recent progress about Abeta structure and function, from the formation of amyloid fibrils and some molecular chaperones which modulate the amyloidogenesic process to synaptic damage induce by Abeta oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号