首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this work is to construct a computational fluid dynamics model capable of simulating the transient non-Newtonian process of apheresis. A Lagrangian-Eulerian model has been developed which tracks the blood particles within a two-dimensional flow configuration. Within the Eulerian method, the fluid mass and momentum conservation equations within the separator are solved using the density and the viscosity is calculated from the blood particle concentrations. Subsequently, the displacement of the blood particles is calculated with a Lagrangian method. Hawksley's model for the density of supensions is used in the variable density calculation. The viscosity is calculated with two models based on Vand's rigid particle suspension viscosity concepts, followed by the flow field calculation in the separator. Simulations were performed for various inlet hematocrit values and separator lengths. The simulations are in satisfactory agreement with experimental results reported in literature, indicating a complete separation of plasma and red blood cells (RBCs), as well as nearly complete separation of red blood cells and platelets. No hemolysis was observed in the simulations because the shear rate remained under the critical value of 150 N/m2.  相似文献   

2.
A computational fluid dynamics study of blood flow in the continuous flow ventricular assist device, Prototype No. 3 (CFVAD3), which consists of a 4 blade shrouded impeller fully supported in magnetic bearings, was performed. This study focused on the regions within the pump where return flow occurs to the pump inlet, and where potentially damaging shear stresses and flow stagnation might occur: the impeller blade passages and the narrow gap clearance regions between the impeller-rotor and pump housing. Two separate geometry models define the spacing between the pump housing and the impeller's hub and shroud, and a third geometry model defines the pump's impeller and curved blades. The flow fields in these regions were calculated for various operating conditions of the pump. Pump performance curves were calculated, which compare well with experimentally obtained data. For all pump operating conditions, the flow rates within the gap regions were predicted to be toward the inlet of the pump, thus recirculating a portion of the impeller flow. Two smaller gap clearance regions were numerically examined to reduce the recirculation and to improve pump efficiency. The computational and geometry models will be used in future studies of a smaller pump to determine increased pump efficiency and the risk of hemolysis due to shear stress, and to insure the washing of blood through the clearance regions to prevent thrombosis.  相似文献   

3.
The computational fluid dynamics (CFD) package CFX-TASCflow was applied to simulate the flows through the blood pump hydrodynamic bearings. The three-dimensional flow patterns through the bearings were predicted and the hydraulic performance analyzed. The computations were carried out at 3 axial positions of the pump impeller. Net lift force away from the nearer part of the housing increased when the impeller moved closer to this part. Radial force and drag force were also found. Separated flows were observed at the leading and trailing edge of the bearing gap. To test the CFD package, a series of two-dimensional computations were also carried out for various bearing geometries. The results were compared with published experimental data.  相似文献   

4.
Computational fluid dynamics analysis of an intra-cardiac axial flow pump   总被引:7,自引:0,他引:7  
A low rate of hemolysis is an important factor for the development of a rotary blood pump. It is, however, difficult to identify the areas where hemolysis occurs. Computational fluid dynamics (CFD) analysis enables the engineer to predict hemolysis on a computer. In this study, fluid dynamics throughout intracardiac axial flow pumps with different designs were analyzed three-dimensionally using CFD software. The computed pressure-flow characteristics of the pump were in good agreement with the measurements. The Reynolds shear stress was computed along particle trace lines. Hemolysis was estimated on the basis of shear stress (tau) and its exposure time (Deltat): dHb/Hb = 3.62 x 10(-7)(tau)(i)(2.416) x Delta(t)(i)(0.785). Particle damage increased with time along the particle trace lines. Hemolysis of each of the pumps was measured in vitro. The computed hemolysis values were in good agreement with the experimental results. CFD is a useful tool for developing a rotary blood pump.  相似文献   

5.
The aim of this work is to construct a computational fluid dynamics model capable of simulating the quasitransient process of apheresis. To this end a Lagrangian-Eulerian model has been developed which tracks the blood particles within a delineated two-dimensional flow domain. Within the Eulerian method, the fluid flow conservation equations within the separator are solved. Taking the calculated values of the flow field and using a Lagrangian method, the displacement of the blood particles is calculated. Thus, the local blood density within the separator at a given time step is known. Subsequently, the flow field in the separator is recalculated. This process continues until a quasisteady behavior is reached. The simulations show good agreement with experimental results. They shows a complete separation of plasma and red blood cells, as well as nearly complete separation of red blood cells and platelets. The white blood cells build clusters in the low concentrate cell bed.  相似文献   

6.
Sirois E  Sun W 《Artificial organs》2011,35(2):157-165
It is known that bioprosthetic heart valves (BHVs) have better hemodynamics and lower thromboembolic events compared with their mechanical counterparts; however, patients implanted with BHVs still face the potential of such complications. The risk of a clinical thromboembolism is on average 0.7% per year in patients with tissue valves in sinus rhythm. In this study, we developed a computational fluid dynamic (CFD) model of a BHV implanted in an aortic root and investigated the BHV-induced platelet activation using a damage accumulation model previously applied to mechanical valves. The CFD model was validated against published experimental data, including the flow velocity profile across the valve and the transvalvular pressure drop, and close matches were obtained. Hemodynamic performance measures such as flow velocity, turbulent kinetic energy, and wall shear stress were explored. Lagrangian particle tracking was used to calculate the extent of platelet activation for central bulk flow and flow in the vicinity of the leaflets. A peak flow of 2.22 m/s was observed at 40 msec after peak systole in the vicinity of a fold at the base of the leaflets. With the platelet activation expressed as 0-100% of activation threshold levels, mean damage on one pass was 2.489 × 10(-7)% and maximum damage on one pass was 8.778 × 10(-4)%. Our results suggested that the potential for BHV-induced platelet activation was low and that the leaflet's fully open geometry might play a role in the extent of blood element damage.  相似文献   

7.
Dialyzer performance strongly depends on the flow of blood and dialysis fluid as well as membrane performance. It is necessary, particularly to optimize dialysis fluid flow, to develop a highly efficient dialyzer. The objective of the present study is to evaluate by computational analysis the effects of dialyzer jacket baffle structure, taper angle, and taper length on dialysis fluid flow. We modeled 10 dialyzers of varying baffle angles (0, 30, 120, 240, and 360°) with and without tapers. We also modeled 30 dialyzers of varying taper lengths (0, 12.5, 25.0, and 50.0 mm) and angles (0, 2, 4, and 6°) based on technical data of APS-SA dialyzers having varying surface areas of 0.8, 1.5, and 2.5 m2 (Rexeed). Dialysis fluid flow velocity was calculated by the finite element method. The taper part was divided into 10 sections of varying fluid resistances. A pressure of 0 Pa was set at the dialysis fluid outlet, and a dialysis fluid flow rate of 500 mL/min at the dialysis fluid inlet. Water was used as the dialysis fluid in the computational analysis. Results for dialysis fluid flow velocity of the modeled dialyzers indicate that taper design and a fully surrounded baffle are important in making the dialysis fluid flow into a hollow-fiber bundle easily and uniformly. However, dialysis fluid flow channeling occurred particularly at the outflowing part with dialyzers having larger taper lengths and angles. Optimum design of dialysis jacket structure is essential to optimizing dialysis fluid flow and to increasing dialyzer performance.  相似文献   

8.
Computational flow visualization in the casing of vibrating flow pump (VFP) was made for various conditions based on the novel techniques of fluid dynamics. VFP type artificial heart can generate the oscillated flow and can be applied to the left ventricular assist device. Flow pattern of blood in an artificial heart is closely connected to mechanical performance and serious biomechanical problems such as hemolysis and blood coagulation. To effectively design the VFP for a left ventricular assist device, the numerical codes for solving Navier-Stokes equations were developed for three-dimensional blood flow based on the finite volume method. Furthermore, the simulation techniques based on the artificial compressibility method and the unstructured grid were also developed here. The numerical calculations were based on the precise configurations and the flow conditions of the prototype device. From the viewpoint of computational fluid dynamics (CFD), the detailed discussion of flow patterns in the casing of VFP, which were closely connected with hemolysis and blood coagulation, was made and the computational results were visualized by the use of the recent technique of computational graphics. Some useful design data of VFP were presented.  相似文献   

9.
Background It is important to observe the flow pattern of dialysate when evaluating dialyzer function and developing the most appropriate design. We investigated dialysate flow through two polysulfone membrane dialyzers (TS-UL [Toray Medical] and APS-S [Asahi Medical]) by computed tomography (CT), with barium sulfate as the contrast medium. We also performed a clinical comparison of these two dialyzers. Methods For the in vitro experiment, after confirming the steady-state flow of mock blood (xanthan gum solution; 200 ml/min) and dialysate (500 ml/min), fresh dialysate, containing 5% (w/v) barium sulfate was perfused, and longitudinal CT scans of the dialyzer were obtained. Then the concentration of barium sulfate was measured (in Hounsfield units) in three fixed regions of interest. For the in vivo experiment, 12 patients on stable hemodialysis who had been using the APS-S for more than 1 month were switched to the TS-UL for 1 month and changes in various parameters were assessed. Results The distribution of dialysate was homogeneous on CT scans of the TS-UL, but not on scans of the APS-S. The dialysate concentration curves for the three regions of interest were similar with the TS-UL, but not with the APS-S. Clearance of urea nitrogen and albumin loss were both significantly higher with the TS-UL than with the APS-S. The decrease in alpha 1-microglobulin was larger with the TS-UL than with the APS-S, but not significantly. Conclusions Clearance of substances over a wide range of molecular weights was higher with the TS-UL than with the APS-S, and differences in the design of the dialysate compartment may have been involved in this feature.  相似文献   

10.
Kelly SG 《Artificial organs》2002,26(7):608-613
Computational fluid dynamics (CFD) analysis can provide detailed, three-dimensional predictions of blood flow through mechanical heart valves, which can help to optimize valve hemodynamics and reduce the potential for blood clotting. A number of CFD studies, considering both forward and retrograde flow through valves, have been published. In this paper, a geometrically accurate CFD model capable of predicting the three-dimensional, time-dependent flow through an open ATS bileaflet valve is presented. A detailed picture of the blood flow is obtained, including small-scale flow features in the pivot regions. Results from the model can also be used to investigate the opening position of the ATS valve leaflets. Future work will be aimed toward improved models that provide valuable design information while minimizing the development time and computational resources required. Such practical CFD models clearly have the potential to reduce the costs, time scales, and risks associated with development of new heart valve designs.  相似文献   

11.
This article summarizes the use of computational fluid dynamics (CFD) to design a novel suspended Tesla left ventricular assist device. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750, and 7000 rpm and at flow rates varying from 3 to 7 liters per minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mm Hg with a hydraulic efficiency of 16% at the design conditions of 6 LPM through flow and a 6750 rpm rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance.  相似文献   

12.
Blood compatibility of a ventricular assist device (VAD) depends on the dynamics of blood flow. The focus in most previous studies was on blood flow in the VAD. However, the tip shape and position of the VAD inflow cannula influence the dynamics of intraventricular blood flow and thus thrombus formation in the ventricle. In this study, blood flow in the left ventricle (LV) under support with a catheter-type continuous flow blood pump was investigated. The flow field was analyzed both numerically and experimentally to investigate the effects of catheter tip shape and its insertion depth on intraventricular flow patterns. A computational model of the LV cavity with a simplified shape was constructed using computer-aided design software. Models of catheters with three different tip shapes were constructed and each was integrated to the LV model. In addition, three variations of insertion depth were prepared for all models. The fully supported intraventricular flow field was calculated by computational fluid dynamics (CFD). A transparent LV model made of silicone was also fabricated to analyze the intraventricular flow field by the particle image velocimetry technique. A mock circulation loop was constructed and water containing tracer particles was circulated in the loop. The motion of particles in the LV model was recorded with a digital high-speed video camera and analyzed to reveal the flow field. The results of numerical and experimental analyses indicated the formation of two large vortices in the bisector plane of the mitral and aortic valve planes. The shape and positioning of the catheter tip affected the flow distribution in the LV, and some of these combinations elongated the upper vortex toward the ventricular apex. Assessment based on average wall shear stress on the LV wall indicated that the flow distribution improved the washout effect. The flow patterns obtained from flow visualization coincided with those calculated by CFD analysis. Through these comparisons, the numerical analysis was validated. In conclusion, results of these numerical and experimental analyses of flow field in the LV cavity provide useful information when designing catheter-type VADs.  相似文献   

13.
This study explores a quantitative evaluation of blood damage that occurs in a continuous flow left ventricular assist device due to fluid stress. Computational fluid dynamics (CFD) analysis is used to track the shear stress history of 388 particle streaklines. The accumulation of shear and exposure time is integrated along the streaklines to evaluate the levels of blood trauma. This analysis, which includes viscous and turbulent stresses, provides a statistical estimate of possible damage to cells flowing through the pump. In vitro normalized index of hemolysis values for clinically available ventricular assist devices were compared to our damage indices. This allowed for an order of magnitude comparison between our estimations and experimentally measured hemolysis levels, which resulted in a reasonable correlation. This work ultimately demonstrates that CFD is a convenient and effective approach to analyze the Lagranian behavior of blood in a heart assist device.  相似文献   

14.
Abstract: In an effort to improve and automate the fluid dynamic design of rotary blood pumps, a coupled computational fluid dynamics (CFD) shape optimization methodology has been developed and implemented. This program couples a finite element flow simulation with a gradient-based optimization routine to modify automatically the shape of an initial candidate blood path, according to a variety of desired fluid dynamic criteria, including shear stress, vorticity/circulation, and viscous dissipation. Preliminary results have led to both intuitive and nonintuitive transformations of the initial blood flow paths for both internal and external flows. This application of computer design optimization offers the ability to explore a much broader design space much more efficiently than would be possible with traditional parametric methods. It is believed that this computer tool can assist developers of rotary blood pumps in designing blood-wetted components that minimize thrombosis and hemo-lysis while simultaneously providing maximum flow performance.  相似文献   

15.
On average, an end‐stage renal disease patient will undergo hemodialysis (HD) three or four times a week for 4–5 h per session. Any minor imperfection in the extracorporeal system may become significant in the treatment of these patients due to the cumulative exposure time. Recently, air traps (a safety feature of dialysis systems) have been reported to be inadequate in detecting microbubbles and may even create them. Microbubbles have been linked to lung injuries and damage to the brain in chronic HD patients; therefore the significance of microbubbles has been revisited. Bubbles may originate at the vascular access sites, sites of local turbulent blood flow, the air trap, or in the bloodlines after priming with saline prior to use. In this paper, computational fluid dynamics is used to model blood flow in the air trap to determine the likely mechanisms of microbubble dynamics. The results indicate that almost all bubbles with diameters less than 50 μm and most of the bubbles of 50–200 μm pass through the air trap. Consequently, the common air traps are not effective in removing bubbles less than 200 μm in diameter.  相似文献   

16.
Prediction of flow patterns through oxygenator fiber bundles can allow shape optimization so that efficient gas exchange occurs with minimal thrombus formation and hemolysis. Computational fluid dynamics (CFD) simulations can be used to predict three-dimensional flow velocities and flow distribution from spatially dependent variables and they allow estimations of erythrocyte residence time within the fiber bundle. This study builds upon previous work to develop an accurate numerical model for oxygenators, which would allow for accelerated iterations in oxygenator shape and diffuser plate design optimization. Hollow fiber flow channels were developed to permit experimental calculation of fluid permeability in two directions: main flow along the hollow fiber and perpendicular to the hollow fibers. Commercial software was used to develop three-dimensional CFD models of the experimental flow channels and an anisotropic porous media model for oxygenators from these experimental results. The oxygenator model was used to predict pressure loss throughout the device, visualize blood distribution within the fiber bundle, and estimate erythrocyte residence time within the bundle. Experimental flow channels measurements produced a streamwise permeability of 1.143e(-8) m(2) and transverse permeability of 2.385e(-9) m(2) . These permeabilities, coupled with previous work with volume porosity, were used to develop the numerical model of anisotropic behavior through porous fiber bundles, which indicated a more uniform flow field throughout the oxygenator. Incorporation of known anisotropic fiber bundle behavior in previous numerical models more accurately represents fluid behavior through an oxygenator fiber bundle. CFD coupled with experimental validation can produce a powerful tool for oxygenator design and development.  相似文献   

17.
Computational fluid dynamics as a development tool for rotary blood pumps   总被引:4,自引:0,他引:4  
Computational fluid dynamics (CFD) is beginning to significantly impact the development of biomedical devices, in particular rotary cardiac assist devices. The University of Pittsburgh's McGowan Center for Artificial Organ Development has extensively used CFD as the primary tool to analyze and design a novel axial flow blood pump having a magnetically suspended rotor. The blood-contacting surfaces of the pump were developed using a design strategy based on CFD that involved closely coupling a Navier-Stokes solver to a parameterized geometry modeler and advanced mesh movement techniques. CFD-based blood damage models for shear-induced hemolysis as well as surrogate functions describing thrombosis potential were employed to help guide design improvements. This CFD-based design approach resulted in the timely development of a pump subjected to multiple geometric refinements without building expensive physical prototypes for each design iteration. A physical prototype of the final improved pump was fabricated and experimentally analyzed using particle imaging flow visualization. The CFD predicted results correlated well with the experimental data including pressure-flow (H-Q) performance and specific flow field features. It is estimated that the present CFD-based design approach shortened the overall design time frame from an order of years to months.  相似文献   

18.
Song X  Wood HG  Day SW  Olsen DB 《Artificial organs》2003,27(10):935-937
Computational fluid dynamics (CFD) is used widely in design of rotary blood pumps. The choice of turbulence model is not obvious and plays an important role on the accuracy of CFD predictions. TASCflow (ANSYS Inc., Canonsburg, PA, U.S.A.) has been used to perform CFD simulations of blood flow in a centrifugal left ventricular assist device; a k-epsilon model with near-wall functions was used in the initial numerical calculation. To improve the simulation, local grids with special distribution to ensure the k-omega model were used. Iterations have been performed to optimize the grid distribution and turbulence modeling and to predict flow performance more accurately comparing to experimental data. A comparison of k-omega model and experimental measurements of the flow field obtained by particle image velocimetry shows better agreement than k-epsilon model does, especially in the near-wall regions.  相似文献   

19.
Abstract: This paper describes the use of computational fluid dynamics (CFD) to predict numerically the hemolysis in centrifugal pumps. A numerical hydrodynamical model, based on the full Navier-Stokes equation, was used to obtain the flow in a vaneless centrifugal pump (of corotating disks type). After proper postprocessing, critical zones in the channel were identified by means of two-dimensional color-coded maps of %Hb release. Simulation of different conditions revealed that flow behavior at the entrance region of the channel is the main cause of blood trauma in such devices. A useful feature resulting from the CFD simulation is the visualization of critical flow zones that are impossible to determine experimentally with in vitro hemolysis tests.  相似文献   

20.
A new device measuring water removal during standard dialysis is evaluated. The filtrate, collected from a small hemofilter inserted into a normal Cuprophan hollow-fiber dialyzer, was used to evaluate the total water removed from the patient. The device was tested in 46 patients undergoing regular dialysis treatment; the body weight loss ranged from 300 to 5,600 ml for a total of 71 dialysis sessions. Results confirmed the reliability of the device, as the mean prediction error was 5.4%. No influence of the dialyzer blood rest volume on the prediction error was observed. The authors propose this system as an alternative to bed or armchair scales and emphasize its usefulness for experimental purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号