首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multilineage differentiation from human embryonic stem cell lines   总被引:68,自引:0,他引:68  
Stem cells are unique cell populations with the ability to undergo both self-renewal and differentiation. A wide variety of adult mammalian tissues harbors stem cells, yet "adult" stem cells may be capable of developing into only a limited number of cell types. In contrast, embryonic stem (ES) cells, derived from blastocyst-stage early mammalian embryos, have the ability to form any fully differentiated cell of the body. Human ES cells have a normal karyotype, maintain high telomerase activity, and exhibit remarkable long-term proliferative potential, providing the possibility for unlimited expansion in culture. Furthermore, they can differentiate into derivatives of all three embryonic germ layers when transferred to an in vivo environment. Data are now emerging that demonstrate human ES cells can initiate lineage-specific differentiation programs of many tissue and cell types in vitro. Based on this property, it is likely that human ES cells will provide a useful differentiation culture system to study the mechanisms underlying many facets of human development. Because they have the dual ability to proliferate indefinitely and differentiate into multiple tissue types, human ES cells could potentially provide an unlimited supply of tissue for human transplantation. Though human ES cell-based transplantation therapy holds great promise to successfully treat a variety of diseases (e.g., Parkinson's disease, diabetes, and heart failure) many barriers remain in the way of successful clinical trials.  相似文献   

2.
Intraventricular transplants of neural tissues were performed in ovo from embryo to embryo. Fragments of the nervous wall of the optic lobe (tectum) from 14-day chick or 12-day quail embryos (donor) were inserted into the ventricle of the right optic lobe of 6-day chick or 5-day quail embryos (host). Chick-to-chick, chick-to-quail and quail-to-chick grafts were carried out. The vascularization changes occurring in the host tectum and in the grafted neural tissues were analysed under light, transmission, and scanning electron microscopes and by morphometric methods. In the host embryo tectum, the neural graft stimulates a statistically significant increment in vessel density and a vessel sprouting into the ventricle of the optic lobe. The vascular sprouts reach the transplanted tissue and establish connections with its native microvasculature. The chick-to-quail and quail-to chick grafts, submitted to immunoreaction with a quailspecific antibody which recognizes an antigen (MB1) present on endothelial cells, indicate that re-establishment of the circulation in the graft depends upon anastomoses between host and donor vasculatures and the rapid new growth of host-derived and donor-native vessels. The presence of macrophage-like cells escorting the new-growing vessels suggests that these cells are involved in the host and donor tissue angiogenesis.  相似文献   

3.
小鼠胚胎干细胞植入大鼠脑内分化的研究   总被引:5,自引:1,他引:5  
刘述  谢瑶  陈系古  姚志彬 《神经解剖学杂志》2002,18(4):298-300,T059
观察小鼠胚胎干细胞植入大鼠隔区和海马内之后的分化状况。以 SD大鼠为宿主 ,将胚胎干细胞移植入宿主隔区和海马内 ,移植后在 l、2、3、4和 8周取脑 ,冰冻切片 ,进行 Nissl染色和 M6、NSE、GFAP免疫组织化学反应。胚胎干细胞移植入大鼠隔区和海马之后 ,从第 2周开始表达 M6、GFAP、NSE等抗原 ,持续至第 4周 ,主要位于移植区内 ,较少迁移。小鼠胚胎干细胞移植入大鼠隔区和海马内之后 ,分化为神经元和神经胶质细胞  相似文献   

4.
OBJECTIVE: Transplantation of fetal mesencephalic cells into the striatum has been performed in about 350 patients with Parkinson's disease and has been intensively studied in rat models of Parkinson's disease. Limited access to this material has shifted the focus toward embryonic stem (ES) cells. The grafting of undifferentiated ES cells to 6-hydroxy-dopamine (6-OHDA)-lesioned rats leads to behavioral improvements but may induce teratoma-like structures. This risk might be avoided by using more differentiated ES cells. In this study, we aimed to investigate differentiated mouse ES cells regarding their in vivo development and fate after transplantation in the striatum in the 6-OHDA rat model and the behavioral changes induced after transplantation. METHODS: Mouse ES cells were differentiated on PA6 feeder cells for 14 days before grafting. Twenty to twenty-five percent of the neurons obtained were positive for tyrosine-hydroxylase (TH). PKH26-labeled cells were transplanted in the striata of unilaterally 6-OHDA-lesioned rats. RESULTS: Direct PKH26 fluorescence visualization and TH staining proved the existence of cell deposits in the striata of all grafted animals, indicating cell survival for at least 5 weeks posttransplantation. There was no evidence of tumor formation. Immunocytochemical staining showed glial immunoreactivity surrounding the grafted cell deposits, probably inhibiting axonal outgrowth into the surrounding host tissue. There was a significant reduction in amphetamine-induced rotational behavior seen in grafted animals, which was not observed in sham-operated animals. CONCLUSIONS: The findings of this study suggest that the amphetamine-induced rotational behavioral test without histological confirmation is not proof of morphological integration with axonal outgrowth within the first 4 weeks posttransplantation.  相似文献   

5.
Demonstration of the hallmarks of stem cells, self-renewal and multilineage differentiation, is a challenge that has not been met for numerous tissues postulated to possess adult stem cells, including prostate tissue. Using a defined medium, we reproducibly isolated and maintained adult mouse prostatic cells with characteristics of progenitor/stem cells. Clonal populations of cells demonstrated tissue-specific multilineage differentiation by their ability to generate organized prostatic ductal structures in vivo, with luminal and basal cell layers, when grafted under the renal capsules of mice in the presence of fetal rat urogenital mesenchyme. Complete differentiation was demonstrated by the expression and secretion of terminally differentiated prostatic secretory products into the lumens. Self-renewal was demonstrated by serial transplantation of clonal populations that generated fully differentiated ductal structures in vivo. In vitro, undifferentiated cells expressed markers associated with prostate stem cells, including Sca 1 and CD49f, as well as basal cell markers (p63 and cytokeratins 5 and 14) and, at a low level, luminal cell markers (androgen receptor and cytokeratins 8 and 18). When grafted and allowed to differentiate in the presence of fetal urogenital mesenchyme, the cells differentiated into luminal cells and basal cells with more restricted protein expression patterns. These studies are the first to report a reproducible system to assess adult prostatic progenitor/stem cells.  相似文献   

6.
Embryonic stem (ES) cells are uniquely endowed with the capacity of self-renewal and the potential to give rise to all possible cell types. Their differentiation potential has raised hope that these cells could be used as a renewable source for cell transplantation in severe degenerative diseases. However, progress in this direction is still limited. Using two human embryonic stem (ES) cell lines, H1 and HSF-6, and three types of human fetal tissues--thymus, lung and pancreas-we investigated whether engrafted human fetal tissues in severe combined immunodeficient mice (SCID) mice could provide a physiologically-relevant microenvironment for human ES cells to differentiate into mature cells of corresponding tissues. Surprisingly, we observed an aggressive growth of tumors when human ES cells were injected into engrafted human fetal tissues in SCID mice. These tumors displayed histological characteristics of primitive, undifferentiated tumors rather than differentiated teratomas. Additionally, these tumors exhibited a normal karyotype and did not express the characteristic antigens of embryonic carcinomas. We also found differences among human fetal tissue types in their abilities to support the growth of these primitive tumors. Our study supports and validates a previously reported phenomenon in mouse that tumorigenesis of ES cells is host dependent. Our study is also the first report to demonstrate that human ES cells are prone to generate primitive, undifferentiated tumors in human fetal tissue grafts in SCID mice and raises a potential safety concern for using human ES cell-derived cell products in humans.  相似文献   

7.
目的建立一种基于鸡胚电转技术研究脊髓神经干细胞(NSCs)相关基因功能的方法。方法 RT-PCR检测鸡胚发育不同时期脊髓NSCs表面标志物;在鸡胚胚龄(E)E2.5~E3时,利用活体电转基因技术将p CAGGSGFP质粒转染到鸡胚脊髓,E6时体视荧光显微镜下筛选绿色荧光蛋白(GFP)阳性胚胎,每组至少取材5个;通过脊髓横切及open-book技术观察神经纤维投射情况;普通光学显微镜下剥离出3~5条脊髓,经胰蛋白酶消化、离心后,无血清NSCs培养基重悬获得细胞铺板,于37℃、5%CO_2细胞培养箱内培养,定时观察GFP阳性脊髓NSCs的形态变化。结果 RT-PCR结果表明,鸡胚脊髓中阳性表达NSCs表面标志物;随后的脊髓横切及open-book结果表明,GFP阳性转染侧的神经纤维能穿过底板,投射到脊髓对侧;而脊髓NSCs体外培养结果显示,GFP标记的脊髓细胞具有典型的NSCs形态,继续培养后有明显突起产生。结论本实验成功建立了一种基于鸡胚电转技术研究脊髓神经干细胞相关基因功能的方法。  相似文献   

8.
目的探讨体外培养扩增的胚胎干细胞移植到纹状体内的存活、迁移和分化情况,确定胚胎干细胞脑内移植的最佳分化阶段。方法分别将未分化的胚胎干细胞和诱导分化至神经前体细胞阶段的胚胎干细胞进行纹状体内移植,移植4周后通过形态学观察、尼氏染色、TH与BrdU免疫组织化学染色,检测胚胎干细胞移植后的存活和分化情况。结果初步诱导分化后的胚胎干细胞纹状体内移植后4周,移植区内有大量BrdU免疫阳性细胞出现,而且部分BrdU免疫阳性细胞已迁移出移植区,有些细胞已分化为TH免疫阳性细胞,胞浆内可见尼氏体;而未分化的胚胎干细胞进行脑内移植后有成瘤的趋向。结论在体外对胚胎干细胞进行诱导分化至神经前体细胞阶段,然后进行脑内移植,更有利于胚胎干细胞的存活和部位特异性分化。  相似文献   

9.
Due to advances in stem cell biology, embryonic stem (ES) cells can be induced to differentiate into a particular mature cell lineage when cultured as embryoid bodies. Although transplantation of ES cells-derived neural progenitor cells has been demonstrated with some success for either spinal cord injury repair in small animal model, control of ES cell differentiation into complex, viable, higher ordered tissues is still challenging. Mouse ES cells have been induced to become neural progenitors by adding retinoic acid to embryoid body cultures for 4 days. In this study, we examine the use of electrospun biodegradable polymers as scaffolds not only for enhancing the differentiation of mouse ES cells into neural lineages but also for promoting and guiding the neurite outgrowth. A combination of electrospun fiber scaffolds and ES cells-derived neural progenitor cells could lead to the development of a better strategy for nerve injury repair.  相似文献   

10.
The present study was undertaken in order to verify the identification of profiles of presumptive growth cones in vivo. The developing spinal nerves of chick embryos were studied by light and electron microscopy. We traced the onset of efferent and afferent innervation of the myotome in 2- to 4-day-old chick embryos in order to be sure that we were examining the growing tips of axons. In the process of studying these growing axons, we were able to observe some unique relationships of neural tube, myotome, and differentiating spinal nerves. The neural tube tightly abuts the myotome in Hamburger and Hamilton's (HH) stage 14 chick embryos and cytoplasmic projections from the myotome directly abut the neural tube. The first ventral roots could be identified in HH stage 15 embryos and dorsal roots in HH stage 16 embryos, both under 2 1/2 days of age. The advancing spinal nerve courses toward the anterior or cranial half of the myotome, and growth cones directly contact the medial wall of the myotome. The spinal nerves continue to abut tightly the myotome during the succeeding day of embryonic life, and growth cones enter the substance of the myotome by 3 days, or HH stage 19 embryos. These dorsolaterally directed axons will form the dorsal ramus of the spinal nerves and the ventral ramus continues to be contiguous with the myotome. Invasion of the myotome by axons (putative innervation), and thus innervation of myotomal cells in the 3-day chick embryos, was a totally unexpected finding. The myotome and its potential derivatives thus have extensive neural contact by 3 days of embryonic life in the chick. These findings document a parallel differentiation of afferent and efferent elements of the nervous system and confirm previous accounts identifying growth cones in an intact organism. These findings suggest that afferent as well as efferent nerves may have critical roles in the differentiation of the mesodermal as well as ectodermal derivatives.  相似文献   

11.
Over the past few years, technological procedures have been developed for utilizing stem cells in transplantation medicine. Human embryonic stem (ES) cells can produce an unlimited number of differentiated cells and are, therefore, considered a potential source of cellular material for use in transplantation medicine. However, serious clinical problems can arise when uncontrolled cell proliferation occurs following transplantation. To avoid these potential problems, we genetically engineered human ES cell lines to express the herpes simplex virus thymidine kinase (HSV-tk) gene. Expression of the HSV-tk protein renders the ES cells sensitive to the U.S. Food and Drug Administration-approved drug ganciclovir, inducing destruction of HSV-tk(+) cells at ganciclovir concentrations that are nonlethal to other cell types. The reversion rate of engineered cells was low even under prolonged selection with ganciclovir. The HSV-tk(+) clones retained a normal karyotype and the ability to differentiate to cells from all three germ layers. Most importantly, tumors that arose in mice following subcutaneous injection of HSV-tk(+) human ES cells could be ablated in vivo by administration of ganciclovir. By utilizing these cell lines, safety levels can be improved in transplantations involving tissues derived from human ES cells.  相似文献   

12.
Understanding neuroectoderm formation and its subsequent diversification to functional neural subtypes remains elusive. We have shown here for the first time that embryonic stem cells (ESCs) can differentiate into neurons and motor neurons (MNs) by using a coculture embryonic notochord model in vitro. Mouse ESCs were induced to form neural precursors via timed exposure to retinoic acid (RA) using the 4-/4+ RA protocol. These cells were then cocultured with alginate bead-encapsulated notochords isolated from Hamburger and Hamilton stage 6-10 chick embryos. The use of notochord alone was not able to induce neural differentiation from ESCs, and, therefore, notochord does not possess neural inducing activity. Hence, the most successful neuronal cells and MN differentiation was only observed following the coculture of RA-pretreated ESCs with notochord. This resulted in a significantly greater number of cells expressing microtubule-associated protein-2 (MAP2), HB9, choline acetyltransferase (ChAT) and MN-specific genes. While further characterization of these differentiated cells will be essential before transplantation studies commence, these data illustrate the effectiveness of embryonic notochord coculture in providing valuable molecular cues for directed differentiation of ESCs toward an MN lineage.  相似文献   

13.
14.
A segmented pattern of cell death during development of the chick embryo   总被引:4,自引:0,他引:4  
Summary During the early development of the chick embryo, specific groups of cells die in characteristic patterns. In this study, Nile Blue sulphate staining was used to reveal a novel pattern of segmentally repeated cell death in the paraxial mesoderm of the chick prior to stage 23. This pattern varies according to the developmental stage of the embryo and shifts rostrocaudally, corresponding to progressing somite differentiation. Initially, during early somite differentiation, cell death is restricted to the rostral half of the somite (the rostral pattern of cell death). After the somite has differentiated into dermomyotome and sclerotome, dead cells appear in superficial tissues in a pyramidal pattern which lies in register (rostrocaudally) with the central part of the sclerotome. Finally, small bands of dying cells are seen between the neural tube and the expanding sclerotome. This third pattern (the ventral path) lies in register with the rostral part of the caudal half of the sclerotome. We show by fluorescent labelling of the migrating neural crest that these patterns of cell death correspond to the routes of neural crest migration. In addition, serial sectioning of stage 23 chick embryos confirms that the position of dying cells correlates with the known routes of neural crest migration and with the sites of development of certain neural crest-derived tissues.  相似文献   

15.
The aim of the present work was to study human neural stem/progenitor cells (SPC) cultured in vitro and their potential to survive, migrate, and differentiate after transplantation into adult rat brain. SPC were extracted from the brains of nine-week human embryos and were cultured in selective medium for three weeks. Transplantation was with suspensions of cells or whole neurospheres; these were studied four weeks after transplantation into the hippocampus, striatum, and lateral ventricles of adult rats. Analysis of transplanted cells was based on various histological and immunohistological staining methods: bisbenzimide, bromodeoxyuridine, and antibodies to human nuclei, vimentin, beta-tubulin, neurofilaments, and glial fibrillar acidic protein, which allowed us to make independent assessments of their state and differentiation. Transplanted SPC from human brains survived well for one month in all areas of adult rat brain without immunosuppression. Cells from suspension transplants migrated intensely and differentiated into neurons and gliocytes. At the same time, transplants of whole neurospheres showed limited or no migration because of the development of a glial barrier.  相似文献   

16.
A series of experiments consisting of transplantation of Hensen's nodes has been conducted to examine axis development in avian embryos. In the first group of experiments, Hensen's nodes from quail embryos were transplanted homotopically and either isochronically or heterochronically to chick embryos, and the structures derived form the grafted nodes were assessed. The grafted Hensen's nodes typically self-differentiated structures appropriate for their stages, and the host embryos developed normally; the structures formed from grafted tissue usually merged caudally with the comparable host structures. Thus, even when the stages of the donor and host tissues were significantly mismatched (e.g., stage 3 donors and stage 9 hosts or vice versa), the graft was unable to repattern the host's neuraxis, and the host was unable to respecify the types of structures derived from the graft. In the second group of experiments, Hensen's nodes from quail embryos were transplanted to sites located just lateral to Hensen's nodes of host chick embryos, thereby providing the potential for development of additional axes. A single axis always resulted in each case in which further development occurred, with the graft self-differentiating its typical stage-specific structures, all of which merged caudally with comparable host structures. A final group of experiments served principally as a control and tested the ability of a part of Hensen's node, when it was transplanted to the extraembryonic germ cell crescent, to organize an ectopic embryo. In these experiments, the entire thickness and length of each Hensen's node, but only the central one-third to one-half of its width, was transplanted to host blastoderms, yet ectopic embryos, complete with induced neuraxes, were formed. Therefore, a part of Hensen's node has the ability to function fully as an organizer when placed in a conducive environment. Collectively, these results provide further documentation of the strong ability of Hensen's node to self-differentiate, and they suggest that once morphogenetic movements are under way, neuraxial structures can form, and characteristic rostrocaudal patterning of the neuraxis can occur, without sustained influence from Hensen's node.  相似文献   

17.
Pluripotent or multipotent stem cells isolated from human embryos or adult central nervous system (CNS) may provide new neurons to ameliorate neural disorders. A major obstacle, however, is that the majority of such cells do not differentiate into neurons when grafted into non-neurogenic areas of the adult CNS. Here we report a new in vitro priming procedure that generates a nearly pure population of neurons from fetal human neural stem cells (hNSCs) transplanted into adult rat CNS. Furthermore, the grafted cells differentiated by acquiring a cholinergic phenotype in a region-specific manner. This technology may advance stem cell-based therapy to replace lost neurons in neural injury or neurodegenerative disorders.  相似文献   

18.
Cell replacement therapy holds great promise for treating a wide range of human disorders. However, ensuring the predictable differentiation of transplanted stem cells, eliminating their risk of tumor formation, and generating fully functional cells after transplantation remain major challenges in regenerative medicine. Here, we explore the potential of human neural stem/progenitor cells isolated from the embryonic forebrain (hfNSPCs) or the spinal cord (hscNSPCs) to differentiate to projection neurons when transplanted into the dorsal root ganglion cavity of adult recipient rats. To stimulate axonal growth, we transfected hfNSPC- and hscNSPC-derived neurospheres, prior to their transplantation, with a Tet-Off Runx1-overexpressing plasmid to maintain Runx1 expression in vivo after transplantation. Although pronounced cell differentiation was found in the Runx1-expressing transplants from both cell sources, we observed extensive, long-distance growth of axons exclusively from hscNSPC-derived transplants. These axons ultimately reached the dorsal root transitional zone, the boundary separating peripheral and central nervous systems. Our data show that hscNSPCs have the potential to differentiate to projection neurons with long-distance axonal outgrowth and that Runx1 overexpression is a useful approach to induce such outgrowth in specific sources of NSPCs.  相似文献   

19.
Our current knowledge of how human tissues grow and develop is limited. We need to increase our understanding of tissue formation if we are to fully realize the potential of stem cells as a source of material for research into health and disease and possible therapeutic applications. Transplanted pluripotent human embryonic stem cells (hESCs) provide a potential system to model and investigate cell differentiation in humans. hESCs transplanted into immune-deficient mice form complex teratomas consisting of a range of differentiated somatic tissues, some of which appear highly organized and resemble structures normally identified in the embryo and adult. Analysis of such tumors may provide a unique opportunity to study organogenesis and lead to novel approaches in bioengineering and the growth of functioning structures composed of a range of alternative cell types. However, little has been done to characterize the developmental potential of hESCs after transplantation. This concise review presents evidence for the ability of hESCs to differentiate in vivo and highlights some of the prominent questions that need to be addressed if transplantation is to be used as a research tool to study hESC differentiation.  相似文献   

20.
Retinoic acid (RA) and Hensen's node, the organizer center in the chick embryo, have been shown to have polarizing activity when applied or grafted into the chick limb bud. Here we investigate and compare the effects of RA and grafted Hensen's node on the early chick embryo. Anion exchange beads soaked with RA at concentrations ranging from 5 to 100 ng/ml and implanted on the anterior side or on the left side of the host anteroposterior axis of a stage 4 chick embryo in ovo have the ability to induce secondary axis formation, while beads soaked with RA of the same concentration and implanted on the right side or on the posterior side of the host axis are unable to induce the secondary axis. All of the induced axes contain trunk-tail structures. Hensen's node from quail embryos implanted into the early chick blastoderm could also cause the formation of secondary axes in addition to self-differentiation of the graft into a secondary axis. Both RA and grafted Hensen's node caused the inhibition of forebrain development with an increase in hindbrain development and the host heart to loop in an abnormal direction. The results support the hypothesis that Hensen's node is a source of RA which is involved in early embryogenesis. Alternatively, RA might stimulate the formation of Hensen's nodal properties in adjacent tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号