首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hematopoietic stem cells (HSCs) maintain themselves over cell divisions (self-renewal) and produce all kinds of blood cells (multi-potency). Depletion of these cells eventually causes hematopoietic failure, while deregulated HSC division causes development of myeloproliferative disorders and leukemias. HSCs can be prospectively purified to nearly homogeneity in mice, but such a high-level purification has not been achieved in humans. HSCs are localized to an anatomical place called 'niche'. Specialized osteoblasts arrayed on the endosteum of cavernous bone and sinusoidal endothelial cells located at the distant position from the endosteum are the two representative candidates of such an HSC niche. A number of adhesion molecules and signaling molecules are thought to comprise the niche-HSC synapse. HSCs divide only once in 1-2 months. Both environmental signaling from the niche and HSC-autonomous molecular programs contribute to the quiescent state of HSCs, which is essential for the maintenance of HSC self-renewal capacity and homeostasis of blood production.  相似文献   

3.
4.
The quiescence of hematopoietic stem cells (HSCs) is critical for preserving a lifelong steady pool of HSCs to sustain the highly regenerative hematopoietic system. It is thought that specialized niches in which HSCs reside control the balance between HSC quiescence and self-renewal, yet little is known about the extrinsic signals provided by the niche and how these niche signals regulate such a balance. We report that CXCL12 produced by bone marrow (BM) stromal cells is not only the major chemoattractant for HSCs but also a regulatory factor that controls the quiescence of primitive hematopoietic cells. Addition of CXCL12 into the culture inhibits entry of primitive hematopoietic cells into the cell cycle, and inactivation of its receptor CXCR4 in HSCs causes excessive HSC proliferation. Notably, the hyperproliferative Cxcr4(-/-) HSCs are able to maintain a stable stem cell compartment and sustain hematopoiesis. Thus, we propose that CXCR4/CXCL12 signaling is essential to confine HSCs in the proper niche and controls their proliferation.  相似文献   

5.
6.
7.
In addition to its role in megakaryocyte production, signaling initiated by thrombopoietin (TPO) activation of its receptor, myeloproliferative leukemia virus protooncogene (c-Mpl, or Mpl), controls HSC homeostasis and self-renewal. Under steady-state conditions, mice lacking the inhibitory adaptor protein Lnk harbor an expanded HSC pool with enhanced self-renewal. We found that HSCs from Lnk-/- mice have an increased quiescent fraction, decelerated cell cycle kinetics, and enhanced resistance to repeat treatments with cytoablative 5-fluorouracil in vivo compared with WT HSCs. We further provide genetic evidence demonstrating that Lnk controls HSC quiescence and self-renewal, predominantly through Mpl. Consistent with this observation, Lnk-/- HSCs displayed potentiated activation of JAK2 specifically in response to TPO. Biochemical experiments revealed that Lnk directly binds to phosphorylated tyrosine residues in JAK2 following TPO stimulation. Of note, the JAK2 V617F mutant, found at high frequencies in myeloproliferative diseases, retains the ability to bind Lnk. Therefore, we identified Lnk as a physiological negative regulator of JAK2 in stem cells and TPO/Mpl/JAK2/Lnk as a major regulatory pathway in controlling stem cell self-renewal and quiescence.  相似文献   

8.
The hematopoietic cell kinase (hck) is a member of the src family of tyrosine kinases, and is primarily expressed in myeloid cells. Hck expression increases with terminal differentiation in both monocyte/macrophages and granulocytes and is further augmented during macrophage activation. Recent evidence has implicated src-related tyrosine kinases in critical signaling pathways in other hematopoietic lineages. Herein we demonstrate that manipulation of the level of hck expression in the murine macrophage cell line BAC1.2F5 alters the responsiveness of these cells to activation by bacterial lipopolysaccharide (LPS) but does not affect survival or proliferation. Overexpression of an activated mutant of hck in BAC1.2F5 cells augments tumor necrosis factor (TNF) production in response to LPS, whereas inhibition of endogenous hck expression, by antisense oligonucleotides, interferes with LPS-mediated TNF synthesis. Together, these observations suggest that hck is an important component of the signal transduction pathways in activated macrophages.  相似文献   

9.
Difficulty obtaining sufficient hematopoietic stem cells (HSCs) directly from the donor has limited the clinical use of HSC transplantation. Numerous attempts to stimulate the ex vivo growth of purified HSCs with cytokines and growth factors generally have induced only modest increases in HSC numbers while decreasing their in vivo reconstituting ability. We previously developed a recombinant single-chain form of a naturally occurring murine hybrid cytokine of IL-7 and the β chain of hepatocyte growth factor (rIL-7/HGFβ) that stimulates the in vitro proliferation and/or differentiation of common lymphoid progenitors, pre-pro-B cells, and hematopoietic progenitor cells (day 12 spleen colony-forming units) in cultures of mouse BM. Here we used the rIL-7/HGFβ in culture to induce large numbers of HSCs from multiple cell sources, including unseparated BM cells, purified HSCs, CD45 BM cells, and embryonic stem cells. In each instance, most of the HSCs were in the G0 phase of the cell cycle and exhibited reduced oxidative stress, decreased apoptosis, and increased CXCR4 expression. Furthermore, when injected i.v., these HSCs migrated to BM, self-replicated, provided radioprotection, and established long-term hematopoietic reconstitution. These properties were amplified by injection of rIL-7/HGFβ directly into the BM cavity but not by treatment with rIL-7, rHGF, and/or rHGFβ.  相似文献   

10.
11.
Hematopoietic stem cells (HSCs) sustain lifelong production of all blood cell types through finely balanced divisions leading to self-renewal and differentiation. Although several genes influencing HSC self-renewal have been identified, to date no gene has been described that, when activated, enhances HSC self-renewal and, when inactivated [corrected] promotes HSC differentiation. We observe that the retinoic acid receptor (RAR)gamma is selectively expressed in primitive hematopoietic precursors and that the bone marrow of RARgamma knockout mice exhibit markedly reduced numbers of HSCs associated with increased numbers of more mature progenitor cells compared with wild-type mice. In contrast, RARalpha is widely expressed in hematopoietic cells, but RARalpha knockout mice do not exhibit any HSC or progenitor abnormalities. Primitive hematopoietic precursors overexpressing RARalpha differentiate predominantly to granulocytes in short-term culture, whereas those overexpressing RARgamma exhibit a much more undifferentiated phenotype. Furthermore, loss of RARgamma abrogated the potentiating effects of all-trans retinoic acid on the maintenance of HSCs in ex vivo culture. Finally, pharmacological activation of RARgamma ex vivo promotes HSC self-renewal, as demonstrated by serial transplant studies. We conclude that the RARs have distinct roles in hematopoiesis and that RARgamma is a critical physiological and pharmacological regulator of the balance between HSC self-renewal and differentiation.  相似文献   

12.
INTRODUCTION: Hematopoietic stem cells (HSCs) are defined by their capacity to self-renew and to differentiate into all blood cell lineages, and are currently the foundation of HSC transplantation therapy. A variety of methods have recently been explored to find a way to expand hematopoietic stem and progenitor cells (HSCs/PCs) ex vivo in order to improve the efficiency and outcome of HSC transplantation. AREAS COVERED: Recent studies of HSCs/PCs have led to the development of new ways to detect and purify HSCs/PCs and have also revealed several intrinsic and extrinsic factors that control the molecular signals fundamental to self-renewal and differentiation of HSCs. These findings have provided new approaches for expanding HSCs/PCs ex vivo utilizing protein factors and small-molecule compounds (SMCs) and have also demonstrated promising outcomes in clinical trials. EXPERT OPINION: Although further technical innovation is still needed, elucidation of the whole picture of signaling pathways critical to HSCs/PCs and manipulation of such pathways by SMCs could establish efficient, cost-effective, riskless and robust methods for ex vivo expansion of HSCs/PCs. With these efforts, more sophisticated HSC transplantation would be possible in the near future.  相似文献   

13.
The stem cell niches in bone   总被引:9,自引:0,他引:9       下载免费PDF全文
The stem cell niche is composed of a specialized population of cells that plays an essential role in regulating adult stem cell self-renewal and differentiation. In adults, osteoblasts, responsible for osteogenesis, and hematopoietic cells, responsible for hematopoiesis, are closely associated in the bone marrow, suggesting a reciprocal relationship between the two. It was recently discovered that a subset of osteoblasts functions as a key component of the HSC niche (namely, the osteoblastic niche), controlling HSC numbers. HSCs interact not only with osteoblasts but also with other stromal cells, including endothelial cells. Sinusoidal endothelial cells in bone marrow have been revealed as an alternative HSC niche called the vascular niche. In this Review we compare the architecture of these 2 HSC niches in bone marrow. We also highlight the function of osteoblasts in maintaining a quiescent HSC microenvironment and the likely role of the vascular niche in regulating stem cell proliferation, differentiation, and mobilization. In addition, we focus on studies of animal models and in vitro assays that have provided direct insights into the actions of these osteoblastic and vascular niches, revealing central roles for numerous signaling and adhesion molecules. Many of the discoveries described herein may contribute to future clinical treatments for hematopoietic and bone-related disorders, including cancer.  相似文献   

14.
Defining mechanism(s) that maintain tissue stem quiescence is important for improving tissue regeneration, cell therapies, aging, and cancer. We report here that genetic ablation of Id2 in adult hematopoietic stem cells (HSCs) promotes increased HSC activation and differentiation, which results in HSC exhaustion and bone marrow failure over time. Id2Δ/Δ HSCs showed increased cycling, ROS production, mitochondrial activation, ATP production, and DNA damage compared with Id2+/+ HSCs, supporting the conclusion that Id2Δ/Δ HSCs are less quiescent. Mechanistically, HIF-1α expression was decreased in Id2Δ/Δ HSCs, and stabilization of HIF-1α in Id2Δ/Δ HSCs restored HSC quiescence and rescued HSC exhaustion. Inhibitor of DNA binding 2 (ID2) promoted HIF-1α expression by binding to the von Hippel-Lindau (VHL) protein and interfering with proteasomal degradation of HIF-1α. HIF-1α promoted Id2 expression and enforced a positive feedback loop between ID2 and HIF-1α to maintain HSC quiescence. Thus, sustained ID2 expression could protect HSCs during stress and improve HSC expansion for gene editing and cell therapies.  相似文献   

15.
Hematopoietic stem cell (HSC) homeostasis depends on the balance between self renewal and lineage commitment, but what regulates this decision is not well understood. Using loss-of-function approaches in mice, we found that glycogen synthase kinase–3 (Gsk3) plays a pivotal role in controlling the decision between self renewal and differentiation of HSCs. Disruption of Gsk3 in BM transiently expanded phenotypic HSCs in a β-catenin–dependent manner, consistent with a role for Wnt signaling in HSC homeostasis. However, in assays of long-term HSC function, disruption of Gsk3 progressively depleted HSCs through activation of mammalian target of rapamycin (mTOR). This long-term HSC depletion was prevented by mTOR inhibition and exacerbated by β-catenin knockout. Thus, GSK-3 regulated both Wnt and mTOR signaling in mouse HSCs, with these pathways promoting HSC self renewal and lineage commitment, respectively, such that inhibition of Gsk3 in the presence of rapamycin expanded the HSC pool in vivo. These findings identify unexpected functions for GSK-3 in mouse HSC homeostasis, suggest a therapeutic approach to expand HSCs in vivo using currently available medications that target GSK-3 and mTOR, and provide a compelling explanation for the clinically prevalent hematopoietic effects observed in individuals prescribed the GSK-3 inhibitor lithium.  相似文献   

16.
The role of autophagy, a lysosomal degradation pathway which prevents cellular damage, in the maintenance of adult mouse hematopoietic stem cells (HSCs) remains unknown. Although normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs leads to leukemia. Therefore, mechanisms protecting HSCs from cellular damage are essential to prevent hematopoietic malignancies. In this study, we crippled autophagy in HSCs by conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system. This resulted in the loss of normal HSC functions, a severe myeloproliferation, and death of the mice within weeks. The hematopoietic stem and progenitor cell compartment displayed an accumulation of mitochondria and reactive oxygen species, as well as increased proliferation and DNA damage. HSCs within the Lin(-)Sca-1(+)c-Kit(+) (LSK) compartment were significantly reduced. Although the overall LSK compartment was expanded, Atg7-deficient LSK cells failed to reconstitute the hematopoietic system of lethally irradiated mice. Consistent with loss of HSC functions, the production of both lymphoid and myeloid progenitors was impaired in the absence of Atg7. Collectively, these data show that Atg7 is an essential regulator of adult HSC maintenance.  相似文献   

17.
BACKGROUND: Modification of Notch receptors by O‐linked fucose and its further elongation by the Fringe family of glycosyltransferase has been shown to be important for Notch signaling activation. Our recent studies disclose a myeloproliferative phenotype, hematopoietic stem cell (HSC) dysfunction, and abnormal Notch signaling in mice deficient in FX, which is required for fucosylation of a number of proteins including Notch. The purpose of this study was to assess the self‐renewal and stem cell niche features of fucose‐deficient HSCs. STUDY DESIGN AND METHODS: Homeostasis and maintenance of HSCs derived from FX?/? mice were studied by serial bone marrow transplantation, homing assay, and cell cycle analysis. Two‐photon intravital microscopy was performed to visualize and compare the in vivo marrow niche occupancy by fucose‐deficient and wild‐type (WT) HSCs. RESULTS: Marrow progenitors from FX?/? mice had mild homing defects that could be partially prevented by exogenous fucose supplementation. Fucose‐deficient HSCs from FX?/? mice displayed decreased self‐renewal capability compared with the WT controls. This is accompanied with their increased cell cycling activity and suppressed Notch ligand binding. When tracked in vivo by two‐photon intravital imaging, the fucose‐deficient HSCs were found localized farther from the endosteum of the calvarium marrow than the WT HSCs. CONCLUSIONS: The current reported aberrant niche occupancy by HSCs from FX?/? mice, in the context of a faulty blood lineage homeostasis and HSC dysfunction in mice expressing Notch receptors deficient in O‐fucosylation, suggests that fucosylation‐modified Notch receptor may represent a novel extrinsic regulator for HSC engraftment and HSC niche maintenance.  相似文献   

18.
The mammalian target of rapamycin (mTOR) is a signaling molecule that senses environmental cues, such as nutrient status and oxygen supply, to regulate cell growth, proliferation, and other functions. Unchecked, sustained mTOR activity results in defects in HSC function. Inflammatory conditions, such as autoimmune disease, are often associated with defective hematopoiesis. Here, we investigated whether hyperactivation of mTOR in HSCs contributes to hematopoietic defects in autoimmunity and inflammation. We found that in mice deficient in Foxp3 (scurfy mice), a model of autoimmunity, the development of autoimmune disease correlated with progressive bone marrow loss and impaired regenerative capacity of HSCs in competitive bone marrow transplantation. Similarly, LPS-mediated inflammation in C57BL/6 mice led to massive bone marrow cell death and impaired HSC function. Importantly, treatment with rapamycin in both models corrected bone marrow hypocellularity and partially restored hematopoietic activity. In cultured mouse bone marrow cells, treatment with either of the inflammatory cytokines IL-6 or TNF-α was sufficient to activate mTOR, while preventing mTOR activation in vivo required simultaneous inhibition of CCL2, IL-6, and TNF-α. These data strongly suggest that mTOR activation in HSCs by inflammatory cytokines underlies defective hematopoiesis in autoimmune disease and inflammation.  相似文献   

19.
背景:肝星状细胞的激活、增殖导致肝纤维化,p38丝裂原活化蛋白激酶信号通路可参与调控细胞增殖。目的:探讨SB203580作用于乙醛刺激的大鼠肝星状细胞后p38丝裂原活化蛋白激酶活性变化和细胞增殖变化。方法:体外培养大鼠肝星状细胞株,在乙醛干预的基础上加入不同浓度的p38特异性抑制剂SB203580进行培养,并设置对照。以Westernblot检测磷酸化p38蛋白表达水平变化,MTT比色法检测细胞增殖。结果与结论:乙醛刺激后大鼠肝星状细胞内磷酸化p38水平增强,细胞增殖明显。使用5,10,20μmol/L SB203580能明显抑制乙醛刺激的肝星状细胞增殖(P〈0.05),加大浓度至30μmol/L时,抑制作用更明显(P〈0.01),抑制率为43.9%,而磷酸化p38水平也降低(P〈0.05)。结果证实,抑制p38丝裂原活化蛋白激酶活性可能影响肝星状细胞的增殖。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号