首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subliminal and threshold functions of behavioral output to electrical stimulation of the rat mesencephalic tectum were fitted using the logistic model. The results suggest the existence of isotopic albeit anisotropic freezing and flight mechanisms in the dorsal periaqueductal gray and deep layers of the superior colliculus. Moreover, the marked parallelism of immobility and running threshold functions indicates the probable coupling of these mechanisms through a kind of negative feedback. Finally, the good fitting to the model suggests that the behavioral output to electrical stimulation of these areas follows a logistic function of the logarithm of the stimulus intensity.  相似文献   

2.
Several sources of evidence indicate that the inferior colliculus also integrates acoustic information of an aversive nature besides its well-known role as a relay station for auditory pathways. Gradual increases of the electrical stimulation of this structure cause in a hierarchical manner alertness, freezing and escape behaviors. Independent groups of animals implanted with bipolar electrodes into the inferior colliculus received electrical stimulation at one of these aversive thresholds. Control animals were submitted to the same procedure but no current was applied. Next, analysis of Fos protein expression was used to map brain areas activated by the inferior colliculus stimulation at each aversive threshold and in the controls. Whereas alertness elicited by stimulation of the inferior colliculus did not cause any significant labeling in any structure studied in relation to the respective control, electrical stimulation applied at the freezing threshold increased Fos-like immunoreactivity in the central amygdaloid nucleus and entorhinal cortex. In contrast, escape response enhanced Fos-like immunoreactivity in the nucleus cuneiform and the dorsal periaqueductal gray matter of the mesencephalon. This evidence supports the notion that freezing and escape behaviors induced by electrical stimulation of the inferior colliculus activate different neural circuitries in the brain. Both defensive behaviors caused significant expression of c-fos in the frontal cortex, hippocampus and basolateral amygdaloid nucleus. This indistinct pattern of c-fos distribution may indicate a more general role for these structures in the modulation of fear-related behaviors. Therefore, the present data bring support to the notion that amygdala, dorsal hippocampus, entorhinal cortex, frontal cortex, dorsal periaqueductal gray matter and cuneiform nucleus altogether play a role in the integration of aversive states generated at the level of the inferior colliculus.  相似文献   

3.
Deep layers of the superior colliculus, the dorsal periaqueductal gray matter and the inferior colliculus are midbrain structures involved in the generation of defensive behavior and fear-induced anti-nociception. Local injections of the GABA(A) antagonist bicuculline into these structures have been used to produce this defense reaction. Serotonin is thought to be the main neurotransmitter to modulate such defense reaction in mammals. This study is the first attempt to employ immunohistochemical techniques to locate serotonergic cells in the same midbrain sites from where defense reaction is evoked by chemical stimulation with bicuculline. The blockade of GABA(A) receptors in the neural substrates of the dorsal mesencephalon was followed by vigorous defensive reactions and increased nociceptive thresholds. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies to serotonin in the rat's midbrain. Neurons positive to serotonin were found in the midbrain sites where defensive reactions were evoked by microinjection of bicuculline. Serotonin was localized to somata and projections of the neural networks of the mesencephalic tectum. Immunohistochemical studies showed that the sites in which neuronal perikarya positive to serotonin were identified in intermediate and deep layers of the superior colliculus, and in the dorsal and ventral columns of the periaqueductal gray matter are the same which were activated during the generation of defense behaviors, such as alertness, freezing, and escape reactions, induced by bicuculline. These findings support the contention that serotonin and GABAergic neurons may act in concert in the modulation of defense reaction in the midbrain tectum. Our neuroanatomical findings indicate a direct neural pathway connecting the dorsal midbrain and monoaminergic nuclei of the descending pain inhibitory system, with profuse synaptic terminals mainly in the pontine reticular formation, gigantocellularis nucleus, and nucleus raphe magnus. The midbrain tectum-gigantocellularis complex and midbrain tectum-nucleus raphe magnus neural pathways may provide an alternative output allowing the organization of the fear-induced anti-nociception by mesencephalic networks.  相似文献   

4.
We studied the auditory neurons in the optic tectum of the unanesthetized pigeon, using single-unit recordings and acoustic free-field stimulation. Most units showed spatial tuning, with best areas located in the contralateral hemifield. All units responded also to visual stimuli, the auditory best areas being in rough alignment with visual receptive fields.  相似文献   

5.
Neural plasticity and stress induced changes in defense in the rat   总被引:7,自引:0,他引:7  
We investigated the effects of predator stress on behavior and amygdala afferent and efferent neural transmission in rats. Pathways studied were: ventral angular bundle input to the basolateral amygdala; central and basolateral amygdala output to the periaqueductal gray (PAG). Predator stress was ‘anxiogenic’ in elevated plus maze, light/dark box and acoustic startle tests one week after stress. Lasting changes were also observed in neural transmission. Predator stress appeared to potentiate right and depotentiate left hemisphere afferent amygdala transmission. In contrast, predator stress potentiated amygdala efferent transmission to right and left PAG, depending on the amygdala nucleus stimulated. Paired pulse and intensity series analysis suggests that transmission changes may be postsynaptic or presynaptic, depending on the pathway. Path analysis relating brain and behavioral changes suggests that potentiation and depotentiation in both hemispheres participate jointly in effecting some, but not all, of the behavioral changes produced by predator stress. Potentiation in left hemisphere amygdala afferents and efferents predicts anxiolytic-like effects, while potentiation in the right hemisphere amygdala afferents predicts anxiogenic-like effects. Path analysis also supports the view that changes in different neural systems mediate changes in different behaviors. These findings have their parallel in studies in the cat, but there are species differences.  相似文献   

6.
Stepwise increases in the electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) produces alertness, then freezing and finally escape. This paper examines whether this freezing is (i) caused by Pavlovian fear conditioning to the contextual cues present during stimulation and (ii) the result of the stimulation of neurons located inside the dlPAG or elsewhere. To this end, freezing behavior was assessed in rats exposed either to the same or a different environment (context shift test) following the application of either footshocks or stimulation of the dlPAG at the freezing threshold. Rats submitted to footshocks presented freezing to the context 24 h later whereas rats submitted to the dlPAG stimulation showed freezing only immediately after the stimulation, regardless of the context. In the second experiment, aversive states generated by activation of the dlPAG were assessed either by measuring the thresholds for freezing and escape responses or the duration of these responses following microinjections of semicarbazide inside the dlPAG. The duration of freezing behavior was also measured in rats submitted to a contextual fear-conditioning paradigm using footshocks as unconditioned stimulus. Lesions of the ventral periaqueductal gray (vPAG) disrupted conditioned freezing to contextual cues associated to footshocks but vPAG lesions did not change the threshold of either freezing or escape responses elicited by electrical stimulation of the dlPAG. Lesions of the vPAG did not change the amount of freezing or escape responses produced by microinjections of semicarbazide into the dlPAG. These results indicate that stimulation of dlPAG neurons produce freezing behavior independent of any contextual fear conditioning and add to previously reported evidence showing that the vPAG is a critical structure for the expression of conditioned fear. In contrast, the neural substrate of unconditioned dlPAG stimulation-induced freezing is likely to elaborate unconditioned fear responses to impending danger, which have been implicated in panic disorder.  相似文献   

7.
The tail-flick latency (TFL) and the vocalisation test (VT) thresholds were all increased by microinjecting CCh into the dorsal periaqueductal gray (dPAG) of rats. The effects on the TFL were mimicked by dimethyl-phenylpiperazinium, and inhibited by local mecamylamine or intraperitoneal (i.p.) phenoxybenzamine. The effects on the VT were mimicked by bethanechol and inhibited by local mecamylamine, atropine or naloxone. The effects on the thresholds for motor defence reaction were inhibited by i.p. methysergide or naloxone, and prolonged by i.p. phenoxybenzamine. The effects on the threshold for vocalisation during the stimulation were blocked by i. p. methysergide and shortened by i.p. phenoxybenzamine or naloxone. No significant effect of CCh was found on open arm exploration of rats in the elevated plus maze paradigm. We conclude that the effects of CCh from the dPAG is not due to an anxiolytic effect, and depends on the activation of local cholinergic and opioid sites for the supraspinal modulation of "affective" component of pain response, and nicotinic sites for the activation of descending pain pathways.  相似文献   

8.
Synaptic plasticity in polysynaptic neural circuits permits modulation of the dynamic properties of these circuits. We investigated the properties of polysynaptic potentiation in pyramidal neurons in layer V of rat auditory cortex (AC) slices using the perforated patch clamp technique. The GABAA receptor inhibitor bicuculline was used to facilitate polysynaptic activity. The amplitude and duration of the polysynaptic activity were both gradually potentiated with repetitive stimulation (RS) at 12 s intervals. Potentiation was saturated within 10 min of the onset of RS. After the cessation of RS, the polysynaptic responses returned to control levels within 30 min. RS-induced potentiation was confirmed by fluorescence imaging of slices loaded with the Ca2+ indicator rhod-2. Such potentiation was not induced by stimulation at 60 s intervals. The magnitude of the RS-induced potentiation in layer V pyramidal neurons in the AC was greater than that in either layer II/III pyramidal neurons in the AC or layer V pyramidal neurons in the visual cortex. The NMDA receptor antagonist APV (100 microm), inhibited RS-induced potentiation. When stimulated at 1 Hz, the potentiated response appeared rapidly. In the absence of bicuculline, RS consisting of five pulses at 30 ms intervals, repeated at 12 s intervals for 10 min, elicited potentiation of firing activity, suggesting that the potentiation is independent of bicuculline. The present study demonstrates the dynamic properties of polysynaptic circuits involving layer V pyramidal neurons in the AC are strongly affected by activity-dependent synaptic potentiation.  相似文献   

9.
Kow LM  Commons KG  Ogawa S  Pfaff DW 《Brain research》2002,935(1-2):87-102
Several lines of evidence have suggested that mu-opioids, generally regarded as inhibitory, also have effects that stimulate neural activity. To look for possible excitatory opioid action in the rat periaqueductal gray (PAG), we first re-examined data from a previous study and found that met-enkephalin could evoke a delayed, sluggish excitation, suggestive of modulation by the opioid on the action of certain excitants. This observation, coupled with other studies that show mu-opioids can modulate NMDA receptor activation, prompted us to perform extracellular recording of the responses of single ventrolateral PAG (vlPAG) neurons in brain slices to DAMGO, a mu-opioid, and to NMDA. When applied alone, DAMGO at nM concentrations, like met-enkephalin, often evoked the delayed excitation and occasionally an inhibition. When applied after a brief exposure to NMDA, DAMGO at doses as low as 0.1 nM potentiated the excitation produced by a subsequent pulse of NMDA. This occurred, depending on cell type, in 23-100% of vlPAG neurons. The potentiating action of DAMGO was blocked by naloxone, suggesting it was mediated by mu-opioid receptors. Characterization of these mu-opioid actions revealed that the potentiation and the delayed excitation, unlike the inhibition, was not blocked by another opioid antagonist, nalmefene, nor by an inhibitor of the G protein of the G(i) class, N-ethylmaleimide. Moreover, the potentiating action was distinct from the inhibition in that it was: (a) enhanced by repeated opioid applications, (b) exhibited low effective doses, (c) had a long time course (minutes to develop and last tens of minutes) and (d) was present in distinct though overlapping cell populations. These data reveal an unconventional action of opioids in PAG neurons, that is, a potentiation of excitation produced by NMDA. This effect appeared mechanistically distinct from opioid inhibition or disinhibition and may be related to established examples of direct opioid excitation. These observations may help understanding behaviorally important mechanisms linked to acute and chronic opioid functions in the vlPAG.  相似文献   

10.
It has been claimed that the aversive behaviour induced by electrical stimulation of the midbrain tectum (MT) has validity as an animal model of panic attack. A great deal of evidence obtained from behavioural studies suggests that 5-HT2 mechanisms phasically inhibit the substrates of aversion in the MT. In order to test this hypothesis we employed the technique of microiontophoresis of drugs onto neurones of the MT to assess the identity of the receptors mediating the effects of 5-hydroxytryptamine (5-HT). The results obtained show that the majority of 5-HT responsive cells in MT are cells excited by 5-HT (72%). These cells were silent or showed very low spontaneous firing activity, whereas cells depressed by 5-HT showed high spontaneous firing activity at baseline. The 5-HT1A receptor agonists, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), buspirone and gepirone caused consistent reduction in the firing rate of cells depressed by 5-HT while they did not change the firing activity of cells excited by 5-HT. The excitatory effects induced by 5-HT on MT neurones were clearly attenuated by concomitant application of ketanserin, a highly specific 5-HT2 antagonist. Excitatory responses to dl-homocysteic acid were not affected by ketanserin. Previous administration of zimelidine, a selective 5-HT uptake inhibitor, caused a significant enhancement of the excitatory effects of 5-HT while similar application of gepirone did not affect the size of the excitatory responses to 5-HT. These results give electrophysiological support to the idea that 5-HT neurotransmission operating through 5-HT2 receptors may exert a phasic control on functional processes in the MT. It is possible that 5-HT2 mechanisms in this region may mediate at least part of the therapeutic effects of 5-HT uptake inhibitors in panic disorders.  相似文献   

11.
Electrical stimulation of the dorsolateral periaqueductal gray (dlPAG) and one of its target structures, the ventromedial hypothalamus (VMH), produces a typical behaviour in rats consisting of vigorous running and jumping which is known as “escape behaviour”. Escape behaviour in rodents closely mimics panic attacks in humans. Since electrical stimulation at higher frequencies generally inhibits the stimulated region, we tested in this study the hypothesis that deep brain stimulation (DBS) of the dlPAG and VMH at higher frequencies (>100 Hz) would not induce escape behaviour. More specifically, we evaluated whether experimental DBS could be used to inhibit panic-like behaviour. Rats underwent implantation of DBS-electrodes at the level of the dlPAG and VMH and the effects of various stimulation parameters were assessed. In addition, we studied the neural activation pattern resulting from DBS of the dlPAG and VMH using c-Fos immunohistochemistry. We found that stimulation amplitude is the most important stimulation parameter in the induction of escape behaviour. Remarkably, stimulation frequency (1–300 Hz) had no effect on stimulation-induced escape behaviour and therefore it was not possible to prevent the induction of escape behaviour with higher frequencies. The neuronal activation pattern resulting from dlPAG and VMH DBS was similar. These findings suggest that DBS of the dlPAG and VMH induces panic-related behaviours even at higher frequencies.  相似文献   

12.
The intracerebroventricular administration of renin substrate or angiotensin II evokes antinociception in rodents, but the brain sites where most of the renin-angiotensin system peptides act are not yet known. This study describes the antinociceptive effects of microinjecting porcine renin substrate tetradecapeptide (RS) or angiotensins I (AI), II (AII) or III (AIII) into different regions of the periaqueductal gray matter (PAG), using the rat tail flick test. All the above peptides were effective following administration into several PAG regions. Their antinociceptive effects were strongly evoked from the caudal ventrolateral and ventral PAG, including the dorsal raphe nucleus. A dose-dependent antinociception following administration into the ventrolateral PAG was demonstrated for all peptides studied. The effect of AII from the ventrolateral PAG was inhibited by the previous local administration of saralasin, a non-selective angiotensin receptor antagonist. Moreover, the peak effects of RS and AI occurred later than those of AII and AIII. The time-course of antinociception suggests that longer-chain peptides are locally processed to biologically active smaller-chain peptides. This study shows for the first time the antinociceptive effect of RS, AI, AII and III in well-defined PAG regions, an effect that is receptor mediated for AII.  相似文献   

13.
We investigated the topographical localization of c-fos expression in the midbrain periaqueductal gray matter (PAG) to detect nociception-induced neural activity in the PAG. In conscious female Wistar rats, c-fos expression was induced by continuous intravesical infusion of saline or 0.1% acetic acid. Number of c-fos protein (Fos)-positive cells was counted at each coronal section of the PAG as well as Barrington's nucleus. Fos-positive cells were also counted at L1 and L6 of the spinal cord, where most of the hypogastric and pelvic nerve afferent terminals project, respectively. Compared with saline infusion, acetic acid infusion provoked irritative bladder responses characterized by a marked increase in the frequency of bladder contractions, and induced a significant increase in the number of Fos-positive cells in both L1 and L6 of the spinal cord. Following acetic acid infusion, there was a significant increase in the number of Fos-positive cells in all coronal sections of the PAG compared with saline infusion, especially in the caudal part of the PAG. The increase in the number of Fos-positive cells was mainly observed in the ventrolateral and lateral parts of the caudal PAG, and in the dorsal part of the rostral PAG. However, there was no difference in the number of Fos-positive cells in Barrington's nucleus between saline and acetic acid infusion. In conclusion, nociception induced by chemical bladder irritation influences neural activity in the PAG. Implication of topographical difference in Fos expression in the PAG and its relevance to changes in bladder function remain to be elucidated.  相似文献   

14.
Several neurotransmitters, including glutamate and serotonin, modulate defensive behaviors related to anxiety in the rat dorsal periaqueductal gray (PAG). Although both glutamate N-methyl-d-aspartic acid (NMDA) and serotonin type 1-A (5-HT(1A)) receptors have been shown to interfere with these subtle responses, such as inhibitory avoidance, a possible interaction between them remains to be examined. To address this issue, the present study investigated whether the activation or the blockage of 5-HT(1A) receptors located in the dorsal PAG would interact with NMDA function in animals exposed to the elevated plus-maze task. The effect of the NMDA (25 pmol) was evaluated in rats pretreated with the 5-HT(1A) receptor antagonist WAY-100135 (2.0 or 5.0 nmol). In addition, the effect of the NMDA (100 pmol) was evaluated in rats pretreated with the 5-HT(1A) receptor agonist 8-OH-DPAT (2.0 or 8.0 nmol). Intra-dorsal PAG injection of NMDA (25 pmol) increased inhibitory avoidance behavior. This anxiogenic-like effect of the NMDA was counteracted by the pretreatment with WAY-100135 (5.0 nmol). Although 100 pmol of NMDA failed to increase inhibitory avoidance in the vehicle-pretreated group, in rats pretreated with 8-OH-DPAT this NMDA dose produced an anxiogenic-like effect. These results suggest that 5-HT(1A) and NMDA receptors interact in the dorsal PAG to modulate the anxiety-related behavior.  相似文献   

15.
PURPOSE: The neuronal network responsible for the convulsive behavior associated with sound-induced seizures in genetically epilepsy-prone rats (GEPRs) is believed to include the inferior colliculus and other brainstem structures such as the deep layers of the superior colliculus (DLSC), periaqueductal gray, and pontine reticular formation. However, previous studies also suggested that the DLSC and the nearby intercollicular nucleus (ICN) are part of a midbrain anticonvulsant zone capable of suppressing tonic convulsions when activated with bicuculline. Our aim in this study was to investigate the role of the superior colliculus (SC) and the ICN in generalized tonic-clonic seizures (GTCSs). METHODS: Bilateral lesions of the SC and the ICN as well as bicuculline infusions into the ICN were used to assess the role of this dorsal midbrain region in brainstem seizures induced by sound stimulation in GEPR-9s and GEPR-3s. RESULTS: Lesions of the SC markedly attenuated audiogenic seizure (AGS) severity by abolishing all behavioral components except the wild running. Lesions of the ICN significantly reduced seizure severity in GEPR-9s, but were somewhat less effective than SC lesions. Bicuculline infusion into the deep layers of the SC and/or the ICN produced audiogenic-like seizures in GEPR-9s. CONCLUSIONS: These findings support the hypothesis that the SC and ICN are important components of the brainstem seizure network, but suggest they are not necessary for the wild-running component of the seizure. The results further indicate that stimulation of the tectum facilitates GTCSs. Thus these findings suggest that the dorsal midbrain, when stimulated, is proconvulsant rather than anticonvulsant regarding brainstem seizures in GEPRs.  相似文献   

16.
Ethanol withdrawal (ETX) in ethanol-dependent animals and humans often results in seizure susceptibility. The deep layers of superior colliculus (DLSC) are proposed to be involved in the neuronal networks of several types of seizures. In rodents, ETX results in susceptibility to audiogenic seizures (AGS), and the DLSC are implicated as a critical component of the seizure network in a genetic form of AGS. Ethanol inhibits NMDA receptors, and the binding at these receptors is increased during ETX in certain brain regions. Therefore, the effect of focal microinjection into DLSC of a competitive NMDA receptor antagonist, -2-amino-7-phosphonoheptanoic acid (AP7) on ETX seizures was examined. AP7 (2 and 5 nmol/side) microinjected bilaterally into DLSC suppressed AGS, supporting a critical role of the DLSC in the AGS network during ETX. DLSC neuronal firing changes in behaving rats were subsequently examined, using chronically implanted microwire electrodes. Acoustically-evoked DLSC firing was significantly suppressed during ethanol intoxication and during ETX. However, DLSC neurons began firing tonically 1–2 s before the onset of the wild running behavior of AGS. Acoustically-evoked DLSC firing was suppressed during post-ictal depression with recovery beginning as the righting reflex returned. These data support a requisite role of the DLSC in AGS during ETX. These neuronal firing changes suggest an important role of DLSC neurons in generation of the wild running phase of AGS during ETX, which may be a general pathophysiological mechanism and a critical event in the initiation of wild running, since a similar pattern was seen previously in a genetic form of AGS.  相似文献   

17.
To search for evidence of altered neuronal gene expression in response to exposure to the highly addictive drug nicotine, rat brains were examined by immunocytochemistry for the fos protein after the systemic administration of nicotine. The drug was administered as an IV infusion over 1 h to chronically cannulated, freely behaving rats. At a dose of 2 mg/kg, the most dramatic nicotine-induced fos nuclear immunostaining was seen in central visual pathways, including the superficial superior colliculus and the medial terminal nu. of the accessory optic tract, in the interpeduncular nu. Notably, many regions with high levels of nicotine binding sites, including the medial habenula, thalamus, substantia nigra, and ventral tegmental area, failed to express the c-fos gene with this schedule of nicotine administration. A minimal increase in fos immunostaining was seen after a nicotine dose of 0.5 mg/kg, with a much greater response after 1 or 2 mg/kg. The response was seen as soon as 60 min after the beginning of the infusion, was maximal at 2–3 h, and declined thereafter, c-fos expression was substantially attenuated in the superficial gray layer of superior colliculus, medial terminal nucleus of the accessory optic tract, and the interpeduncular nucleus by pretreatment with the centrally acting nicotine antagonist mecamylamine, 5 mg/kg IP, but not with the peripherally acting antagonist hexamethonium, 4 mg/kg IP. These observations identify a subset of central nervous system neurons that respond to nicotine with altered expression of the immediate early gene c-fos. These neurons presumably undergo long-term changes in gene expression as a result of acute exposure to high doses of nicotine.  相似文献   

18.
Yan Li  Ji-Sheng Han 《Brain research》1989,480(1-2):105-110
The analgesic effect of systemic morphine (5 mg/kg, s.c.) was dose-dependently antagonized by CCK-8 administered to the periaqueductal gray (PAG) of the rat. This effect could be reversed by proglumide, a CCK-receptor antagonist. The effect of morphine analgesia was potentiated by proglumide administered to PAG. These results are compatible with the notion that PAG is a strategic site where CCK-8 exerts an antiopioid activity.  相似文献   

19.
Recent data have suggested a critical role for the basal ganglia in the remote control of epileptic seizures. In particular, it has been shown that inhibition of either substantia nigra pars reticulata or subthalamic nucleus as well as activation of the superior colliculus suppresses generalized seizures in several animal models. It was previously shown that high frequency stimulation of the subthalamic nucleus, thought to act as functional inhibition, stopped ongoing non-convulsive generalized seizures in rats. In order to determine whether high frequency stimulation of the subthalamic nucleus involved an activation of superior colliculus neurons, we examined the effects of subthalamic nucleus manipulation, by either high frequency stimulation or chemical lesion, on the spontaneous electrical activity of superior colliculus neurons. Acute high frequency stimulation of the subthalamic nucleus (frequency 130 Hz) induced an immediate increase of unitary activity in 70% of responding cells, mainly located within the deep layers, whereas a reduction was observed in the remaining 30%. The latter responses are dependent on the intensity and frequency of the stimulation. Unilateral excitotoxic lesion of the subthalamic nucleus induced a delayed and transient decrease of superior colliculus activity. Our data suggest that high frequency stimulation of the subthalamic nucleus suppresses generalised epileptic seizures through superior colliculus activation.  相似文献   

20.
The changes in tail-flick latency (TFL) to noxious heating of the skin produced by the microinjection of carbachol (CCh) into the dorsal (dPAG), lateral (IPAG), and ventral (vPAG) portions of the mesencephalic periaqueductal gray matter (PAG) were studied in the rat. A significant increase in TFL was produced by CCh (0.2 μg/0.5 μl) microinjected into sites widely distributed within the PAG. The effect of CCh was stronger in the most caudal portion of the DPAG. Smaller effects were obtained after injection of CCh into the aqueduct, indicating that drug diffusion from theinjection sites to the aqueduct lumen is unlikely to cause the antinociceptive effect of CCh. Dimethyl-phenyl-piperazinium (0.35 μg/0.5 μl), but not bethanechol (0.22 and 0.44 μg/0.5 μl), produced effects similar to CCh (0.2 μg/0.5 μl), when injected into the dPAG. The effects of CCh were inhibited by the previous administration of mecamylamine (1 μg/0.5 μl), but not atropine (1 μg/0.5 μl) or naloxone (1 μg/0.5 μl), into the dPAG. These results are indicative that antinociception produced by CCh from the dPAG depends on nicotinic, but not muscarinic or opioid mechanisms within the dPAG. The intraperitoneal administration of phenoxybenzamine (1 mg/kg) or mecamylamine (1 mg/kg), but not naloxone (1 mg/kg), methysergide (1 mg/kg), or atropine (1 mg/kg), inhibited the effects of CCh injected into the dPAG. In contrast, a higher dose of intraperitoneal phenoxybenzamine (5 mg/kg) was ineffective against the antinociception evoked by CCh when injected into the vPAG. Therefore, the effects of CCh from the dPAG may depend on the activation of centrifugal pathways involving both nicotinic and α-adrenergic mechanisms. In addition, the results indicate that different cholinergic substrates in the PAG may mediate both α-adrenergic and non-α-adrenergic descending pain mechanisms activated by the dPAG and vPAG, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号