首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are several skin diseases in which the lipid composition in the intercellular matrix of the stratum corneum is different from that of healthy human skin. It has been shown that patients suffering from atopic dermatitis have a reduced ceramide content in the stratum corneum, whereas in the stratum corneum of lamellar ichthyosis patients, the amount of free fatty acids is decreased and the ceramide profile is altered. Both patient groups also show elevated levels of transepidermal water loss indicative of an impaired barrier function. As ceramides and free fatty acids are essential for a proper barrier function, we hypothesized that changes in the composition of these lipids would be reflected in the lipid organization in stratum corneum of atopic dermatitis and lamellar ichthyosis patients. We investigated the lateral lipid packing using electron diffraction and the lamellar organization using freeze fracture electron microscopy. In atopic dermatitis stratum corneum, we found that, in comparison with healthy stratum corneum, the presence of the hexagonal lattice (gel phase) is increased with respect to the orthorhombic packing (crystalline phase). In lamellar ichthyosis stratum corneum, the hexagonal packing was predominantly present, whereas the orthorhombic packing was observed only occasionally. This is in good agreement with studies on stratum corneum lipid models that show that the presence of long-chain free fatty acids is involved in the formation of the orthorhombic packing. The results of this study also suggest that the ceramide composition is important for the lateral lipid packing. Finally, using freeze fracture electron microscopy, changes in the lamellar organization in stratum corneum of both patient groups could be observed.  相似文献   

2.
Ceramides are sphingolipids consisting of sphingoidbases, which are amide-linked to fatty acids. In the stratum corneum, they represent the major constituent of the free extractable intercellular lipids and play a significant role in maintaining and structuring the water permeability barrier of the skin. Using thin layer chromatography, which represents the method of the first choice in analyzing the stratum corneum ceramides, at least seven classes can be distinguished. Each ceramide class contains various species, which have the same head group and different chain lengths. As in many other skin disorders, atopic dermatitis and psoriasis show derangements in content and profile of the ceramides. Such derangements were reported for both the lesional involved as well as for the normal-appearing uninvolved skin. In this study, we focused on investigating the stratum corneum ceramides of the uninvolved skin in atopic dermatitis and psoriasis patients compared to healthy skin. The aim of the investigations was to explore possible significant and specific differences which can be accomplished for purposes of early diagnostics. The skin lipids were collected by means of an in vivo topical extraction procedure using an extraction mixture consisting of n-hexane and ethanol, (2:1). An automated multiple development-high performance thin layer chromatography (AMD-HPTLC) method with photodensitometric detection were applied to separate the ceramides and to estimate their contents. For studying their molecular profile within each ceramide class, a new method of normal phase HPLC with atmospheric pressure chemical ionization mass spectrometry were used. The results obtained by AMD-HPTLC exposed no significant alterations regarding the relative composition of the major stratum corneum lipids and primarily the ceramides. In addition, the mass spectrometric profiles within each ceramide class were similar in the patients and the healthy control subjects. In conclusion, this study revealed that the normal-appearing uninvolved skin of atopic dermatitis and psoriasis patients does not prove significant or specific deficiencies with respect to the free extractable major stratum corneum lipids and mainly the ceramides, when compared to healthy skin. Thus, they cannot be used for diagnostic purposes. Furthermore, our data are not consistent with the concept that impairments in the ceramide composition represent an obligate etiologic factor for both diseases.  相似文献   

3.
Atopic dermatitis is characterized by disruption of the cutaneous barrier due to reduced ceramide levels even in non-lesional dry skin. Following further acute barrier disruption by repeated tape strippings, we re-characterized the non-lesional dry skin of subjects with atopic dermatitis, which shows significantly reduced levels of barrier function and ceramide but not of beta-glucocerebrosidase activity. For the first time, we report an abnormal trans-epidermal water loss homeostasis in which delayed recovery kinetics of trans-epidermal water loss occurred on the first day during the 4 days after acute barrier disruption compared with healthy control skin. Interestingly, whereas the higher ceramide level in the stratum corneum of healthy control skin was further significantly up-regulated at 4 days post-tape stripping, the lower ceramide level in the stratum corneum of subjects with atopic dermatitis was not significantly changed. In a parallel study, whereas beta-glucocerebrosidase activity at 4 days post-tape stripping was significantly up-regulated in healthy control skin compared with before tape stripping, the level of that activity remained substantially unchanged in atopic dermatitis. These findings indicate that subjects with atopic dermatitis have a defect in sphingolipid-metabolic processing that generates ceramide in the interface between the stratum corneum and the epidermis. The results also support the notion that the continued disruption of barrier function in atopic dermatitis non-lesional skin is associated with the impaired homeostasis of a ceramide-generating process, which underscores an atopy-specific inflammation-triggered ceramide deficiency that is distinct from other types of dermatitis.  相似文献   

4.
Dry skin is seen in many patients with atopic dermatitis and correlates with a disturbed epidermal barrier function demonstrated by such features as increased transepidermal water loss and diminished stratum corneum hydration. With regard to the importance of stratum corneum lipids for the permeability barrier, we have analysed plantar (n = 8) and lumbar (n = 20) stratum corneum and nail lipids (n = 15) of atopic subjects by high-performance thin-layer chromatography (HPTLC). Compared with controls our investigations show a decrease in the ceramide fraction as a percentage of total lipid and a diminished ratio of ceramides and free sterols in atopic subjects. This implies that impaired ceramide synthesis may be a factor in the pathogenesis of atopic xerosis.  相似文献   

5.
皮肤中神经酰胺主要位于表皮,是表皮中的主要脂质,具有保湿、信号转导、免疫调节等功能。其含量的变化可能导致皮肤屏障功能受损,甚至一些皮肤疾病的发生,如特应性皮炎、银屑病等。本文对皮肤中神经酰胺的主要作用进行综述。  相似文献   

6.
We have previously demonstrated that there is abnormal expression of sphingomyelin (SM) deacylase-like enzyme in the epidermis of patients with atopic dermatitis (AD), which results in decreased levels of ceramides in their involved and uninvolved stratum corneum. For quantitation of the expression of SM deacylase in AD, we synthesized 16-(9-anthroyloxy) hexadecanoylsphingosylphosphorylcholine or [palmitic acid-14C] SM and used them as substrates to directly measure the activity of SM deacylase by detecting the release of labeled free fatty acid. Direct enzymatic measurements demonstrated that stratum corneum from lesional forearm skin (volar side) of AD patients has an extremely high SM deacylase activity that is at least five times higher than in the stratum corneum from healthy controls. In stratum corneum from nonlesional skin of AD patients, SM deacylase activity is still at least three times higher than in healthy controls. In contrast, stratum corneum from contact dermatitis patients shows levels of SM deacylase similar to healthy controls. In extracts of whole epidermis biopsies from AD patients, SM deacylase activities are significantly (3-fold) increased over healthy controls in the particulate fraction, whereas there is no significant difference in the activity of sphingomyelinase between AD and healthy control. In peripheral blood lymphocytes of AD patients, there is no increase in activity compared with healthy controls, indicating a possibility that the high expression of SM deacylase is highly associated with the skin of AD patients. These findings suggest that, in contrast to changes in sphingolipid metabolism due to aging, the hitherto undiscovered enzyme SM deacylase, is highly expressed in the epidermis of AD patients, and competes with sphingomyelinase or beta-glucocerebrosidase for the common substrate SM or glucosylceramide, which leads to the ceramide deficiency of the stratum corneum in AD.  相似文献   

7.
神经酰胺(ceramide,Cer)由长链鞘氨醇碱和脂肪酸组成,参与皮肤屏障的构成、调节皮肤免疫及细胞周期、分化与凋亡等过程。神经酰胺的合成代谢异常与多种皮肤疾病相关,如特应性皮炎、银屑病等。本文就神经酰胺与相关皮肤病的研究进展进行综述。  相似文献   

8.
The skin is a vital organ for life and, among its many functions, the role as a protective barrier is one of the most important. It is the main boundary between the body and the external environment. As defensive barrier, the epidermis protects internal organs from physical and chemical trauma, microorganism invasion, and ultraviolet radiation. It also acts in the regulation of transepidermal movement of water and electrolytes, and in preventing dehydration, all of which are essential for sustaining life. The main role is allotted to the stratum corneum and to the lipid matrix located in the intercellular space. The occurrence of dysfunction in the epidermal barrier is an important factor in the physiopathogenesis of skin diseases, particularly atopic dermatitis and psoriasis. There are few, but important, systemic changes that influence or are influenced by dysfunctions in the epidermal barrier. We review the effects of some systemic diseases on the maintenance of the skin's homeostasis.  相似文献   

9.
A daily moisturizing routine is a vital part of the management of patients with atopic dermatitis and other dry skin conditions. The composition of the moisturizer determines whether the treatment strengthens or deteriorates the skin barrier function, which may have consequences for the outcome of the dermatitis. One might expect that a patient's impaired skin barrier function should improve in association with a reduction in the clinical signs of dryness. Despite visible relief of the dryness symptoms, however, the abnormal transepidermal water loss has been reported to remain high, or even to increase under certain regimens, whereas other moisturizers improve skin barrier function. Differing outcomes have also been reported in healthy skin: some moisturizers produce deterioration in skin barrier function and others improve the skin. Possible targets for barrier-influencing moisturizing creams include the intercellular lipid bilayers, where the fraction of lipids forming a fluid phase might be changed due to compositional or organizational changes. Other targets are the projected size of the corneocytes or the thickness of the stratum corneum. Moisturizers with barrier-improving properties may delay relapse of dermatitis in patients with atopic dermatitis. In a worst-case scenario, treatment with moisturizing creams could increase the risks of dermatitis and asthma.  相似文献   

10.
BackgroundSkin diseases characterized by epithelial barrier dysfunction show altered sphingolipid metabolism, which results in changes in the stratum corneum intercellular lipid components and structure. Under pathological conditions, 1-deoxysphingolipids form as atypical sphingolipids from de novo sphingolipid biosynthesis.ObjectiveThis study investigated the potential role of 1-deoxysphingolipids in skin barrier dysfunction secondary to X-ray and ultraviolet B (UVB) irradiation in vitro and in vivo. It was also evaluated changes in the expression of 1-deoxysphingolipids in lesional human skin of atopic dermatitis.MethodsIn this study, the changes in these 1-deoxysphingolipids levels of skin and serum samples were investigated in skin barrier dysfunction associated with X-ray and UVB irradiation in vitro and in vivo.ResultsIncreased 1-deoxysphingolipids were observed in cultured normal human epidermal keratinocytes after X-ray irradiation. X-ray or UVB irradiation increased the production of 1-deoxysphingosine in a reconstituted 3-dimensional (3D) skin model. Interestingly, treatment with a physiological lipid mixture (multi-lamellar emulsion contained pseudoceramide), which can strengthen the epidermal permeability barrier function, resulted in decreased 1-deoxysphingosine formation in a reconstituted 3D skin model. Further investigation using a hairless mouse model showed similar preventive effects of physiological lipid mixture against 1-deoxysphingosine formation after X-ray irradiation. An increased level of 1-dexoysphingosine in the stratum corneum was also observed in lesional skin of atopic dermatitis.Conclusion1-deoxysphingosine might be a novel biomarker of skin barrier dysfunction and a physiological lipid mixture treatment could prevent 1-deoxysphingosine production and consequent skin barrier dysfunction.  相似文献   

11.
Stratum corneum lipids are an important determinant for both water-retention function and permeability-barrier function in the stratum corneum. However, their major constituent, ceramides, have not been analyzed in detail in skin diseases such as atopic dermatitis that show defective water-retention and permeability-barrier function. In an attempt to assess the quantity of ceramides per unit mass of the stratum corneum in atopic dermatitis, stratum corneum sheet was removed from the forearm skin by stripping with cyanoacrylate resin and placed in hexane/ethanol extraction to yield stratum corneum lipids. The stratum corneum was dispersed by solubilization of cyanoacrylate resin with dimethylformamide, and after membrane filtration, the weight of the stratum corneum mass was measured. The ceramides were quantified by thin-layer chromatography and evaluated as microgram/mg stratum corneum. In the forearm skin of healthy individuals (n = 65), the total ceramide content significantly declined with increasing age. In atopic dermatitis (n = 32-35), there was a marked reduction in the amount of ceramides in the lesional forearm skin compared with those of healthy individuals of the same age. Interestingly, the non-lesional skin also exhibited a similar and significant decrease of ceramides. Among six ceramide fractions, ceramide 1 was most significantly reduced in both lesional and non-lesional skin. These findings suggest that an insufficiency of ceramides in the stratum corneum is an etiologic factor in atopic dry skin.  相似文献   

12.
The skin's permeability barrier protects against extensive water loss and prevents the entry into the skin of harmful substances like irritants, allergens and microorganisms. The permeability barrier is mainly located in the stratum corneum and consists of corneocytes and a lipid‐enriched intercellular domain. The barrier is formed during epidermal differentiation. In atopic dermatitis the skin barrier is disturbed already in non‐lesional skin. The disturbed skin barrier allows the entry of environmental allergens from house dust mites, animal dander and grass pollen into the skin. In predisposed individuals these allergens may trigger via immunologic pathways the inflammation of atopy. The causes for the disturbed epidermal skin barrier are changes in skin lipids and in epidermal differentiation, in particular filaggrin mutations. Filaggrin mutations lead to a disturbed skin barrier and dry skin which are hallmarks in atopic dermatitis. Therapeutic agents influence the skin barrier differently; topical therapy with potent corticosteroids does not lead to the repair of the barrier in atopic dermatitis, whereas therapy with the calcineurin inhibitors and lipid‐containing emulsions support barrier repair.  相似文献   

13.
Ceramides (sphingolipids) are the main polar lipids of the stratum corneum and play an important role in skin barrier function, cell adhesion and epidermal differentiation. In view of the function of ceramides in normal skin, this study aimed to assess their levels in patients with various types of hereditary ichthyosis, in which epidermal homeostasis is markedly abnormal. Stratum corneum samples were collected from 80 patients and 23 normal controls, and the intercellular and lipid envelope ceramides were analysed by high-performance thin-layer chromatography. The covalently bound ceramides (ceramides A and B) of the lipid envelope were present in all patients studied, and showed no significant differences from control samples. Total ceramides (ceramides 1–6) were decreased in bullous ichthyosiform erythroderma, which is presumably a secondary phenomenon similar to that seen in patients with atopic dermatitis. Patients with non-erythrodermic lamellar ichthyosis showed a marked decrease in levels of the important acylceramide, ceramide 1, whereas those with other types of autosomal recessive ichthyosis (limited lamellar ichthyosis and non-bullous ichthyosiform erythroderma) had mean levels similar to the controls. Ceramide 1 deficiency may therefore define a subgroup within the autosomal recessive ichthyoses. Sjögren-Larsson syndrome (SLS) shows a deficiency of both acyl-ceramides (ceramides 1 and 6), which would seem likely to disrupt the normal skin barrier function. Furthermore, glucosyl-ceramides (cerebrosides) are known to be deficient in the neural tissue of patients with SLS. The relationship of these ceramide abnormalities to the underlying fatty alcohol oxidoreductase defect remains uncertain, but they may provide an interesting link between the nerve damage and cutaneous abnormalities seen in this rare neurodermatosis.  相似文献   

14.
Stratum corneum lipids play a predominant role in maintaining the water barrier of the skin. In order to understand the biological variation in the levels and composition of ceramides, ceramide 1 subtypes, cholesterol and fatty acids, stratum corneum lipids collected from tape strippings from three body sites (face, hand, leg) of female Caucasians of different age groups were analysed. In addition, we studied the influence of seasonal variation on the lipid composition of stratum corneum from the same body sites. The main lipid species were quantified using high-performance thin-layer chromatography and individual fatty acids using gas chromatography. Our findings demonstrated significantly decreased levels of all major lipid species, in particular ceramides, with increasing age. Similarly, the stratum corneum lipid levels of all the body sites examined were dramatically depleted in winter compared with spring and summer. The relative levels of ceramide 1 linoleate were also depleted in winter and in aged skin whereas ceramide 1 oleate levels increased. The other fatty acid levels remained fairly constant with both season and age, apart from lignoceric and heptadecanoic acid which showed a decrease in winter compared with summer. The decrease in the mass levels of intercellular lipids and the altered ratios of fatty acids esterified to ceramide 1, are likely to contribute to the increased susceptibility of aged skin to perturbation of barrier function and xerosis, particularly during the winter months. Received: 17 October 1995  相似文献   

15.
Ceramides, members of sphingolipid family, are not only the building blocks of epidermal barrier structure, but also bioactive metabolites involved in epidermal self-renewal and immune regulation. Hence, abnormal ceramide expression profile is recognized to defect extracellular lipid organization, disturb epidermal self-renewal, exacerbate skin immune response and actively participate in progression of several inflammatory dermatoses, exemplifying by psoriasis and atopic dermatitis. Here, we discuss recent advances in understanding skin ceramides and their regulatory roles in skin homeostasis and pathogenic roles of altered ceramide metabolism in inflammatory skin diseases. These insights provide new opportunities for therapeutic intervention in inflammatory dermatoses.  相似文献   

16.
The stratum corneum of the skin of patients with atopic dermatitis is highly susceptible to colonization by various bacteria, including Staphylococcus aureus. The defense system of the skin against bacterial invasion appears to be significantly disrupted in atopic dermatitis skin, but little is known about the defense mechanism(s) involved. As one sphingolipid metabolite, sphingosine is known to exert a potent antimicrobial effect on S. aureus at physiologic levels, and it may play a significant role in bacterial defense mechanisms of healthy normal skin. Because of the altered ceramide metabolism in atopic dermatitis, the possible alteration of sphingosine metabolism might be associated with the acquired vulnerability to colonization by S. aureus in patients with atopic dermatitis. In this study, we measured the levels of sphingosine in the upper stratum corneum from patients with atopic dermatitis, and then compared that with the colonization levels of bacteria in the same subjects. Levels of sphingosine were significantly downregulated in uninvolved and in involved stratum corneum of patients with atopic dermatitis compared with healthy controls. This decreased level of sphingosine was relevant to the increased numbers of bacteria including S. aureus present in the upper stratum corneum from the same subjects. This suggests the possibility that the increased colonization of bacteria found in patients with atopic dermatitis may result from a deficiency of sphingosine as a natural antimicrobial agent. As for the mechanism involved in the decreased production of sphingosine in atopic dermatitis, analysis of the activities of ceramidases, major sphingosine-producing enzymes, revealed that, whereas the activity of alkaline ceramidase did not differ between patients with atopic dermatitis and healthy controls, the activity of acid ceramidase was significantly reduced in patients with atopic dermatitis and this had obvious relevance to the increased colonization of bacteria in those subjects. Further, there was a close correlation between the level of sphingosines and acid ceramidase (r = 0.65, p < 0.01) or ceramides (r = 0.70, p < 0.01) in the upper stratum corneum from the same patients with atopic dermatitis. Collectively, our results suggest the possibility that vulnerability to bacterial colonization in the skin of patients with atopic dermatitis is associated with reduced levels of a natural antimicrobial agent, sphingosine, which results from decreased levels of ceramides as a substrate and from diminished activities of its metabolic enzyme, acid ceramidase.  相似文献   

17.
Atopic dermatitis is a common skin disease of unknown etiology with an impaired permeability barrier function. To learn more about the molecular pathology in lesional skin, we analyzed levels of free extractable as well as protein-bound barrier lipids in the epidermis of atopic dermatitis subjects. The amount of protein-bound omega-hydroxyceramides in healthy epidermis comprised 46-53 wt% of total protein-bound lipids, whereas this percentage was decreased to 23-28 wt% in nonlesional areas and even down to 10-25 wt% in affected atopic skin areas of the subjects. Furthermore, the partial amount of free extractable very long chain fatty acids with more than 24 carbon atoms was reduced in affected regions down to 25 wt% and in nonlesional regions of the atopic dermatitis subjects down to 40 wt% compared to healthy controls. This "hydrocarbon chain length deficiency" regarding the barrier lipids in atopic skin was supported by metabolic labeling studies with [14C]-serine in cultured epidermis. The biosynthesis of free glucosylceramides and free ceramides was remarkably decreased in affected skin areas of the atopic subjects compared to healthy control subjects. Especially affected were the de novo syntheses of ceramide 4 (i.e., ceramide EOH, consisting of a very long chain N-acyl omega-hydroxy fatty acid esterified with linoleic acid and 6-hydroxysphingosine as sphingoid base) and ceramide 3 (ceramide NP, consisting of a nonhydroxy N-acyl fatty acid and phytosphingosine). In conclusion, this study revealed that the lesional epidermis in atopic dermatitis has considerable deficiencies within main barrier lipid components, which may contribute to the severely damaged permeability barrier.  相似文献   

18.
Hydrolysis of glucosylceramides by the enzyme glucosylceramide-beta-glucosidase (GlcCer'ase) results in ceramide, a critical component of the intercellular lamellae that mediates the epidermal permeability barrier. A disturbance of ceramide formation is supposed to influence the transepidermal water loss in common skin diseases like atopic eczema or psoriasis. The aim of this study was to investigate whether GlcCer'ase levels were altered in the skin of subjects with psoriasis vulgaris. Skin punch biopsies were taken from lesional and non-lesional psoriatic skin and GlcCer'ase was evaluated both at the RNA and at the protein level. Normal skin from surgical patients provided the baseline GlcCer'ase expression in healthy subjects. Our results show that GlcCer'ase mRNA expression was decreased in psoriatic non-lesional skin compared to normal controls in all cases. Interestingly, in lesional psoriatic skin the level of GlcCer'ase was increased compared to non-lesional skin in all cases. For the immunohistochemical analysis, we used a newly synthesized monoclonal antibody anti-human GBC (GlcCer'ase-GST fusion protein). The results confirmed that GlcCer'ase, mainly present in the upper epidermis, was decreased in psoriatic skin compared to normal control and was increased in lesional compared to non-lesional psoriatic skin. Our findings support the concept that alteration in water permeability barrier in lesional psoriatic skin can serve as a trigger for the upregulation of the expression of enzymes like GlcCer'ase with consequent stimulation of ceramide generation.  相似文献   

19.
皮肤屏障由角质层、细胞间质和紧密连接组成.闭合蛋白是构成紧密连接的主要蛋白之一,存在于哺乳动物的皮肤、脑、神经系统和内脏组织中,在生理状态下影响紧密连接的整体性及其功能,是构成皮肤栅栏和屏障的主要功能蛋白之一.在人类组织中已发现27种闭合蛋白亚型,在上皮细胞间形成对电解质及溶质分子的屏障结构.研究表明,皮肤屏障功能受损是多种皮肤病如银屑病、特应性皮炎、家族性良性天疱疮、光线性角化病等重要的发病因素,这与闭合蛋白功能和结构的异常密切相关.闭合蛋白家族中不同成员在不同皮肤病中的表达各异.  相似文献   

20.
神经酰胺是角质层脂质的主要成分,是反映皮肤屏障功能的关键性物质,其含量的变化会使细胞间脂质结构发生变化,导致皮肤屏障功能障碍,而引发相关皮肤病。本文对神经酰胺的合成、分解、对皮肤屏障功能的影响及相关皮肤病进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号