首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A collection of 100 td mutants defective in phage T4 thymidylate synthase (TS) production was screened for splicing impairments. Splicing-defective mutants were identified by a rapid assay developed to detect imbalances in the td protein products (TS, the exon ligation product, and NH2TS, encoded by the pre-mRNA). Thirteen selected mutants, confirmed to be splicing defective by an RNA-oligodeoxynucleotide hybridization assay, were all shown to be inhibited in the first step of the group I splicing pathway, cleavage at the 5' splice site. Of these, only one, SC99, appeared to be a specificity mutant. Whereas the 12 other mutants had sequence changes within the functionally important 5' and 3' domains of the intron, SC99 was shown to be an exon mutant. The G----A change at residue -3 of the upstream exon of SC99 resulted in loss of normal 5' splice site recognition. Furthermore, activation of a remote cryptic splice site at residue -29 of the upstream exon and missplicing of mRNA that is deleted for 29 nucleotides of the 5' exon are characteristic for this mutant. These results underscore the role of exon sequences in guiding the fidelity of the splicing reaction and they raise provocative questions about the alignment of introns within exon contexts that are consistent with accurate splicing and synthesis of an intact gene product.  相似文献   

2.
3.
We previously described an avian sarcoma-leukosis virus (ASLV) insertion mutation that causes a decrease in the ratio of unspliced to spliced RNA in vivo, resulting in a replication defect. Pseudorevertant viruses containing cis-acting suppressor mutations that restored the normal ratio were isolated. One class of the suppressor mutations consists of single-base changes or small deletions near the 3' splice site, while another consists of deletions in the 3' exon. In this paper we report results from an in vitro analysis of wild-type, mutant, and pseudorevertant pre-mRNA splicing. We find that wild-type RNA is spliced inefficiently in vitro, and that the insertion mutation and suppressors act directly at the level of splicing. Characterization of splicing intermediates reveals that the insertion mutation and suppressor mutations located within the intron alter the pattern of lariat formation. In contrast, suppressor mutations consisting of 3' exon deletions act at an earlier step in the splicing pathway. Thus, the efficiency of splicing at the env 3' splice site can be affected at the level of spliceosome assembly, lariat formation, or cleavage at the 3' splice site and exon ligation.  相似文献   

4.
5.
How splicing, the process of intron removal in pre-messenger RNA (mRNA), is carried out with such fidelity in human cells is still not understood, although some general rules are being proposed mainly by in vitro experiments. These rules are currently being redefined by analysis of splicing mechanisms in patients presenting splicing defects. We analysed material of a patient suffering from junctional epidermolysis bullosa, a heritable blistering skin disease. Absence of laminin-5 protein together with hypoplastic hemidesmosomes at the dermo-epidermal junction in the patient's skin was shown by immunohistochemical analysis and immunoelectron microscopy. Subsequent DNA analysis revealed heterozygosity for the mutations R635X and 3009C-->T in the LAMB3 gene. The latter did not alter codon translation, but introduced an exonic splice site in exon 20. Interestingly, this exonic splice site, which presented a splice score of only 68.6, was preferentially used by the spliceosome over the wild-type splice site at the exon 20-intron 20 border, which showed a splice score of 92.2. LAMB3 mRNA was still detectable in RT-PCR analysis although the aberrantly spliced mRNA leads to a stop codon in exon 21, 5' of the commonly assumed 3' border for nonsense-mediated mRNA decay. These results describe an exception to the proposed rules of pre-mRNA splicing and RNA degradation.  相似文献   

6.
The rate of exon 9 exclusion from the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA is associated with monosymptomatic forms of cystic fibrosis. Exon 9 alternative splicing is modulated by a polymorphic polythymidine tract within its 3' splice site. We have generated a minigene carrying human CFTR exon 9 with its flanking intronic sequences and set up an in vivo model to study the cis-acting DNA elements which modulate its splicing. Transfections into human cell lines showed that T5, but not T9 or T7 alleles, significantly increases the alternative splicing of exon 9. Moreover, we found that another polymorphic locus juxtaposed upstream of the T tract, and constituted by (TG)(n)repeats, can further modulate exon 9 skipping but only when activated by the T5 allele. Then, we extended our studies to the mouse CFTR exon 9 which does not show alternative splicing. Comparison of human and mouse introns 8 and 9 revealed a low homology between the two sequences and the absence of the human polymorphic loci within the mouse intron 3' splice site. We have tested a series of constructs where the whole human exon 9 with its flanking intronic sequences was replaced partially or completely by the murine counterpart. The transfections of these constructs in human and murine cell lines reveal that also sequences of the downstream intron 9 affect exon 9 definition and co-modulate, with the UG/U 3' splice site sequences, the extent of exon 9 skipping in CFTR mRNA.  相似文献   

7.
8.
We have used peripheral blood T-lymphocyte cultures to analyze the hprt mutation in two Lesch-Nyhan syndrome males who are cousins and to confirm the carrier status of female members of the family. Both cDNA and genomic DNA sequencing studies show that this patient carries a hitherto undescribed single base deletion in the exon 5 donor splice site sequence (15:+1, δG, base number 31635). The largest cDNA product contained all nine hprt exons plus an insertion of 66 bases of intron 5, consistent with the use of a cryptic splice site in intron 5 (aag67/gtaagc). This splicing error would result in a chain terminating codon immediately after exon 5 (15:2–4, taa) and predicts a polypeptide of 133 amino acids. This loss of the normal splice donor site also results in multiple hprt mRNA species, combining the use of the cryptic splice site in intron 5 and splicing errors involving exons 2–6. In addition to defining a new Lesch-Nyhan mutation (hprtHenryville), these results provide insight into aberrant splicing of hprt mRNA in T-lymphocytes.  相似文献   

9.
10.
We have analyzed the pathway of mammalian spliceosome assembly in vitro using a mobility retardation assay. The binding of splicing complexes to both wild-type and mutant beta-globin pre-RNAs was studied. Three kinetically related, ATP-dependent complexes, alpha, beta, and gamma, were resolved with a wild-type beta-globin substrate. These complexes formed, both temporally and in order of decreasing mobility, alpha----beta----gamma. All three complexes contained U2 snRNA. The RNA intermediates of splicing, i.e., free 5' exon and intron lariat + 3' exon, were found predominantly in the gamma complex. The RNA products of splicing, i.e., ligated exons and fully excised intron lariat, were found in separate, postsplicing complexes which appeared to form via breakdown of gamma. Mutations of the 5' splice site, which caused an accumulation of splicing intermediates, also resulted in accumulation of the gamma complex. Mutations of the 3' splice site, which severely inhibited splicing, reduced the efficiency and altered the pattern of complex formation. Surprisingly, the analysis of double mutants, with sequence alterations at both the 5' and 3' splice sites, revealed that the 5' splice site genotype was important for the efficient formation of a U2 snRNA-containing alpha complex at the 3' splice site. Thus, it appears that a collaborative interaction between the separate 5' and 3' splice sites promotes spliceosome assembly.  相似文献   

11.
12.
13.
We describe 94 pathogenic NF1 gene alterations in a cohort of 97 Austrian neurofibromatosis type 1 patients meeting the NIH criteria. All mutations were fully characterized at the genomic and mRNA levels. Over half of the patients carried novel mutations, and only a quarter carried recurrent minor-lesion mutations at 16 mutational warm spots. The remaining patients carried NF1 microdeletions (7%) and rare recurring mutations. Thirty-six of the mutations (38%) altered pre-mRNA splicing, and fall into five groups: exon skipping resulting from mutations at authentic splice sites (type I), cryptic exon inclusion caused by deep intronic mutations (type II), creation of de novo splice sites causing loss of exonic sequences (type III), activation of cryptic splice sites upon authentic splice-site disruption (type IV), and exonic sequence alterations causing exon skipping (type V). Extensive in silico analyses of 37 NF1 exons and surrounding intronic sequences suggested that the availability of a cryptic splice site combined with a strong natural upstream 3' splice site (3'ss)is the main determinant of cryptic splice-site activation upon 5' splice-site disruption. Furthermore, the exonic sequences downstream of exonic cryptic 5' splice sites (5'ss) resemble intronic more than exonic sequences with respect to exonic splicing enhancer and silencer density, helping to distinguish between exonic cryptic and pseudo 5'ss. This study provides valuable predictors for the splicing pathway used upon 5'ss mutation, and underscores the importance of using RNA-based techniques, together with methods to identify microdeletions and intragenic copy-number changes, for effective and reliable NF1 mutation detection.  相似文献   

14.
A considerable fraction of mutations associated with hereditary disorders and cancers affect splicing. Some of them cause exon skipping or the inclusion of an additional exon, whereas others lead to the inclusion of intronic sequences or deletion of exonic sequences through the activation of cryptic splice sites. We focused on the latter cases and have designed a series of vectors that express modified U7 small nuclear RNAs (snRNAs) containing a sequence antisense to the cryptic splice site. Three cases of such mutation were investigated in this study. In two of them, which occurred in the PTCH1 and BRCA1 genes, canonical splice donor sites had been partially impaired by mutations that activated nearby intronic cryptic splice donor sites. Another mutation found in exonic region in CYP11A created a novel splice donor site. Transient expression of the engineered U7 snRNAs in HeLa cells restored correct splicing in a sequence-specific and dose-dependent manner in the former two cases. In contrast, the third case, in which the cryptic splice donor site in the exonic sequence was activated, the expression of modified U7 snRNA resulted in exon skipping. The correction of aberrant splicing by suppressing intronic cryptic splice sites with modified U7 is expected be a promising alternative to gene replacement therapy. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
Mutations that affect mRNA splicing often produce multiple mRNA isoforms, resulting in complex molecular phenotypes. Definition of an exon and its inclusion in mature mRNA relies on joint recognition of both acceptor and donor splice sites. This study predicts cryptic and exon‐skipping isoforms in mRNA produced by splicing mutations from the combined information contents (Ri, which measures binding‐site strength, in bits) and distribution of the splice sites defining these exons. The total information content of an exon (Ri,total) is the sum of the Ri values of its acceptor and donor splice sites, adjusted for the self‐information of the distance separating these sites, that is, the gap surprisal. Differences between total information contents of an exon (ΔRi,total) are predictive of the relative abundance of these exons in distinct processed mRNAs. Constraints on splice site and exon selection are used to eliminate nonconforming and poorly expressed isoforms. Molecular phenotypes are computed by the Automated Splice Site and Exon Definition Analysis ( http://splice.uwo.ca ) server. Predictions of splicing mutations were highly concordant (85.2%; n = 61) with published expression data. In silico exon definition analysis will contribute to streamlining assessment of abnormal and normal splice isoforms resulting from mutations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号