首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
Experiments were performed in human working myocardium to investigate the relationship of intracellular calcium handling and availability to alterations in the strength of contraction produced by changes in stimulation rate and pattern. Both control and myopathic muscles exhibited potentiation of peak isometric force during the postextrasystolic contraction which was associated with an increase in the peak intracellular calcium transient. Frequency-related force potentiation was attenuated in myopathic muscles compared to controls. This occurred despite an increase in resting intracellular calcium and in the peak amplitude of the calcium transient as detected with aequorin. Therefore, abnormalities in contractile function of myopathic muscles during frequency-related force potentiation are not due to decreased availability of intracellular calcium, but more likely reflect differences in myofibrillar calcium responsiveness. Sarcolemmal calcium influx may also contribute to frequency-related changes in contractile force in myopathic muscles as suggested by a decrease in action potential duration with increasing stimulation frequency which is associated with fluctuations in peak calcium transient amplitude.  相似文献   

2.
Contractile dysfunction in stunned myocardium could result from a decrease in the intracellular free [Ca2+] transient during each beat, a decrease in maximal Ca2+-activated force, or a shift in myofilament Ca2+ sensitivity. We measured developed pressure (DP) at several [Ca]0 (0.5-7.5 mM) in isovolumic Langendorff-perfused ferret hearts at 37 degrees C after 15 min of global ischemia (stunned group, n = 13) or in a nonischemic control group (n = 6). At all [Ca]0, DP was depressed in the stunned group (P less than 0.001). Maximal Ca2+-activated pressure (MCAP), measured from tetani after exposure to ryanodine, was decreased after stunning (P less than 0.05). Normalization of the DP-[Ca]0 relationship by corresponding MCAP (Ca0 sensitivity) revealed a shift to higher [Ca]0 in stunned hearts. To test whether cellular Ca overload initiates stunning, we reperfused with low-[Ca]0 solution (0.1-0.5 mM; n = 8). DP and MCAP in the low-[Ca]0 group were comparable to control (P greater than 0.05), and higher than in the stunned group (P less than 0.05). Myocardial [ATP] observed by phosphorus NMR failed to correlate with functional recovery. In conclusion, contractile dysfunction in stunned myocardium is due to a decline in maximal force, and a shift in Ca0 sensitivity (which may reflect either decreased myofilament Ca2+ sensitivity or a decrease in the [Ca2+] transient). Our results also indicate that calcium entry upon reperfusion plays a major role in the pathogenesis of myocardial stunning.  相似文献   

3.
Experiments were performed to investigate the mechanism of action of DPI 201-106 on human heart muscle. In both control and myopathic muscles, DPI produced concentration-dependent increases in action potential duration, resting muscle tension, peak isometric tension, and duration of isometric tension. These changes were associated with increases in resting intracellular calcium and peak calcium transients as measured by aequorin. At higher concentrations of DPI, a second delayed Ca2+ transient (L') appeared. L' was inhibited by tetrodotoxin and ryanodine, suggesting that DPI acts at both the sarcolemma and the sarcoplasmic reticulum. DPI toxicity was manifested by after-glimmers and after-contractions reflecting a Ca2+-overload state: DPI effects were mimicked by veratridine, a Na+ channel agonist, and reversed by tetrodotoxin, yohimbine, and cadmium, Na+ channel antagonists. These results suggest that DPI acts primarily as a Na+ channel agonist. DPI may produce an increase in intracellular Ca2+ by increasing intracellular Na+ and altering Na+-Ca2+ exchange across the sarcolemma. DPI may also increase intracellular Ca2+ by directly altering sarcoplasmic reticulum Ca2+ handling.  相似文献   

4.
24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号