首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Triatoma dimidiata is one of the major Chagas disease vectors, with an extensive diversity in its morphology, habitat, and level of domiciliation. Molecular studies based on the internal transcribed spacer 2 (ITS-2) have subdivided this species into four potential taxonomic groups. Using both ITS-2 and cytochrome B markers, we confirmed the sibling species status of ITS-2 Group 3 and detected an apparent sympatry of ITS-2 Groups 2 and 3 in the Yucatan peninsula, Mexico. Here we examine the geographic distribution of T. dimidiata ITS-2 genotypes in the region and compare their egg production and Trypanosoma cruzi infection rates, as indicators of biological differences between groups. PCR genotyping of large natural populations showed an extensive sympatry of Groups 2 and 3 in most of the peninsula, often within the same house. We also detected a large proportion of individuals displaying ITS-2 sequences from both Groups 2 and 3, suggesting hybridization. Analysis of ITS-2 genotype frequencies indicated a strong departure from Hardy–Weinberg equilibrium in female hybrids, but not in males, due to a large heterozygote deficit. These results suggest random mating between ITS-2 Groups 2 and 3 combined with reduced viability and/or survival in female hybrids. This and other factors may allow for the maintenance of distinct ITS-2 Groups 2 and 3 populations despite high hybrid frequencies. Importantly, T. cruzi infection was much higher in hybrids compared to ITS-2 Groups 2 and 3 individuals, but all three genotypes appeared to seasonally infest houses in a similar manner in the region. These findings warrant further studies on T. dimidiata taxonomy and its epidemiologic implications.  相似文献   

2.
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying.  相似文献   

3.
The widespread and diverse Triatoma dimidiata is the kissing bug species most important for Chagas disease transmission in Central America and a secondary vector in Mexico and northern South America. Its diversity may contribute to different Chagas disease prevalence in different localities and has led to conflicting systematic hypotheses describing various populations as subspecies or cryptic species. To resolve these conflicting hypotheses, we sequenced a nuclear (internal transcribed spacer 2, ITS-2) and mitochondrial gene (cytochrome b) from an extensive sampling of T. dimidiata across its geographic range. We evaluated the congruence of ITS-2 and cyt b phylogenies and tested the support for the previously proposed subspecies (inferred from ITS-2) by: (1) overlaying the ITS-2 subspecies assignments on a cyt b tree and, (2) assessing the statistical support for a cyt b topology constrained by the subspecies hypothesis. Unconstrained phylogenies inferred from ITS-2 and cyt b are congruent and reveal three clades including two putative cryptic species in addition to T. dimidiata sensu stricto. Neither the cyt b phylogeny nor hypothesis testing support the proposed subspecies inferred from ITS-2. Additionally, the two cryptic species are supported by phylogenies inferred from mitochondrially-encoded genes cytochrome c oxidase I and NADH dehydrogenase 4. In summary, our results reveal two cryptic species. Phylogenetic relationships indicate T. dimidiata sensu stricto is not subdivided into monophyletic clades consistent with subspecies. Based on increased support by hypothesis testing, we propose an updated systematic hypothesis for T. dimidiata based on extensive taxon sampling and analysis of both mitochondrial and nuclear genes.  相似文献   

4.
Triatoma dimidiata is the main vector of Trypanosoma cruzi parasites in Veracruz, Mexico, and its association with human housing appears variable. Also, in spite of a high seroprevalence of T. cruzi infection in humans, parasite transmission remains poorly understood. Therefore, we aimed to identify T. dimidiata blood feeding sources and its parasite and microbial diversity to reconstruct T. cruzi parasite transmission ecology in central Veracruz, Mexico, within a One Health/Ecohealth framework. We used a metabarcoding and deep sequencing approach of specific markers for the simultaneous identification of T. dimidiata haplogroup (ITS-2), vertebrate blood meals (12 s gene), T. cruzi parasites (mini-exon gene), and gut microbiota (bacterial 16 s). Twelve species of domestic/synanthropic animals and humans were identified as blood sources, with multiple feeding on 4.2 ± 0.4 hosts per bug. The feeding/parasite transmission network was strongly centered on humans, emphasizing a significant risk of infection. We also unambiguously confirmed the presence of TcI, TcII, TcV and TcVI DTUs in T. dimidiata, and sequences from Veracruz tended to cluster apart from parasites from other regions, suggesting some level of local differentiation. Analysis of T. dimidiata microbiota suggested that several bacterial families may be associated with the presence/absence of T. cruzi, and some of these associations may also be parasite DTU-specific. Such integrative approaches within the EcoHealth/One Health framework provide key insights on T. cruzi transmission and potential novel strategies for disease control.  相似文献   

5.
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and transmitted by triatomine insect vectors. In Guatemala, insecticide spraying is an integral part of management of the main vector, Triatoma dimidiata. Spraying typically has low efficacy, which may be due to incomplete elimination from infested houses, within-village dispersal, or influx from other villages or sylvan environments. To evaluate how these mechanisms contribute to reinfestation, we conducted a time-course analysis of T. dimidiata infestation, abundance and household genetic structure in two nearby villages in Jutiapa, Guatemala; houses in the first village were surveyed, treated with insecticide if infested and then re-surveyed at eight and 22 months following spraying, while the second village served as an untreated control to quantify changes associated with seasonal dispersal. Insects were genotyped at 2–3000 SNP loci for kinship and population genetic analyses. Insecticide application reduced overall infestation and abundance, while the untreated village was stable over time. Nevertheless, within two years 35.5% of treated houses were reinfested and genetic diversity had largely recovered. Insects collected from reinfested houses post-spraying were most closely related to pre-spray collections from the same house, suggesting that infestations had not been fully eliminated. Immigration by unrelated insects was also detected within a year of spraying; when it occurred, dispersal was primarily local from neighboring houses. Similar dispersal patterns were observed following the annual dispersal season in the untreated village, with high-infestation houses serving as sources for neighboring homes. Our findings suggest that the efficacy of pyrethroid application is rapidly diminished by both within-house breeding by survivors and annual cycles of among-house movement. Given these patterns, we conclude that house structural improvements, an integral part of the Ecohealth approach that makes houses refractory to vector colonization and persistence, are critical for long-term reduction of T. dimidiata infestation.  相似文献   

6.
Triatoma dimidiata (Latreille) is a species complex that spans North, Central, and South America and which is a key vector of all known discrete typing units (DTU) of Trypanosoma cruzi, the etiologic agent of Chagas disease. Morphological and genetic studies indicate that T. dimidiata is a species complex with three principal haplogroups (hg) in Mexico. Different markers and traits are still inconclusive regarding if other morphological differentiation may indicate probable behavioral and vectorial divergences within this complex. In this paper we compared the antennae of three Mexican haplogroups (previously verified by molecular markers ND4 and ITS-2) and discussed possible relationships with their capacity to disperse and colonized new habitats. The abundance of each type of sensillum (bristles, basiconics, thick- and thin-walled trichoids) on the antennae of the three haplogroups, were measured under light microscopy and compared using Kruskal–Wallis non-parametric and multivariate non-parametric analyses. Discriminant analyses indicate significant differences among the antennal phenotype of haplogroups either for adults and some nymphal stages, indicating consistency of the character to analyze intraspecific variability within the complex. The present study shows that the adult antennal pedicel of the T. dimidiata complex have abundant chemosensory sensilla, according with good capacity for dispersal and invasion of different habitats also related to their high capacity to adapt to conserved as well as modified habitats. However, the numerical differences among the haplogroups are suggesting variations in that capacity. The results here presented support the evidence of T. dimidiata as a species complex but show females and males in a different way. Given the close link between the bug's sensory system and its habitat and host-seeking behavior, AP characterization could be useful to complement genetic, neurological and ethological studies of the closely related Dimidiata Complex haplogroups for a better knowledge of their vectorial capacity and a more robust species differentiation.  相似文献   

7.
Phylogenetic relationships of insect vectors of parasitic diseases are important for understanding the evolution of epidemiologically relevant traits, and may be useful in vector control. The sub-family Triatominae (Hemiptera:Reduviidae) includes ∼140 extant species arranged in five tribes comprised of 15 genera. The genus Triatoma is the most species-rich and contains important vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Triatoma species were grouped into complexes originally by morphology and more recently with the addition of information from molecular phylogenetics (the four-complex hypothesis); however, without a strict adherence to monophyly. To date, the validity of proposed species complexes has not been tested by statistical tests of topology. The goal of this study was to clarify the systematics of 19 Triatoma species from North and Central America. We inferred their evolutionary relatedness using two independent data sets: the complete nuclear internal transcribed spacer-2 ribosomal DNA (ITS-2 rDNA) and head morphometrics. In addition, we used the Shimodaira–Hasegawa statistical test of topology to assess the fit of the data to a set of competing systematic hypotheses (topologies). An unconstrained topology inferred from the ITS-2 data was compared to topologies constrained based on the four-complex hypothesis or one inferred from our morphometry results. The unconstrained topology represents a statistically significant better fit of the molecular data than either the four-complex or the morphometric topology. We propose an update to the composition of species complexes in the North and Central American Triatoma, based on a phylogeny inferred from ITS-2 as a first step towards updating the phylogeny of the complexes based on monophyly and statistical tests of topologies.  相似文献   

8.
Chagas disease ranks among the world's most neglected tropical diseases and congenital transmission is increasingly responsible for urbanization of Chagas disease in non-endemic areas.Molecular assays for amplification and profiling of parasite minicircle DNA (kDNA) and identification of discrete typing units (DTUs) were prospectively conducted in bloodstream and placental samples from pregnant women cursing chronic Chagas disease residing in Buenos Aires city.Sensitivity of kDNA-PCR increased from 75.6% to 95.6% when one to three sequential blood samples were analysed. Congenital infection (CI) was diagnosed in 3 neonates born to kDNA-PCR positive mothers, one who had transmitted CI in a previous gestation, pointing to family clustering of congenital transmission. Fourteen of 44 placental samples were kDNA-PCR positive, all from non-CI transmitting women, indicating that placental PCR is not useful for CI diagnosis. Placental PCR positivity was not related to maternal bloodstream PCR positivity and placental parasitic subpopulations not observed in bloodstream were detected by minicircle signatures. PCR targeted to intergenic regions of spliced-leader genes and serological tests using trypomastigote small surface recombinant antigens showed predominance of DTU group TcII/V/VI and only one patient infected with TcI.To our knowledge, this is the first PCR-based follow-up study of bloodstream and placental T. cruzi infections during pregnancy, including identification of DTUs. kDNA-PCR assays in serial blood samples provided high sensitivity for detection of T. cruzi DNA in pregnant women with chronic Chagas disease.  相似文献   

9.
Trypanosoma cruzi, the agent of Chagas disease, is usually subdivided into six discrete typing units (DTUs), TcI to TcVI, among which TcI and TcV are most common in human infections in Bolivia. Multilocus microsatellite typing (MLMT) was selected to further explore the structure of the natural populations belonging to these DTUs. The analysis showed that microsatellite clustering does not fully match the six DTUs, but it is relevant for the within DTUs analyses. Population genetics analysis was conducted on 11 relevant subsamples of stocks from Bolivia and Peru, belonging to TcI (6) and TcV (5), defined by four criterions: DTU, vector species, geographic origin, and date of isolation. Most TcV strains presented the same multilocus genotype over all subsamples with the puzzling characteristic that five loci were heterozygous and the other five homozygous. In TcI, four clusters were defined according to the vector species. Most of them appeared in agreement with clonal propagation (stocks isolated from Triatoma infestans and Triatoma sordida), while a few highly homozygous stocks (e.g. those isolated from Rhodnius stali) suggested that scarce sex events can occur. The poor role played by spatio-temporal factors in describing the observed genetic diversity suggested that ecology, in particular as regard to host played a significant role. These results highlight the extreme heterogeneity of T. cruzi and suggest that further population genetics surveys will need to target the most possible precise spatio-temporal and ecological scales.  相似文献   

10.
Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance.  相似文献   

11.
We assessed 4 lizard species in Chile for Trypanosoma cruzi, the causative agent of Chagas disease, and 1 species for its ability to transmit the protozoan to uninfected kissing bugs. All lizard species were infected, and the tested species was capable of transmitting the protozoan, highlighting their role as T. cruzi reservoirs.  相似文献   

12.
Chagas disease is caused by Trypanosoma cruzi. Vector survival is an important variable affecting vectorial capacity to determine parasite transmission risk. The aims of this study are to evaluate vector survival under fasting/starvation conditions of wild-caught Mepraia spinolai after feeding and fasting, the pathogenicity of T. cruzi infection, the parasite burden and seasonal variation in parasite discrete typing units (DTU). The survivorship of M. spinolai nymphs after two continuous artificial feedings was evaluated, assessing their infection with microscopic observation of fecal samples and PCR. Later, insects were fasted/starved until death. We performed qPCR analyses of parasite load in the fecal samples and dead specimens. T. cruzi genotyping was performed using conventional PCR amplicons and hybridization tests. Infection rate was higher in M. spinolai nymphs in summer and spring than in fall. Parasite burden varied from 3 to 250,000 parasites/drop. Survival rate for starved nymph stage II was lower in insects collected in the spring compared to summer and fall. TcII was the most frequent DTU. Mainly metacyclic trypomastigotes were excreted. We conclude that M. spinolai infection rate in nymphs varies among seasons, suggesting higher transmission risk in warmer seasons. However, nymphs stage II collected in spring are more sensitive to starvation compared to other seasons. TcII in single or mixed infection does not seem relevant to determine vector pathogenicity. These results of vector survivorship after fasting/starvation are important to determine the competence of M. spinolai as a vector of T. cruzi, since they excrete metacyclic trypomastigotes and the parasitism with T. cruzi seems to be poorly pathogenic to the vector under a severe fasting/starvation condition.  相似文献   

13.
Chagas disease (infection by the protozoan Trypanosoma cruzi) is a major parasitic disease of the Americas and one of the main neglected tropical diseases. Although various routes of transmission sre recognized, the risk for transmission of the infection through breast-feeding has not clearly been established. We reviewed the literature on transmission of T. cruzi through breast-feeding to provide breast-feeding mothers with Chagas disease with medical guidance. Although data from animal studies and human studies are scarce, we do not recommend that mothers with Chagas disease discontinue breast-feeding, unless they are experiencing the acute phase of the disease, reactivated disease resulting from immunosuppression, or bleeding nipples. In these cases, thermal treatment of milk before feeding the infant may be considered.  相似文献   

14.
Objectives Mothers with Chagas’ disease can transmit Trypanosoma cruzi to their fetuses, who often become carriers of the infection and are then at risk of developing severe cardiac disease later in the course of their lives. If identified early enough after birth, the infected newborns can be treated and cured. Our objective was to review the data available in Canada, Mexico, and the United States and to discuss the need for prevention programs. Methods We reviewed the literature and estimated the number of seropositive mothers and newborns infected by T. cruzi. Results We estimate that about 40,000 pregnant women and 2,000 newborns are likely to be infected by T. cruzi in North America. We have not identified any ongoing prevention programs. Conclusions Mother-to-child transmission of T. cruzi has all the characteristics required to be a public health priority, as it is relatively frequent, severe, identifiable, and treatable. In reality, it is a neglected disease and a missed opportunity. It is urgent to better understand the epidemiology of mother-to-child transmission of T. cruzi in North America and to develop effective prevention programs.  相似文献   

15.
Hematophagous insects of the subfamily Triatominae include several species with a large variety of shapes, behavior and distribution. They have great epidemiological importance since most of them transmit the flagellated protozoan Trypanosoma cruzi, the etiologic agent of Chagas disease. In this subfamily several cases of species hybridization have been reported under experimental and natural conditions. Mepraia is a genus of Triatominae endemic in Chile, responsible for transmitting T. cruzi in the sylvatic cycle. This genus includes three species, M. gajardoi, M. spinolai and M. parapatrica; however, the differentiation of M. parapatrica as a separate species remains controversial considering the possible occurrence of introgression/hybridization processes in some populations of this putative species. Mepraia species show conspicuous wing polymorphism, and it has been proposed that the genes related to wings are linked to the Y chromosome, thus wingless males could not engender winged progeny. In order to determine the degree of reproductive isolation and to assess the wing phenotype in the offspring, we performed experimental crosses between the two most divergent Mepraia species (M. gajardoi and M. spinolai) together with chromosome analyses of hybrid progenies. Although fertile F1 hybrids were obtained in only one direction of crossing, we verified the existence of different isolation mechanisms between parental species, including hybrid breakdown. The occurrence of winged males in the offspring of wingless parental males suggests that the wing character is not linked to the Y chromosome.  相似文献   

16.
A pseudogene, paralogous to rDNA 5.8S and ITS-2, is described in Meccus dimidiata dimidiata, M. d. capitata, M. d. maculippenis, M. d. hegneri, M. sp. aff. dimidiata, M. p. phyllosoma, M. p. longipennis, M. p. pallidipennis, M. p. picturata, M. p. mazzottii, Triatoma mexicana, Triatoma nitida and Triatoma sanguisuga, covering North America, Central America and northern South America. Such a nuclear rDNA pseudogene is very rare. In the 5.8S gene, criteria for pseudogene identification included length variability, lower GC content, mutations regarding the functional uniform sequence, and relatively high base substitutions in evolutionary conserved sites. At ITS-2 level, criteria were the shorter sequence and large proportion of insertions and deletions (indels). Pseudogenic 5.8S and ITS-2 secondary structures were different from the functional foldings, different one another, showing less negative values for minimum free energy (mfe) and centroid predictions, and lower fit between mfe, partition function, and centroid structures. A complete characterization indicated a processed pseudogenic unit of the ghost type, escaping from rDNA concerted evolution and with functionality subject to constraints instead of evolving free by neutral drift. Despite a high indel number, low mutation number and an evolutionary rate similar to the functional ITS-2, that pseudogene distinguishes different taxa and furnishes coherent phylogenetic topologies with resolution similar to the functional ITS-2. The discovery of a pseudogene in many phylogenetically related species is unique in animals and allowed for an estimation of its palaeobiogeographical origin based on molecular clock data, inheritance pathways, evolutionary rate and pattern, and geographical spread. Additional to the technical risk to be considered henceforth, this relict pseudogene, designated as “ps(5.8S+ITS-2)”, proves to be a valuable marker for specimen classification, phylogenetic analyses, and systematic/taxonomic studies. It opens a new research field, Chagas disease epidemiology and control included, given its potential relationships with triatomine fitness, behaviour and adaptability.  相似文献   

17.
We combined American Community Survey data with age-specific Trypanosoma cruzi prevalence derived from US surveys and World Health Organization reports to yield estimates of Chagas disease in the United States, which we mapped at the local level. In addition, we used blood donor data to estimate the relative prevalence of autochthonous T. cruzi infection. Our estimates indicate that 288,000 infected persons, including 57,000 Chagas cardiomyopathy patients and 43,000 infected reproductive-age women, currently live in the United States; 22–108 congenital infections occur annually. We estimated ≈10,000 prevalent cases of locally acquired T. cruzi infection. Mapping shows marked geographic heterogeneity of T. cruzi prevalence and illness. Reliable demographic and geographic data are key to guiding prevention and management of Chagas disease. Population-based surveys in high prevalence areas could improve the evidence base for future estimates. Knowledge of the demographics and geographic distribution of affected persons may aid practitioners in recognizing Chagas disease.  相似文献   

18.
The parasitic protozoan Trypanosoma cruzi, the causative agent of Chagas disease, is widely distributed throughout the Americas, from the southern United States (US) to northern Argentina, and infects at least 6 million people in endemic areas. Much remains unknown about the dynamics of T. cruzi transmission among mammals and triatomine vectors in sylvatic and peridomestic eco-epidemiological cycles, as well as of the risk of transmission to humans in the US. Identification of T. cruzi DTUs among locally-acquired cases is necessary for enhancing our diagnostic and clinical prognostic capacities, as well as to understand parasite transmission cycles. Blood samples from a cohort of 15 confirmed locally-acquired Chagas disease patients from Texas were used for genotyping T. cruzi. Conventional PCR using primers specific for the minicircle variable region of the kinetoplastid DNA (kDNA) and the highly repetitive genomic satellite DNA (satDNA) confirmed the presence of T. cruzi in 12/15 patients. Genotyping was based on the amplification of the intergenic region of the miniexon gene of T. cruzi and sequencing. Sequences were analyzed by BLAST and phylogenetic analysis by Maximum Likelihood method allowed the identification of non-TcI DTUs infection in six patients, which corresponded to DTUs TcII, TcV or TcVI, but not to TcIII or TcIV. Two of these six patients were also infected with a TcI DTU, indicating mixed infections in those individuals. Electrocardiographic abnormalities were seen among patients with single non-TcI and mixed infections of non-TcI and TcI DTUs. Our results indicate a greater diversity of T. cruzi DTUs circulating among autochthonous human Chagas disease cases in the southern US, including for the first time DTUs from the TcII-TcV-TcVI group. Furthermore, the DTUs infecting human patients in the US are capable of causing Chagasic cardiac disease, highlighting the importance of parasite detection in the population.  相似文献   

19.
To evaluate human risk for Chagas disease, we molecularly identified blood meal sources and prevalence of Trypanosoma cruzi infection among 49 Triatoma sanguisuga kissing bugs in Louisiana, USA. Humans accounted for the second most frequent blood source. Of the bugs that fed on humans, ≈40% were infected with T. cruzi, revealing transmission potential.  相似文献   

20.
American trypanosomiasis, or Chagas disease, is caused by Trypanosoma cruzi, and a vaccine would greatly improve disease control. While some studies in mice suggest that a vaccine is feasible, limited efficacy has been observed in dogs. We evaluated here the safety and efficacy of a DNA vaccine encoding TSA-1 and Tc24 antigens in a dog model of acute T. cruzi infection. Mongrel dogs were immunized with two doses of 500 μg of DNA vaccine, two weeks apart, and infected with T. cruzi (SylvioX10/4 strain) two weeks after the second vaccine dose. Another group of dogs was infected first and treated with the vaccine. Disease progression was monitored for up to 70 days post-infection. The vaccine did not induce any critical change in blood parameters, nor exacerbation of disease in vaccinated animals. On the contrary, it prevented anemia and a decrease in lymphocyte counts following T. cruzi infection in vaccinated dogs. Both preventive and therapeutic vaccination significantly reduced parasitemia, cardiac inflammation and cardiac parasite burden, and tended to reduce the development of cardiac arrhythmias. These results indicate that a preventive or therapeutic DNA vaccine encoding TSA-1 and Tc24 antigens is safe and may reduce both parasite transmission and the clinical progression of Chagas disease in vaccinated dogs. This DNA vaccine may thus be an excellent veterinary vaccine candidate. These data also further strengthen the feasibility of a Chagas disease vaccine for humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号