首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Purpose: The anticonvulsants phenytoin (PHT), carbamazepine (CBZ), and gabapentin (GBP) are commonly used in the treatment of temporal lobe epilepsy. Ca2+ current modulation has been proposed to contribute to the antiepileptic activity of these drugs. The purpose of this study was to determine the effects of these anticonvulsants on voltage-dependent calcium channels in pathologically altered neurons from patients with chronic temporal lobe epilepsy.
Methods : Acutely isolated human hippocampal granule cells were examined by using the whole-cell configuration of the patch-clamp technique.
Results : PHT and CBZ produced a reversible, concentrationdependent inhibition of high-voltagectivated (HVA) Ca2+ currents without affecting voltage-dependent activation. The concentration-response curves of PHT and CBZ indicated maximal inhibition of 35 and 65%, respectively, with halfmaximal inhibition being obtained at 89 and 244 μ M , respectively. At therapeutic cerebrospinal fluid (CSF) concentrations, HVA currents were not significantly altered by PHT and CBZ. However, PHT but not CBZ showed a reduction of HVA currents of 16% at a therapeutic whole-brain concentration of 80 μ M . In ontrast to CBZ, PHT produced a small hyperpolarizing shift in the voltage dependence of steady-state inactivation. PHT, 80 μ4, shifted the potential of half-maximal inactivation by -3.1 ± 0.5 mV (p < 0.05). GBP, which was recently found to bind to the à2 subunit of a neuronal Ca2+ channel, showed no modulation of Ca2+ conductances.
Conclusions : These results suggest that, in contrast to GBP and CBZ, modulation of postsynaptic Ca2+ channels can contribute to the anticonvulsant action of PHT in human hippocampal granule cells.  相似文献   

2.
PURPOSE: BIA 2-093 [(S)-(-)-10-acetoxy-10,11-dihydro-5H-dibenz/b,f/azepine-5-carboxamide] is endowed with an anticonvulsant potency similar to that of carbamazepine (CBZ), but produces less cognitive and motor impairment. This study evaluated whether voltage-gated sodium channels (VGSCs) are a primary locus for the action of BIA 2-093. METHODS: We used the whole-cell voltage-clamp technique in the mouse neuroblastoma cell line N1E-115 to investigate the effects of BIA 2-093 and CBZ on VGSCs, displacement of [3H]-batrachotoxinin A 20-alpha-benzoate ([3H]-BTX), and [3H]-saxitoxin to define their relative potency to bind to rat brain sodium channels, and inhibition of uptake of 22Na by rat brain cortical synaptosomes stimulated by veratridine as a measure of sodium entry. RESULTS: The inhibitory potencies of BIA 2-093 and CBZ increased as the holding potential was made less negative (-100, -90, -80, and -70 mV) with median inhibitory concentration (IC50) values (in microM) of, respectively, 4,337, 618, 238, and 139 for BIA 2-093, and 1,506, 594, 194, and 101 for CBZ. BIA 2-093 displayed a similar potency in displacing [3H]-BTX (IC50 values, 222 vs. 361 microM; p > 0.05) and inhibiting the uptake of 22Na (IC50 values, 36 vs. 138 microM; p > 0.05). Both drugs failed to displace [3H]-saxitoxin in concentrations up to 300 microM. CONCLUSIONS: BIA 2-093, like CBZ, inhibits sodium currents in a voltage-dependent way by an interaction predominantly with the inactivated state of the channel and interacts with neurotoxin receptor site 2, but not with receptor site 1. BIA 2-093 displayed a potency blocking VGSCs similar to that of CBZ.  相似文献   

3.
PURPOSE: Carbamazepine (CBZ) is a well-established drug in the therapy of temporal lobe epilepsy (TLE). The anticonvulsant action of CBZ has been explained mainly by use-dependent effects on voltage-dependent Na+ channels in various nonhuman cell type. However, it is unclear whether Na+ currents in neurons within the focal epileptogenic area of patients with medically intractable TLE show similar characteristics. METHODS: Therefore we used the whole-cell patch-clamp technique to investigate the effects of CBZ on voltage-dependent Na+ currents in 23 acutely isolated dentate granule cells (DGCs) from the resected hippocampus of eight patients with medically intractable TLE. RESULTS: As in findings in animal preparations, CBZ significantly reduced the amplitude of the Na+ current and significantly shifted the current-voltage dependence of the steady-state inactivation in the hyperpolarizing direction. In contrast, the rapid component of the recovery from inactivation of the Na+ currents was not affected by CBZ. In addition, the reduction of the Na+ current amplitude observed during repetitive stimulation with depolarizing pulses was not significantly altered by CBZ. CONCLUSIONS: In summary, CBZ strongly affects the voltage-dependent steady-state inactivation, with no effects on the removal of inactivation in Na+ currents of human DGCs. In spite of the lack of suitable control material, the CBZ insensitivity of the removal of inactivation may be an interesting concept to explain the medically intractable TLE in these patients.  相似文献   

4.
Mike A  Karoly R  Vizi ES  Kiss JP 《Neuroreport》2003,14(15):1945-1949
The effect of the selective dopamine uptake inhibitor GBR 12909 on TTX-sensitive sodium channels of cultured hippocampal neurons was investigated using whole cell patch-clamp technique. GBR 12909 dose-dependently inhibited sodium currents evoked by trains of depolarizing pulses with an IC50 of 6.3 microM. A weaker inhibition (IC50 = 17-35 microM) could be observed when currents were evoked by either single pulse depolarization or from hyperpolarized holding membrane potential. These data indicate that the extent of inhibition caused by GBR 12909 depends on the physiological activity pattern of neurons. Our results suggest that caution is needed for the interpretation of data when GBR 12909 is used for the inhibition of dopamine uptake at concentrations above the submicromolar range.  相似文献   

5.
Spontaneous and N-methyl-D-aspartate (NMDA)-evoked single-channel currents were studied in outside-out patches isolated from cultured rat hippocampal neurons. Both spontaneous and NMDA-evoked single-channel currents reversed at potentials close to 0 mV and exhibited multiple amplitude levels of similar amplitude. Both spontaneous and NMDA-evoked single-channel currents were inhibited by Mg2+ in a voltage-dependent manner and by 7-chlorokynurenic acid. The activity of spontaneous single-channel currents was reduced by the competitive NMDA receptor antagonists, but by one to three orders of magnitude less than expected assuming that the spontaneous activity is due to an ambient NMDA receptor agonist present in the extracellular solution. Our results suggest that, similar to other ligand-gated ion channels, NMDA receptor channels have a dual mode of activation - spontaneous and agonist induced.  相似文献   

6.
Schaub C  Uebachs M  Beck H 《Epilepsia》2007,48(7):1339-1350
PURPOSE: A substantial proportion of epilepsy patients ( approximately 30%) continue to have seizures despite carefully optimized treatment with antiepileptic drugs (AEDs). One key concept to explain the development of pharmacoresistance is that epilepsy-related changes in the properties of CNS drug targets result in AED-insensitivity of these targets. These changes then contribute to drug-resistance on a clinical level. We have tested this hypothesis in hippocampal CA1 neurons in experimental epilepsy. METHODS: Using patch-clamp techniques, we thoroughly examined the effects of carbamazepine (CBZ) and phenytoin (PHT) on voltage-gated Na(+) currents (I(Na)) in hippocampal CA1 neurons of sham-control and chronically epileptic rats. RESULTS: We find that there were significant changes in the effects of PHT, but not CBZ on the voltage-dependence of inactivation, resulting in a significant reduction in voltage-dependent blocking effects in chronically epileptic animals. Conversely, CBZ effects on the time course of recovery from inactivation of I(Na) were significantly less pronounced in epileptic compared to sham-control animals, whereas PHT effects remained unaltered. CONCLUSIONS: Our findings indicate that AED-sensitivity of Na(+) currents is reduced in chronic epilepsy. The reduction in sensitivity is due to different biophysical mechanisms for CBZ and PHT. Furthermore, comparison to published work suggests that the loss of AED-sensitivity is less pronounced in CA1 neurons than in dentate granule neurons. Thus, these results suggest that target mechanisms of drug resistance are cell type and AED specific. Unraveling these complex mechanisms is likely to be important for a better understanding of the cellular basis of drug-resistant epilepsy.  相似文献   

7.
Purpose: Preclinical data have suggested that selective serotonin reuptake inhibitors (SSRIs) may have anticonvulsant properties, and some SSRIs are known to modulate ion channels in vitro. We screened citalopram, fluoxetine, and sertraline for anticonvulsant actions in mouse hippocampal slices, and studied the effects of citalopram on active membrane properties and repetitive action potential firing. Methods: To enable testing of antiepileptic effects and target modulation in a single experimental system, we used the simplistic low‐Ca2+ model, which is strongly dependent on the intrinsic excitability of CA1 pyramidal neurons. Field potentials and whole‐cell currents were recorded from brain slices, and SSRIs were bath‐applied. Key Findings: We found that citalopram, fluoxetine, and sertraline inhibited epileptiform activity recorded from area CA1. The effect of citalopram was more potent and less variable than that of fluoxetine and sertraline. The anticonvulsant action of citalopram was accompanied by marked slowing of action potential rise and decay, and robust inhibition of repetitive firing. This depression of membrane excitability appeared to be mediated in part by inhibition of a sustained potassium current. Significance: These findings confirm that SSRIs can have anticonvulsant effects in the hippocampus, and further suggest that citalopram may exert these effects at least in part by inhibition of voltage‐gated ion currents.  相似文献   

8.
In this study, we have compared the effects of two structurally related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), both in current use for the treatment of epilepsy and bipolar disorder, on fast excitatory transmission in rat hippocampal slices. Using electrophysiological recordings, we have investigated the effects of CBZ and OXC on repetitive action potential discharge of CA1 pyramidal neurons demonstrating that both compounds produced firing inhibition with similar IC(50) values. Moreover, we show that bath applied CBZ (0.01-1 mM) exerted a concentration-dependent decrease in the amplitude of the field excitatory postsynaptic potentials with an IC(50) of approximately 194.3 microM. When OXC was used at the same concentrations, the concentration-response curve was shifted to the right (IC(50) of approximately 711.07 microM). In addition, we demonstrated that CBZ and OXC reduced, to a different extent, both evoked excitatory postsynaptic currents and NMDA-, AMPA-, and KA-mediated inward currents, CBZ being more potent than OXC. These data highlight distinct presynaptic and postsynaptic sites of action for both compounds and suggest that CBZ, by markedly depressing postsynaptic ionotropic glutamate receptors-mediated responses, may produce more severe cognitive and memory impairment. Thus, we assume that relatively high doses of OXC could be better tolerated than therapeutically equivalent doses of CBZ, justifying the preferential use of OXC as first-line treatment in the therapy of neurological and psychiatric disorders, particularly when compared with CBZ.  相似文献   

9.
Vreugdenhil M  Wadman WJ 《Epilepsia》1999,40(11):1512-1522
PURPOSE: To determine the modulation of sodium currents in hippocampal CA1 neurons by carbamazepine (CBZ) and valproate (VPA), before and after kindling epileptogenesis. METHODS: Voltage-dependent sodium current was measured in isolated hippocampal CA1 neurons, by using the whole-cell voltage-clamp technique. CBZ (15-100 microM) or VPA (0.5-5 mM) was applied by bath perfusion. Cells from fully kindled rats were compared with controls, 1 day and 5 weeks after the tenth generalized seizure. RESULTS: CBZ did not affect sodium current activation but selectively shifted the voltage dependence of steady-state inactivation to more hyperpolarized potentials. One day after the last kindled generalized seizure, the shift induced by 15 microM CBZ was 2.1+/-0.5 mV (mean +/- SEM; n = 20) compared with 4.3+/-0.3 mV (n = 16; p<0.001) in matched controls. The EC50 of the concentration-effect relation was 57+/-6 microM compared with 34+/-2 microM (p<0.01) in controls. Five weeks after kindling, these values had recovered to a level not different from control. VPA induces at a relatively high concentration a similar but smaller shift in voltage dependence of inactivation than does CBZ. After kindling, the shift induced by 2 mM VPA (2.8+/-0.6 mV; n = 19) was not different from controls (3.0+/-0.5 mV; n = 22). The EC50 for VPA was 2.6+/-0.3 mM compared with 2.5+/-0.4 mM in controls. CONCLUSIONS: Both CBZ and VPA selectively modulate the voltage dependence of sodium current steady-state inactivation and as a consequence reduce cellular excitability. The effect of CBZ was reduced immediately after kindling epileptogenesis, apparently by a reduced affinity of its receptor. In contrast, the shift induced by VPA was not different at any stage after kindling epileptogenesis. The change in CBZ sensitivity after kindling is related to epileptic activity rather than to the epileptic state, because it almost completely recovers in a period without seizures.  相似文献   

10.
The effect of the sulfonamide derivative sulthiame (Ospolot®) on voltage-operated sodium channels was investigated in acutely isolated neurons from the guinea pig hippocampus using the whole-cell patch-clamp technique. Sulthiame in a concentration of 10 μg/ml reduced the inactivating sodium currents without affecting potassium currents. The effect was not dependent on voltage. At therapeutic concentration of 1 to 10 μg/ml sodium currents were reduced by 13 to 25% of control. Reductions of this size (induced by the specific sodium channel blocker tetrodotoxin or by 10 μg/ml sulthiame itself) impaired repetitive generation of action potentials and reduced the maximum discharge frequency by 20 to 40%. In summary, the anticonvulsant drug sulthiame exerts blocking effects on sodium channels which can be assumed to be anticonvulsant and to be different from the effects induced by blockade of carbonic anhydrase.  相似文献   

11.
The aim of this study was to investigate the effects of monomethyltin trichloride (MMT) and dimethyltin dichloride (DMT) on various neuronal ion channels heterologously expressed in Xenopus oocytes and on synaptic transmission in hippocampal slices of young (14-21 days old) and adult (2-4 months old) rats. The Xenopus oocyte expression system was chosen to allow direct assessment of the effects of MMT and DMT both on glutamate receptors sensitive to AMPA and NMDA and on various voltage-operated potassium and sodium channels. Hippocampal slices were used to analyze the effects of MMT and DMT on synaptic potentials generated by the important excitatory Schaffer collateral-CA1 synapse. In general, MMT and DMT were found to have no effect either on voltage-operated sodium and potassium channels or on the metabotropic glutamate receptor but they did differentially affect the functions of ionotropic glutamate receptors and glutamatergic synaptic transmission. MMT (100 microM) significantly reduced NMDA-mediated ion currents by up to 32%, but had no effect on ion currents through AMPA receptors. In slices of adult rats, MMT had no effect on the amplitudes of evoked fEPSPs and brought about a 35% reduction in the LTP amplitudes. In contrast, in slices of young rats MMT evoked a reversible 30% increase in the amplitudes of fEPSPs but had no effect on LTP induction. DMT (100 microM) reduced ion currents through NMDA-receptor ion channels by up to 29% and those through AMPA-receptor ion channels by up to 7%. In hippocampal slices 100 microM DMT reduced the amplitudes of fEPSPs (adults: 50%; young rats: 70%) and LTP (adults: 40%; young rats: 55%). Neither of the organotins affected the paired-pulse facilitation at this synapse, indicating that the organotins exert their effects at the postsynaptic site. The action of MMT and DMT may contribute to the organotin-induced impairment of behavior patterns in connection with learning and memory.  相似文献   

12.
PURPOSE: The balance between synaptic excitation and inhibition within the hippocampus is critical for maintaining normal hippocampal function. Even mild reduction in inhibition or enhancement of excitation can produce seizures. Synaptic excitation is produced by pyramidal cells and granule cells, whereas inhibition is produced by a smaller number of interneurons. To understand how two subpopulations of these excitatory and inhibitory neurons are regulated at the molecular level, we analyzed specific mRNA expression profiles for receptors that are significantly involved in synaptic transmission and in the synthesis and storage of the principal inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). Our hypothesis was that differences in gene expression between inhibitory and excitatory neurons in the rat hippocampus might point to specific new targets for seizure pharmacotherapy. METHODS: We combined the techniques of (a) whole-cell patch clamping in rat hippocampal slices, (b) biocytin staining for cell identification, (c) single-cell mRNA amplification, and (d) small-scale cDNA microarray analysis to allow us to obtain expression profiles for candidate genes from identified CA1 pyramidal neurons and interneurons. Electrophysiologic and morphologic data and expression profiles were obtained from 12 stratum pyramidale and seven stratum radiatum cells. RESULTS: Presumed inhibitory neurons expressed significantly more GAD65, GAD67, vGAT, GABA(A)-receptor alpha3, and N-methyl-d-aspartate (NMDA)-receptor IIB mRNA, and presumed excitatory neurons expressed more GABA(A)-receptor alpha1, and NMDA-receptor I mRNA. CONCLUSIONS: Differential expression of candidate neurotransmitter-receptor subunits distinguished CA1 pyramidal neurons from interneurons. These differences may indicate potential new targets for altering the balance of inhibition and excitation in the treatment of epilepsy.  相似文献   

13.
A computer model of the hippocampal CA1 area, which receives synaptic inputs from CA3 neurons via the Schaffer collaterals, was constructed. Pyramidal cells (PC) and two types of interneurons were represented by compartmental models, and mechanisms of feed-forward inhibition (FFI) and recurrent inhibition were incorporated. Four types of receptor mediated synaptic conductances were used in the model: those of AMPA, GABA(A), GABA(B) and N-methyl-D-aspartate (NMDA). The output of the model, i.e. the field potential calculated at various points in space, was able to qualitatively reproduce the main features of field potentials, which were recorded in hippocampal slices maintained in vitro for both subthreshold and suprathreshold stimulation. In both the experiments and the model, the influence of NMDA and GABA synaptic currents affected mostly the late, decaying phase of evoked field potentials. The modeled interaction of NMDA and GABA components could explain the enhancement of the field potential late phase, which was observed experimentally during paired-pulse stimulation.  相似文献   

14.
The density of voltage-gated sodium channels is high in several regions of the neuronal membrane. It is unclear if this density of channels represents a reserve for the neuron, or if it fulfils a special role in action potential firing. This problem was addressed by studying sodium currents and action potentials in acutely isolated hippocampal CA1 neurons whose number of active sodium channels was acutely changed by applying the sodium channel blocker tetrodotoxin (TTX) at different concentrations. The results show that more than a third of the sodium channels can fail without affecting the single action potential. Thus, the neurons have a remarkable surplus of sodium channels. The surplus, however, is necessary for repetitive action potential firing, as every decrease in the fraction of sodium channels reduces the maximal frequency of action potentials that can be generated by the neuron.  相似文献   

15.
Antiepileptic Drug Mechanisms of Action   总被引:3,自引:0,他引:3  
Summary: Established antiepileptic drugs (AEDs) decrease membrane excitability by interacting with neurotransmitter receptors or ion channels. AEDs developed before 1980 appear to act on sodium channels, γ-ami-nobutyric acid type A (GABAA) receptors, or calcium channels. Benzodiazepines and barbiturates enhance GABAA receptor-mediated inhibition. Phenytoin (PHT), carbamazepine (CBZ), and possibly valproate (VPA) decrease high-frequency repetitive firing of action potentials by enhancing sodium-channel inactivation. Ethosuximide (ESM) and VPA reduce a low threshold (T-type) calcium-channel current. The mechanisms of action of the new AEDs are not fully established. Gabapentin (GBP) binds to a high-affinity site on neuronal membranes in a restricted regional distribution of the central nervous system. This binding site may be related to a possible active transport process of GBP into neurons; however, this has not been proven, and the mechanism of action of GBP remains uncertain. Lamotrigine (LTG) decreases sustained high-frequency repetitive firing of voltage-dependent sodium action potentials that may result in a preferential decreased release of presynaptic glutamate. The mechanism of action of oxcarbazepine (OCBZ) is not known; however, its similarity in structure and clinical efficacy to CBZ suggests that its mechanism of action may involve inhibition of sustained high-frequency repetitive firing of voltage-dependent sodium action potentials. Vigabatrin (VGB) irreversibly inhibits GABA transaminase, the enzyme that degrades GABA, thereby producing greater available pools of presynaptic GABA for release in central synapses. Increased activity of GABA at postsynaptic receptors may underlie the clinical efficacy of VGB.  相似文献   

16.
Update on the Mechanism of Action of Antiepileptic Drugs   总被引:13,自引:6,他引:7  
Brian S. Meldrum 《Epilepsia》1996,37(S6):S4-S11
Summary: Novel antiepileptic drugs (AEDs) are thought to act on voltage-sensitive ion channels, on inhibitory neurotransmission or on excitatory neurotransmission. Two successful examples of rational AED design that po tentiate GABA-mediated inhibition are vigabatrin (VGB) by irreversible inhibition of GABA-transaminase, and ti-agabine (TGB) by blocking GAB A uptake. Lamotrigine (LTG) prolongs inactivation of voltage-dependent sodium channels. The anticonvulsant action of remacemide (RCM) is probably largely due to blockade of NMDA receptors and prolonged inactivation of sodium channels induced by its desglycinated metabolite. Felbamate (FBM) apparently blocks NMDA receptors, potentiates GABA-mediated responses, blocks L-type calcium channels, and possibly also prolongs sodium channel inactivation. Similarly, to piramate (TPM) has multiple probable sites of action, including sodium channels, GABA receptors, and glutamate (AMPA) receptors. Gabapentin (GBP) apparently has a completely novel type of action, probably involving potentiation of GABA-mediated inhibition and possibly also inactivation of sodium channels. The therapeutic advantages of the novel AEDs are as yet only partially explained by our present understanding of their. Mechanisms of action.  相似文献   

17.
We have previously found that crocin (crocetin di-gentiobiose ester) antagonizes the inhibitory effect of ethanol on long-term potentiation in the rat hippocampus in vivo and in vitro. To explore mechanisms underlying the antagonism of crocin against ethanol, we investigated the effects of ethanol and crocin on synaptic potentials mediated by N-methyl-d-aspartate (NMDA) receptors in the dentate gyrus of rat hippocampal slices. Synaptic potential mediated by non-NMDA receptors was recorded in normal medium (1.3 mM Mg2+), while NMDA receptor-mediated synaptic potential was isolated in low (0.13 mM) Mg2+ medium containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (10 μM). Crocin (10 μM) alone did not affect synaptic potentials mediated by non-NMDA nor NMDA receptors. Non-NMDA response was slightly inhibited by 100 mM ethanol, while NMDA response was selectively inhibited by lower concentrations (10–50 mM) of ethanol. Crocin (10 μM) did not affect the inhibition of non-NMDA response by 100 mM ethanol, but significantly blocked the inhibition of NMDA response by 10–50 mM ethanol. In addition, we performed whole-cell patch recording with primary cultured rat hippocampal neurons, and confirmed that crocin blocked ethanol inhibition of inward currents evoked by application of NMDA. These results suggest that crocin specifically antagonizes the inhibitory effect of ethanol on NMDA receptor-mediated responses in hippocampal neurons.  相似文献   

18.
在癫痫疾病的发生和反复发作的过程中,N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体(NMDA受体)起着重要的作用。近年来的研究发现,突触内和突触外的NMDA受体在包括突触可塑性和细胞死亡的信号通路中起着不同的甚至是截然相反的作用。因此,我们在本研究中探讨了突触内、外NMDA受体介导的兴奋性突触后电流在癫痫发病的病理过程中的变化。我们利用氯化锂联合匹罗卡品(pilocarpine, PILO)诱导了成年癫痫小鼠模型,并在癫痫发作24小时后制作了急性海马切片,利用膜片钳全细胞记录法对CA1区锥体神经元的突触内、外NMDA受体电流进行了记录。我们发现,1)突触内NMDA受体电流的上升时间及衰减时间与对照组比较均无统计学差异;2)突触外NMDA受体电流的兴奋性电流峰值、面积峰值比、以及上升时间亦无统计学差异;3)但突触外电流的衰减时程相对于对照组加快。以上结果提示突触外NMDA受体可能参与癫痫的发病机制。  相似文献   

19.
Voltage-gated Na+ channels are a main target of many first-line anticonvulsant drugs and their mechanism of action has been extensively investigated in cell lines and native neurons. Nevertheless, it is unknown whether the efficacy of these drugs might be altered following chronic epileptogenesis. We have, therefore, analysed the effects of phenytoin (100 micro m), lamotrigine (100 micro m) and valproate (600 micro m) on Na+ currents in dissociated rat hippocampal granule neurons in the pilocarpine model of chronic epilepsy. In control animals, all three substances exhibited modest tonic blocking effects on Na+ channels in their resting state. These effects of phenytoin and lamotrigine were reduced (by 77 and 64%) in epileptic compared with control animals. Phenytoin and valproate caused a shift in the voltage dependence of fast inactivation in a hyperpolarizing direction, while all three substances shifted the voltage dependence of activation in a depolarizing direction. The anticonvulsant effects on Na+ channel voltage dependence proved to be similar in control and epileptic animals. The time course of fast recovery from inactivation was potently slowed by lamotrigine and phenytoin in control animals, while valproate had no effect. Interestingly, the effects of phenytoin on fast recovery from inactivation were significantly reduced in chronic epilepsy. Taken together, these results reveal that different anticonvulsant drugs may exert a distinct pattern of effects on native Na+ channels. Furthermore, the reduction of phenytoin and, to a less pronounced extent, lamotrigine effects in chronic epilepsy raises the possibility that reduced pharmacosensitivity of Na+ channels may contribute to the development of drug resistance.  相似文献   

20.
Application of 4-aminopyridine (4-AP) has previously been reported to produce different patterns of epileptiform discharges in entorhinal cortex (EC)–hippocampal slices: recurrent short discharges (RSDs) in hippocampal area CA1, seizure-like events (SLEs) and negative-going potentials (NGPs) in the medial entorhinal cortex (mEC). Using recordings of field potentials, we investigated the pharmacological effects of the clinically employed standard anticonvulsant drugs phenytoin (PHT), carbamazepine (CBZ), valproic acid (VPA) and phenobarbital (PHB) and those of pentobarbital (PB) on 4-AP-induced epileptiform activity. The anticonvulsant drugs showed different effects: SLEs were completely blocked by all tested drugs. Valproic acid, which suppressed all epileptiform activities, seemed to have the most fundamental effect of all drugs on 4-AP induced activity, because under phenytoin and carbamazepine, some epileptiform activity was still observable. The RSDs in hippocampal area CA1 of the hippocampus did not respond to the different anticonvulsants. In contrast, PB decreased the frequency of the RSDs in CA1 and enhanced the frequency of the NGPs in the EC. We propose that the activities induced by 4-AP in the combined entorhinal cortex–hippocampal slices may provide an in vitro model for the development of new drugs against difficult-to-treat focal epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号