首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ischemic stroke affecting the adult brain causes increased progenitor proliferation in the subventricular zone (SVZ) and generation of neuroblasts, which migrate into the damaged striatum and differentiate to mature neurons. Meteorin (METRN), a newly discovered neurotrophic factor, is highly expressed in neural progenitor cells and immature neurons during development, suggesting that it may be involved in neurogenesis. Here, we show that METRN promotes migration of neuroblasts from SVZ explants of postnatal rats and stroke-subjected adult rats via a chemokinetic mechanism, and reduces N-methyl-D-asparate-induced apoptotic cell death in SVZ cells in vitro. Stroke induced by middle cerebral artery occlusion upregulates the expression of endogenous METRN in cells with neuronal phenotype in striatum. Recombinant METRN infused into the stroke-damaged brain stimulates cell proliferation in SVZ, promotes neuroblast migration, and increases the number of immature and mature neurons in the ischemic striatum. Our findings identify METRN as a new factor promoting neurogenesis both in vitro and in vivo by multiple mechanisms. Further work will be needed to translate METRN's actions on endogenous neurogenesis into improved recovery after stroke.  相似文献   

2.
Rat forebrain neurogenesis and striatal neuron replacement after focal stroke   总被引:36,自引:0,他引:36  
The persistence of neurogenesis in the forebrain subventricular zone (SVZ) of adult mammals suggests that the mature brain maintains the potential for neuronal replacement after injury. We examined whether focal ischemic injury in adult rat would increase SVZ neurogenesis and direct migration and neuronal differentiation of endogenous precursors in damaged regions. Focal stroke was induced in adult rats by 90-minute right middle cerebral artery occlusion (tMCAO). Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunostaining for cell type-specific markers. Brains examined 10-21 days after stroke showed markedly increased SVZ neurogenesis and chains of neuroblasts extending from the SVZ to the peri-infarct striatum. Many BrdU-labeled cells persisted in the striatum and cortex adjacent to infarcts, but at 35 days after tMCAO only BrdU-labeled cells in the neostriatum expressed neuronal markers. Newly generated cells in the injured neostriatum expressed markers of medium spiny neurons, which characterize most neostriatal neurons lost after tMCAO. These findings indicate that focal ischemic injury increases SVZ neurogenesis and directs neuroblast migration to sites of damage. Moreover, neuroblasts in the injured neostriatum appear to differentiate into a region-appropriate phenotype, which suggests that the mature brain is capable of replacing some neurons lost after ischemic injury.  相似文献   

3.
Stem cells are currently considered as alternative cell resources for restorative transplantation strategies in Parkinson's disease. However, the mechanisms that induce differentiation of a stem cell toward the dopaminergic phenotype are still partly unknown thus hampering the production of dopaminergic neurons from stem cells. In the past, FGF-20 has been found to promote the survival of ventral mesencephalic (VM) dopaminergic (DA) neurons in culture. We hereby provide evidence that FGF-20, a growth factor of the FGF family, is expressed in the adult and 6-OHDA-lesioned striatum and substantia nigra, but is not expressed by VM glia or DA neurons, suggesting that FGF-20 may work on DA neurons in a paracrine- or target-derived manner. We also found that co-culture of Nurr1-NSCs with Schwann cells overexpressing FGF-20 induced the acquisition of a neuronal morphology by the NSCs and the expression of tyrosine hydroxylase (TH) as assessed by immunocytochemistry, cell ELISA, and Western blot analysis. RT-PCR showed, that both, Schwann cells and Nurr1-NSCs (differentiated or not), expressed the FGF-1 receptor suggesting that both direct and indirect actions of FGF-20 are possible. We show that differentiated Nurr1 cells retained both neuronal morphology and TH expression after transplantation into the striatum of 6-OHDA-lesioned postnatal or adult rats, but that neuritogenesis was only observed after postnatal grafts. Thus, our results suggest that FGF-20 promotes the differentiation of Nurr1-NSCs into TH-positive neurons and that additional factors are required for the efficient differentiation of DA neurons in the adult brain.  相似文献   

4.
We have explored the plastic ability of neuronal precursors to acquire different identities by manipulating their surrounding environment. Specifically, we sought to identify potential signals involved in the specification of forebrain dopaminergic neurons. Here we describe culture conditions under which tyrosine hydroxylase (TH) expression is induced in neuronal precursors, which were derived directly from the embryonic striatum and adult subependyma (SE) of the lateral ventricle or generated from multipotent forebrain stem cells. TH was successfully induced in all of these cell types by 24 hr exposure to basic fibroblast growth factor (FGF2) and glial cell conditioned media (CM). The greatest magnitude of the inductive action was on embryonic striatal precursors. Although FGF2 alone induced limited TH expression in striatal cells (1.1 +/- 0.2% of neurons), these actions were potentiated 17.5-fold (19.6 +/- 1.5% of neurons) when FGF2 was coadministered with B49 glial cell line CM. Of these TH-immunoreactive cells, approximately 15% incorporated bromodeoxyuridine (BrdU), indicating that they were newly generated, and 95% coexpressed the neurotransmitter GABA. To investigate whether precursors of the adult forebrain subependyma were competent to respond to the instructive actions of FGF2+CM, they were first labeled in vivo with a pulse of BrdU. Although none of the cells expressed TH in control, 0.2% of total cells showed TH immunoreactivity in FGF2+CM-treated cultures. Under these same conditions only, in vitro-generated precursors from epidermal growth factor-responsive stem cells exhibited TH expression in 10% of their total neuronal progeny. Regulation of neurotransmitter phenotype in forebrain neuronal precursors, by the synergistic action of FGF2 and glial-derived diffusible factors, may represent a first step in understanding how these cells are generated in the embryonic and adult brain and opens the prospect for their manipulation in vitro and in vivo for therapeutic use.  相似文献   

5.
6.
Neuronal activity regulates neurogenesis and neuronal differentiation in the mammalian brain. The commencement of neurotransmitter expression establishes the neuronal phenotype and enables the formation of functional connectivity between neurons. In addition, release of neurotransmitters from differentiating neurons may modulate the behaviour of neural precursors. Here, we show that neuronal activity regulates γ-aminobutyric acid (GABA) expression in neurons generated from stem cells of the striatum and adult subventricular zone (SVZ). Differentiating neurons display spontaneous Ca2+ events, which are voltage-gated calcium channel (VGCC) dependent. Depolarization increases both the frequency of Ca2+ transients and the amount of Ca2+ influx in differentiating neurons. We show that depolarization-dependent GABA expression is regulated by the amplitude and not by the frequency of Ca2+ influx. Brief activation of VGCCs leads to Ca2+ influx that in turn promotes a rapid expression of GABA. Depolarization-dependent GABA expression does not require changes in gene expression. Instead, it involves cAMP-dependent protein kinase (PKA) and Ca2+ and phospholipid-dependent protein kinase (PKC) signalling. Activity increases the number of glutamic acid decarboxylase (GAD) 65-immunoreactive neurons in a PKA-dependent manner, without altering the expression of GAD 65, suggesting that depolarization promotes recruitment of GAD 65 by a post-translational mechanism. In line with this, depolarization does not permanently increase the expression of GABA in neurons derived from neural stem cells of the embryonic striatum, cortex and adult SVZ. Thus, neuronal activity does not merely accelerate neuronal differentiation but it may alter the mechanism of GABA synthesis in newly generated neurons.  相似文献   

7.
Dopaminergic loss is known to be one of the major hallmarks of Parkinson disease (PD). In addition to its function as a neurotransmitter, dopamine plays significant roles in developmental and adult neurogenesis. Both dopaminergic deafferentation and stimulation modulate proliferation in the subventricular zone (SVZ)/olfactory bulb system as well as in the hippocampus. Here, we study the impact of 6-hydroxydopamine (6-OHDA) lesions to the medial forebrain bundle on proliferation and neuronal differentiation of newly generated cells in the SVZ/olfactory bulb axis in adult rats. Proliferation in the SVZ decreased significantly after dopaminergic deafferentation. However, the number of neural progenitor cells expressing the proneuronal cell fate determinant Pax-6 increased in the SVZ. Survival and quantitative cell fate analysis of newly generated cells revealed that 6-OHDA lesions induced opposite effects in the two different regions of neurogenesis in the olfactory bulb: a transient decrease in the granule cell layer contrasts to a sustained increase of newly generated neurons in the glomerular layer. These data point towards a shift in the ratio of newly generated interneurons in the olfactory bulb layers. Dopaminergic neurogenesis in the glomerular layer tripled after lesioning and consistent with this finding, the total number of tyrosine hydroxylase (TH)-positive cells increased. Thus, loss of dopaminergic input to the SVZ led to a distinct cell fate decision towards stimulation of dopaminergic neurogenesis in the olfactory bulb glomerular layer. This study supports the accumulating evidence that neurotransmitters play a crucial role in determining survival and differentiation of newly generated neurons.  相似文献   

8.
Ischemia-induced production of new striatal neurons in young and adult rodents has been studied. However, it is unclear whether neonatal hypoxic/ischemic (H/I) brain injury-induced neuronogenesis in the striatum is transient or sustained, nor has it been established whether these new neurons arise from progenitors within the striatum or from precursors residing in the adjacent subventricular zone. Here, we report that from 2 weeks to 5 months after H/I there are more doublecortin-positive (Dcx+) cells and Dcx+/NeuN+ cells in the damaged striatum compared to the contralateral striatum. After the S-phase marker 5-bromo-2'-deoxyuridine (BrdU) was injected at both short and long intervals (2 days and 2 months) after H/I to label newly born cells, more BrdU+/Dcx+ and BrdU+/NeuN+ cells were observed in the ipsilateral striatum compared to the contralateral striatum. Retroviral fate-mapping studies demonstrated that these newly born striatal neurons are generated from precursors within the subventricular zone. Altogether, these observations indicate the neonatal brain initiates a prolonged regenerative response from the precursors of the subventricular zone (SVZ) that results in persistent production of new striatal neurons.  相似文献   

9.
A dopaminergic projection from the midbrain to the striatal portion of the basal ganglia is present in reptiles, birds, and mammals. Although the ultrastructure of these fibers and terminals within the striatum has been studied extensively in mammals, little information is available on the ultrastructure of this projection in nonmammals. In the present study, we used immunohistochemical labeling with antibodies against tyrosine hydroxylase (TH) or dopamine (DA) to study the dopaminergic input to the striatal portion of the basal ganglia in pigeons (i.e., lobus parolfactorius and paleostriatum augmentatum). At the light microscopic level, the anti-TH and anti-DA revealed a similar abundance and distribution of numerous labeled fine fibers and varicosities within the striatum. In contrast, the use of an antidopamine beta-hydroxylase antiserum (which labels only adrenergic and noradrenergic terminals) labeled very few striatal fibers, which were restricted to visceral striatum. These results demonstrate that anti-TH mainly labels dopaminergic terminals in the striatum. At the electron microscopic level, the anti-TH and anti-DA antisera labeled numerous axon terminals within the striatum (15–20% of all striatal terminals). These terminals tended to be small (with an average length of 0.6 μm) and flattened, and their vesicles tended to be small (35–60 nm in diameter) and pleomorphic. About 50% of the terminals were observed to make synaptic contacts in the planes of section examined, and nearly all of these synaptic contacts were symmetric. Both TH+ and DA+ terminals typically contacted dendritic shafts or the necks of dendritic spines, but a few contacted perikarya. No clear differences were observed between TH+ and DA+ terminals within medial striatum (whose neurons project to the nigra in birds) or between TH+ and DA+ terminals within lateral striatum (whose neurons project to the pallidum in birds). In addition, no differences were observed between medial and lateral striata in either TH+ or DA+ terminals. Thus, there is no evident difference in pigeons between striatonigral and striatopallidal neurons in their dopaminergic innervation. Our results also indicate that the abundance, ultrastructural characteristics, and postsynaptic targets of the midbrain dopaminergic input to the pigeon striatum are highly similar to those in mammals. This anatomical similarity is consistent with the pharmacologically demonstrable similarity in the role of the dopaminergic input to the striatum in birds and mammals. © 1996 Wiley-Liss, Inc.  相似文献   

10.
11.
Dopamine (DA) affects GABA neuronal function in the striatum and together these neurotransmitters play a large role in locomotor function. We recently reported that unilateral striatal administration of GDNF, a growth factor that has neurotrophic effects on DA neurons and enhances DA release, bilaterally increased striatal neuron activity related to locomotion in aged rats. We hypothesized that the GDNF enhancement of DA function and resulting bilateral enhancement of striatal neuronal activity was due to prolonged bilateral changes in DA- and GABA-regulating proteins. Therefore in these studies we assessed dopamine- and GABA-regulating proteins in the striatum and substantia nigra (SN) of 24 month old Fischer 344 rats, 30 days after a single unilateral striatal delivery of GDNF. The nigrostriatal proteins investigated were the DA transporter (DAT), tyrosine hydroxylase (TH), and TH phosphorylation and were examined by blot-immunolabeling. The striatal GABA neuron-related proteins were examined by assay of the DA D1 receptor, DARPP-32, DARPP-32 Thr34 phosphorylation, and glutamic acid decarboxylase (GAD). Bilateral effects of GDNF on TH and DAT occurred only in the SN, as 30 μg GDNF increased ser19 phosphorylation, and 100 μg GDNF decreased DAT and TH protein levels. GDNF also produced bilateral changes in GAD protein in the striatum. A decrease in DARPP-32 occurred in the ipsilateral striatum, while increased D1 receptor and DARPP-32 phosphorylation occurred in the contralateral striatum. The 30 μg GDNF infusion into the lateral striatum was confined to the ipsilateral striatum and substantia nigra. Thus, long-lasting bilateral effects of GDNF on proteins regulating DA and GABA neuronal function likely alter physiological properties in neurons, some with bilateral projections, associated with locomotion. Enhanced nigrostriatal excitability and DA release by GDNF may trigger these bilateral effects.  相似文献   

12.
Neural cell migration and differentiation may participate in neural repair after adult brain injury; however, the survival and differentiation of newly born cells after different brain lesions are poorly understood. We have examined the migration and fate of bromodeoxyuridine (BrdU)-labeled cells after a highly reproducible focal ischemic lesion restricted to the frontoparietal cortex in adult rats. Thermocoagulation of pial blood vessels induces a circumscribed degeneration of all cortical layers while sparing the corpus callosum and striatum and increases cell proliferation in the subventricular zone (SVZ) and rostral migratory stream (RMS) within 7 days. We now show that, although the rostral migration of the newly born SVZ cells and their differentiation into neurons in the olfactory bulb were not affected by the lesion, numerous cells expressing the neuroblast marker doublecortin migrated laterally in the striatum and corpus callosum 5 days postinjury. In addition to the SVZ, BrdU-labeled cells were seen in the striatum, in the corpus callosum, and around the lesion. One month later, BrdU-labeled cells in the corpus callosum expressed transferrin and the pi isoform of glutathione-S-transferase (GST-pi), markers of oligodendrocytes. Other BrdU+ cells expressed a marker of astrocytes, but none expressed neuronal markers, suggesting that new neurons do not form or survive under these conditions. Numerous BrdU-labeled cells were still observed in the SVZ and RMS. The data show that focal cortical ischemia does not lead to the long-term survival of new neurons in the striatum or cortex but induces long-term alterations in the SVZ and the production of new oligodendrocytes that may contribute to neural repair.  相似文献   

13.
We examined the neurochemical phenotype of striatal neurons expressing tyrosine hydroxylase (TH) mRNA to determine if they form a distinct class of neurons within the human striatum. Double in situ hybridization (ISH) and immunohistochemical (IHC) procedures were used to know if TH mRNA-positive striatal neurons express molecular markers of mature neurons (MAP2 and NeuN), dopaminergic neurons (DAT and Nurr1) or immature neurons (TuJ1). All TH mRNA-labeled neurons were found to express NeuN, DAT and Nurr1, whereas about 80% of them exhibited MAP2, confirming their neuronal and dopaminergic nature. Only about 30% of TH mRNA-labeled neurons expressed TuJ1, suggesting that this ectopic dopaminergic neuronal population is principally composed of mature neurons. The same double ISH/IHC approach was then used to know if these dopamine neurons display markers of well-established classes of striatal projection neurons (GAD65 and calbindin) or local circuit neurons (GAD65, calretinin, somatostatin and parvalbumin). Virtually all TH-labeled neurons expressed GAD65 mRNA, about 30% of them exhibited calretinin, but none stained for the other striatal neuron markers. These results suggest that the majority of TH-positive neurons intrinsic to the human striatum belong to a distinct subpopulation of striatal interneurons characterized by their ability to produce dopamine and GABA.  相似文献   

14.
Ischemic stroke induces migration of newly formed neuroblasts, generated by neural stem cells in the adult rat subventricular zone (SVZ), towards the injured striatum where they differentiate into mature neurons. Stroke also leads to accumulation of microglia in the SVZ but their role for neurogenesis is unclear. Here we developed a method for selective depletion of the macrophage antigen complex-1 (Mac-1)-expressing microglia population in the SVZ by intraventricular injection of the immunotoxin Mac-1-saporin in rats. We found that the vast majority of Mac-1+ cells were Iba-1+ microglia. The Mac-1+ population was heterogeneous and included both a small proliferative pool of cells, which was not affected by middle cerebral artery occlusion (MCAO), and a larger subpopulation that changed morphologically into a semi-activated state in response to the insult. This subpopulation did not increase its expression of the phagocytic marker ED1 but exhibited high levels of triggering receptor expressed on myeloid cells-2 (TREM-2), associated with alternative microglia activation. A minor portion of the SVZ Mac-1+ cells originated from the blood early after stroke, but this macrophage population became much more substantial at later stages. Almost 80% reduction of Mac-1-expressing microglia, caused by Mac-1 saporin delivered just before and at 1 week after MCAO, did not alter the numbers of newly formed neuroblasts in the striatum or their migratory distance. These findings indicate that the Mac-1-expressing microglia in the SVZ do not play a major role either for the number of neuroblasts which exit the SVZ or their migration in the striatum early following stroke.  相似文献   

15.
Stroke increases neurogenesis. The authors investigated whether neural stem cells or progenitor cells in the adult subventricular zone (SVZ) of rats contribute to stroke-induced increase in neurogenesis. After induction of stroke in rats, the numbers of cells immunoreactive to doublecortin, a marker for immature neurons, increased in the ipsilateral SVZ and striatum. Infusion of an antimitotic agent (cytosine-beta-D-arabiofuranoside, Ara-C) onto the ipsilateral cortex eliminated more than 98% of actively proliferating cells in the SVZ and doublecortin-positive cells in the ipsilateral striatum. However, doublecortin-positive cells rapidly replenished after antimitotic agent depletion of actively proliferating cells. Depleting the numbers of actively proliferating cells in vivo had no effect on the numbers of neurospheres formed in vitro, yet the numbers of neurospheres derived from stroke rats significantly (P<0.05) increased. Neurospheres derived from stroke rats self-renewed and differentiated into neurons and glia. In addition, doublecortin-positive cells generated in the SVZ migrated in a chainlike structure toward ischemic striatum. These findings indicate that in the adult stroke brain, increases in recruitment of neural stem cells contribute to stroke-induced neurogenesis, and that newly generated neurons migrate from the SVZ to the ischemic striatum.  相似文献   

16.
Neural stem cells (NSCs) tranplantation has great potential for the treatment of neurodegenerative disease such as Parkinson's disease (PD). However, the usage of NSCs is limited because the differentiation of NSCs into specific dopaminergic neurons has proven difficult. We have recently demonstrated that transgenic expression of Nurr1 could induce the differentiation of NSCs into tyrosine hydroxylase (TH) immunoreactive dopaminergic neurons, and forced co-expression of Nurr1 with Brn4 caused a dramatic increase in morphological and phenotypical maturity of these neurons. In this study, we investigated the effect of transplanted NSCs in PD model rats. The results showed that overexpression of Nurr1 promoted NSCs to differentiate into dopaminergic neurons in vivo, increased the level of dopamine (DA) neurotransmitter in the striatum, resulting in behavioral improvement of PD rats. Importantly, co-expression of Nurr1 and Brn4 in NSCs significantly increased the maturity and viability of dopaminergic neurons, further raised the DA amount in the striatum and reversed the behavioral deficit of the PD rats. Our findings provide a new potential and strategy for the use of NSCs in cell replacement therapy for PD.  相似文献   

17.
To clarify functional changes of dopaminergic neurons and dopamine (DA) reuptake during and after ischemia, extracellular DA levels in striatum were determined using in vivo brain microdialysis in a 4-vessel occlusion model of male Wistar rats with and without pharmacological interventions. Without interventions, the extracellular DA levels markedly increased during ischemia, but upon reperfusion, rapidly returned to control level. Infusion of tetrodotoxin, a blocker of voltage-dependent Na+ channels, was without effect on the DA surge during ischemia, but decreased the DA levels after reperfusion to the same extent as in control rats. Pretreatment with nomifensine, an inhibitor of DA reuptake, was also without effect on the surge, but reduced the rate of DA decline after reperfusion to one-fifth of the rate without the pretreatment. When nomifensine was administered 40 min after reperfusion, extracellular DA levels increased to the same extent as in control rats. Infusion of high K+ 1 h after reperfusion induced a smaller increase in extracellular DA levels than that in control rats. It took 96 h for this reduced response to high K+ stimulation to recover after reperfusion. These results suggest that the DA surge during ischemia is mainly derived from action potential-independent DA release (means dysfunction of dopaminergic neurons), although activity of DA reuptake is completely inhibited. After reperfusion, the basal function of dopaminergic neurons and activity of DA reuptake rapidly recover, but the neurons are functionally disturbed to release less DA in response to a given stimulus for several days.  相似文献   

18.
Generation of dopaminergic (DA) neurons from multipotent embryonic progenitors represents a promising therapeutical strategy for Parkinson's disease (PD). Aim of the present study was the establishment of enhanced cell culture conditions, which optimize the use of midbrain progenitor cells in animal models of PD. In addition, the progenitor cells were characterized during expansion and differentiation according to morphological and electrophysiological criteria and compared to primary tissue. Here, we report that CNS precursors can be expanded in vitro up to 40-fold and afterwards be efficiently differentiated into DA neurons. After 4-5 days under differentiation conditions, more than 70% of the neurons were TH+, equivalent to 30% of the total cell population. Calcium imaging revealed the presence of calcium-permeable AMPA receptors in the differentiated precursors which are capable to contribute to many developmental processes. The overall survival rate, degree of reinnervation and the behavioral performance after transplantation of 4 days in-vitro-differentiated cells were similar to results after direct grafting of E14 ventral mesencephalic cells, whereas after shorter or longer differentiation periods, respectively, less effects were achieved. Compared to the amount of in-vitro-generated DA neurons, the survival rate was only 0.8%, indicating that these cells are very vulnerable. Our results suggest that expanded and differentiated DA precursors from attached cultures can survive microtransplantation and integrate within the striatum in terms of behavioral recovery. However, there is only a short time window during in vitro differentiation, in which enough cells are already differentiated towards a DA phenotype and simultaneously not too mature for implantation. However, additional factors and/or genetical manipulation of these expanded progenitors will be required to increase their in vivo survival in order to improve both the ethical and the technical outlook for the use of fetal tissue in clinical transplantation.  相似文献   

19.
OBJECTIVES: Progesterone modulates dopamine (DA) release in corpus striatum. Our objective was to evaluate the effect of the i.c.v injection of the neurosteroid allopregnanolone (ALL), a progesterone metabolite on dopaminergic activity in the corpus striatum of rats under different gonadal hormonal conditions. METHODS: We have measured the concentrations of DOPA, DA and DOPAC (main metabolite of DA) in the corpus striatum in estrus and diestrus rats and in ovariectomized rats without hormonal replacement (OVX group) and primed with estrogen and progesterone (OVX(i) group). Additionally, we have used the aromatic acid decarboxylase inhibitor NSD in order to evaluate the function of tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis. RESULTS: ALL significantly decreased the striatal concentrations of both DA and DOPAC in the estrus. On the other hand, ALL increased significantly the levels of DA in the OVX(i) group. The DOPA accumulation in OVX(i) after NSD treatment in the ALL-treated groups was greater than in the vehicle group. However, the estrus group did not modify the DOPA accumulation after NSD injection. DISCUSSION: Our results suggest that ALL could modulate the dopaminergic transmission in the corpus striatum by causing changes in the activity of TH and/or in the pre- and post-synaptic dopaminergic terminals in the corpus striatum. This neurosteroidal mechanism could be a new kind of neurotransmitter systems modulation accomplished on TH activity itself and/or on the second messengers not related to ionic channels. Additionally, our results reinforce the idea of a close relationship between the fast non-genomic mechanism of ALL and the genomic actions of estrogen and progesterone.  相似文献   

20.
We have grown expanded populations of epidermal growth factor (EGF)-responsive mouse striatal precursor cells and subsequently co-cultured these with primary E14 rat ventral mesencephalon. The aim of these experiments was to induce dopaminergic (DA) neuronal phenotypes from the murine precursors. While no precursor cell-derived neurons were induced to express tyrosine hydroxylase (TH), there was a dramatic 30-fold increase in the survival of rat-derived TH-positive neurons in the co-cultures. The effect was not explicable solely in terms of total plating density, and was accompanied by a significantly enhanced capacity for [3H]dopamine uptake in the co-cultures compared to rat alone cultures. The present data show that, although primary rat E14 mesencephalic cells are incapable of inducing the development of DA neurons from EGF-responsive mouse neural precursor cells, such precursors will differentiate into cells capable of enhancing the survival and overall functional efficacy of primary embryonic dopamine neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号