首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Bacillus thuringiensis produces different types of insecticidal crystal proteins (ICPs) or delta-endotoxins. In an effort to identify the insect specificity of ICP toxins, two icp genes were cloned into the Escherichia coli expression vector pKK223-3, and bioassays were performed with purified crystals. The type A protein [from an icpA1, or 4.5-kilobase (kb) gene, from B. thuringiensis var. kurstaki HD-1] was found to be 400 times more active against Bombyx mori than type C protein (from an icpC73, or 6.6-kb gene, from B. thuringiensis var. kurstaki HD-244). The type C protein was 9 times more active against Trichoplusia ni than the type A protein, while both have similar activity against Manduca sexta. To locate the specificity domain of the type A protein for B. mori, site-directed mutagenesis was used to introduce or remove restriction enzyme sites, facilitating the exchange of regions of the two genes. The hybrid genes were overexpressed, and purified ICP was used in bioassays. The B. mori specificity domain for the ICP A toxin is located in the amino-terminal portion of the hypervariable region between amino acids 332 and 450.  相似文献   

8.
9.
Sau 3A1 partial digestion fragments from Bacillus thuringiensis var. kurstaki HD-1 plasmid DNA were ligated into the BamHI site of the cloning vector pBR322 and transformed into Escherichia coli strain HB101. Colonies presumed to contain recombinant plasmids were screened for production of an antigen that would react with antibody made against B. thuringiensis crystals. One strain, ES12, was isolated by using this procedure. ES12 contains a plasmid of Mr 11 X 10(6) that has DNA sequence homology with pBR322 as well as with Mr 30 X 10(6) and Mr 47 X 10(6) plasmids of B. thuringiensis. It makes a protein antigen, detected by antibodies to crystal, which has the same electrophoretic mobility as the B. thuringiensis crystal protein. Protein extracts of ES12 are toxic to larvae of the tobacco hornworm Manduca sexta.  相似文献   

10.
11.
12.
13.
14.
The activity of the sigma subunit of Bacillus subtilis RNA polymerase decreases markedly during the first hours of sporulation [T.G. Linn et al. (1973) Proc. Nat. Acad. Sci. USA 70, 1865-1869]. We have prepared antibody against RNA polymerase holoenzyme to determine the fate of sigma polypeptide during spore formation. This antiserum specifically and independently precipitates sigma and core polymerase from crude extracts of B. subtilis as judged by both sodium dodecyl sulfate and urea gel electrophoresis of the precipitates. We report that crude extracts of sporulating cells lacking sigma activity contain as much sigma polypeptide as extracts of vegetative cells. However, sigma polypeptide in extracts from sporulating cells is apparently only weakly associated with RNA polymerase, as indicated by the failure of sigma to co-purify efficiently with core enzyme during phase partitioning.The loss of sigma activity and the weak binding of sigma to core enzyme occurs normally in a mutant blocked at an intermediate stage of sporulation (SpoII-4Z) and in wild-type bacteria sporulating in 121B medium, Difco sporulation medium, or Sterlini-Mandelstam resuspension medium. In contrast, sigma in two mutants (SpoOa-5NA and SpoOb-6Z) blocked at an early stage of spore formation remains active and tightly associated with RNA polymerase during stationary phase.  相似文献   

15.
16.
17.
18.
Gene 28 of Bacillus subtilis bacteriophage SPO1 codes for a regulatory protein, a sigma factor known as sigma gp28, that binds to the bacterial core RNA polymerase to direct the recognition of phage middle gene promoters. middle promoters exhibit distinctive and conserved nucleotide sequences in two regions centered about 10 and 35 base pairs upstream from the start point of mRNA synthesis. Here we report the cloning of gene 28 and its complete nucleotide sequence. We infer that sigma gp28 is a 25,707-dalton protein of 220 amino acids. Neither the nucleotide sequence of gene 28 nor the inferred amino acid sequence of sigma gp28 exhibits extensive homology to the gene or protein sequence of Escherichia coli sigma factor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号