首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, the impact of steel fibres and Silica Fume (SF) on the mechanical properties of recycled aggregate concretes made of two different types of Recycled Coarse Aggregates (RCA) sourced from both low- and high-strength concretes were evaluated through conducting 60 compressive strength tests. The RCAs were used as replacement levels of 50% and 100% of Natural Coarse Aggregates (NCA). Hook-end steel fibres and SF were also used in the mixtures at the optimised replacement levels of 1% and 8%, respectively. The results showed that the addition of both types of RCA adversely affected the compressive strength of concrete. However, the incorporation of SF led to compressive strength development in both types of concretes. The most significant improvement in terms of comparable concrete strength and peak strain with ordinary concrete at 28 days was observed in the case of using a combination of steel fibres and SF in both recycled aggregate concretes, especially with RCA sourced from high strength concrete. Although using SF slightly increased the elastic modulus of both recycled aggregate concretes, a substantial improvement in strength was observed due to the reinforcement with steel fibre and the coexistence of steel fibre and SF. Moreover, existing models to predict the elastic modulus of both non-fibrous and fibrous concretes are found to underestimate the elastic modulus values. The incorporation of SF changed the compressive stress-strain curves for both types of RCA. The addition of steel fibre and SF remarkably improved the post-peak ductility of recycled aggregates concretes of both types, with the most significant improvement observed in the case of RCA sourced from a low-strength parent concrete. The existing model to estimate the compressive stress-strain curve for steel fibre-reinforced concrete with natural aggregates was found to reasonably predict the compressive stress-strain behaviour for steel fibres-reinforced concrete with recycled aggregate.  相似文献   

2.
Carbon fiber-reinforced concrete as a structural material is attractive for civil infrastructure because of its light weight, high strength, and resistance to corrosion. Ultra-high performance concrete, possessing excellent mechanical properties, utilizes randomly oriented one-inch long steel fibers that are 200 microns in diameter, increasing the concrete’s strength and durability, where steel fibers carry the tensile stress within the concrete similar to traditional rebar reinforcement and provide ductility. Virgin carbon fiber remains a market entry barrier for the high-volume production of fiber-reinforced concrete mix designs. In this research, the use of recycled carbon fiber to produce ultra-high-performance concrete is demonstrated for the first time. Recycled carbon fibers are a promising solution to mitigate costs and increase sustainability while retaining attractive mechanical properties as a reinforcement for concrete. A comprehensive study of process structure–properties relationships is conducted in this study for the use of recycled carbon fibers in ultra-high performance concrete. Factors such as pore formation and poor fiber distribution that can significantly affect its mechanical properties are evaluated. A mix design consisting of recycled carbon fiber and ultra-high-performance concrete was evaluated for mechanical properties and compared to an aerospace-grade and low-cost commercial carbon fiber with the same mix design. Additionally, the microstructure of concrete samples is evaluated non-destructively using high-resolution micro X-ray computed tomography to obtain 3D quantitative spatial pore size distribution information and fiber clumping. This study examines the compression, tension, and flexural properties of recycled carbon fibers reinforced concrete considering the microstructure of the concrete resulting from fiber dispersion.  相似文献   

3.
The objective of this research was to study the effect of an optimal mechanical treatment method to reduce the mortar adhered on recycled aggregates (RCA) on the long-term mechanical properties and durability of concretes containing RCA at different replacement levels. It was found that concretes incorporating treated RCA exhibited sharper and more significant increase on 90- and 365-day compressive strengths than any other investigated mixture. The same mixtures also benefitted from a ‘shrinkage-controlling’ effect, where strains and mass losses were reduced by almost 15% and 10%, respectively, compared to the reference concrete. While sulfate resistance and carbonation resistance are predominantly defined by the hydration products available within the cement paste and not to a large extent by the aggregate type and quality, the incorporation of either treated or untreated RCA in concrete did not appear to expose RACs to significant durability threats.  相似文献   

4.
This study performed a scientometric-based examination of the literature on steel fiber-reinforced concrete (SFRC) to identify its key elements. Typical review papers are limited in their capacity to link distinct segments of the literature in an organized and systematic method. The most challenging aspects of current research are knowledge mapping, co-occurrence, and co-citation. The Scopus search engine was used to search for and obtain the data required to meet the goals of the study. During the data evaluation, the relevant publication sources, keyword assessment, productive authors based on publications and citations, top papers based on citations received, and areas vigorously involved in SFRC studies were recognized. The VOSviewer software tool was used to evaluate the literature data from 9562 relevant papers, which included citation, abstract, bibliographic, keywords, funding, and other information. Furthermore, the applications and constraints related to the usage of SFRC in the construction sector were examined, as well as potential solutions to these constraints. It was determined that only 17 publication sources (journals/conferences) had published at least 100 articles on SFRC up to June 2022. Additionally, the mostly employed keywords by authors in SFRC research include steel fibers, fiber-reinforced concrete, concrete, steel fiber-reinforced concrete, and reinforced concrete. The assessment of authors revealed that 39 authors had published at least 30 articles. Moreover, China, the United States, and India were found to be the most active and participating countries based on publications on SFRC research. This study can assist academics in building collaborative initiatives and communicating new ideas and techniques because of the quantitative and graphical depiction of participating nations and researchers.  相似文献   

5.
To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.  相似文献   

6.
Recycled aggregate concrete (RAC) is a sort of green, low carbon, environmental protection building material, its application is of great significance to the low carbonization of the construction industry. The performance and strength of RAC are much lower than natural aggregate concrete (NAC), which are the key factors restricting its application. Class F fly ash is a cementitious material that is considered environmentally hazardous. In this paper, appropriate water-binder (w/b) ratios were found through a mortar expansion test at first. The compressive strength of recycled mortar incorporated with class F fly ash was further studied. On this basis, the mechanical properties of nine groups of fully recycled aggregate concrete (FRAC) with a w/b ratio of 0.3, 0.35, and 0.4, and fly ash replacement ratios of 0, 20%, and 40%, were studied. The influence of the w/b ratio and fly ash replacement ratio on mechanical properties was analyzed and compared with previous research results. In addition, the conversion formulas between the splitting tensile strength, flexural strength, and compressive strength of FRAC were fitted and established. The research results have a certain guiding significance for the mixture design of FRAC and further application of class F fly ash.  相似文献   

7.
Recycle concrete aggregates (RCA) consist of natural aggregates and remnant mortar adhered to their surface. The amount, size, and morphology of the adherent remainder paste influences quality aspects of RCA, such as their bonding potential with new cement matrix in an RCA-based concrete, as well as the concrete’s overall rheological and performance characteristics. The objective of this research was to study the effect of reducing the adhered mortar in RCA, by means of a mechanical treatment method, on the performance of concrete containing RCA at different percentages. The treatment process was conducted within a concrete mixer truck drum at specific time intervals, the effect of which was determined by means of image analysis, mass loss recordings, and circularity determinations. The effect of size of treated and field RCA, as well as replacement percentages on mechanical performance and durability of high and normal strength concrete mixes, were also investigated. It was concluded that the optimal treatment duration where no further significant removal of adhered paste occurred thereon was 3 h, and concrete mixes containing 3 h treated RCA exhibited comparable performance characteristics to those of the reference concrete mix.  相似文献   

8.
The use of a high volume of industrial solid waste mineral admixture and hybrid fiber can greatly reduce the amount of cement in mortar or concrete, improve its performance, ensure the service properties of mortar or concrete, and reuse industrial solid waste to reduce the environmental burden, which has significant research significance. In this paper, the mechanical properties, wear resistance and microstructure of hybrid fiber-reinforced mortar (HFRM) with a high content of industrial solid waste mineral admixture were systematically studied under different water/binder ratios. Mineral admixtures include fly ash, silica fume and granulated blast furnace slag (slag). The total content of hybrid glass fiber (GF) and polypropylene fiber (PPF) was 2% by volume fractions, and six different water/binder ratios ranging from 0.27 to 0.62 were used. The following conclusions were drawn: fibers have a significant negative effect on the properties of mortars with a low water/binder ratio (w/b = 0.27) and high content of mineral admixtures. In general, the effect of adding hybrid fiber on improving the wear resistance of mortar is more obvious. The average residual weight of hybrid fiber-reinforced mortar is the highest after the wear resistance test. Comprehensively considering the compressive strength, flexural strength, wear resistance and microstructure of the mortar samples, G8PP2-0.40 is the optimal mix ratio. At this time, the replacement rates of fly ash, silica fume and slag are: 20%, 5% and 30%, the water/binder ratio is 0.40, and the content of GF and PPF is 1.6% and 0.4%, respectively.  相似文献   

9.
Carbon fiber-reinforced polymer (CFRP) has the advantages of a high strength-weight ratio and excellent fatigue resistance and has been widely used in aerospace, automotive, civil infrastructure, and other fields. The properties of CFRP materials under high temperatures are a key design issue. This paper presents the quasi-static tensile mechanical properties of unidirectional CFRP plates at temperatures ranging from 20 to 600 °C experimentally. The laser displacement transducer was adopted to capture the in situ displacement of the tested specimen. The results showed that the tensile strength of the CFRP specimen was affected by the high-temperature effect significantly, which dropped 68% and 16% for the 200 and 600 °C, respectively, compared with that of the room temperature. The degradation measured by the laser transducer system was more intensive compared with previous studies. The elastic modulus decreased to about 29% of the room temperature value at 200 °C. With the evaporation of the resin, the failure modes of the CFRP experienced brittle fracture to pullout of the fiber tow. The study provides accurate tensile performance of the CFRP plate under high-temperature exposure, which is helpful for the engineering application.  相似文献   

10.
Research has focused on creating new methodologies such as supervised machine learning algorithms that can easily calculate the mechanical properties of fiber-reinforced concrete. This research aims to forecast the flexural strength (FS) of steel fiber-reinforced concrete (SFRC) using computational approaches essential for quick and cost-effective analysis. For this purpose, the SFRC flexural data were collected from literature reviews to create a database. Three ensembled models, i.e., Gradient Boosting (GB), Random Forest (RF), and Extreme Gradient Boosting (XGB) of machine learning techniques, were considered to predict the 28-day flexural strength of steel fiber-reinforced concrete. The efficiency of each method was assessed using the coefficient of determination (R2), statistical evaluation, and k-fold cross-validation. A sensitivity approach was also used to analyze the impact of factors on predicting results. The analysis showed that the GB and RF models performed well, and the XGB approach was in the acceptable range. Gradient Boosting showed the highest precision with an R2 of 0.96, compared to Random Forest (RF) and Extreme Gradient Boosting (XGB), which had R2 values of 0.94 and 0.86, respectively. Moreover, statistical and k-fold cross-validation studies confirmed that Gradient Boosting was the best performer, followed by Random Forest (RF), based on reduced error levels. The Extreme Gradient Boosting model performance was satisfactory. These ensemble machine learning algorithms can benefit the construction sector by providing fast and better analysis of material properties, especially for fiber-reinforced concrete.  相似文献   

11.
Mixed recycled aggregate (MRA) is a kind of recycled aggregate containing discarded bricks and other impurities that is inferior to ordinary recycled concrete aggregate. To study the effect of MRA in concrete, specimens with 100% MRA under different water–cement ratios (W/C) of 0.50, 0.42, 0.36 and 0.30 were prepared, and the mechanical properties and microstructure were tested. Results show that compared with ordinary concrete, the compressive strength of mixed recycled aggregate concrete (MRAC) with the same W/C was reduced by more than 50% at 28 days, but the axial compression ratio was relatively high, reaching over 0.87. Affected by the high water absorption of MRA, the hydration rate of cement slowed, which was beneficial to the long-term development of the properties of MRAC. An appropriate increase in cement content could strengthen MRA and densify the pore structure of MRAC. The research results of this article prove that MRA has high utilization value and could be used to prepare MRAC with application potential using optimal gradation, which is of positive significance for promoting the consumption of construction waste.  相似文献   

12.
K-TIG (Keyhole Tungsten Inert Gas) method is a new, emerging welding technology that offers a significant acceleration of the joining process, even for very thick plates. However, its potential for welding of certain materials is still unknown. Particularly challenging are duplex steels as this technology does not allow the use of a filler material, which is crucial for these steels and for weld joint microstructure adjustment. In order to demonstrate the suitability of this technology for single-pass welding of 1.4462 duplex steel detailed studies of the microstructure of the weld joints obtained for different linear energies were carried out and discussed with respect to their mechanical properties. According to the results obtained, the heat-affected zone (HAZ) shows a microstructure similar to the HAZ of duplex steel welded with the traditional TIG multi-pass methods. However, the weld, due to the lack of filler material, had a microstructure different to that typical for duplex steel welded joints and was also characterized by an increased content of ferrite. However, all joints, both in terms of microstructure and mechanical properties, met the requirements of the relevant standards. Moreover, the K-TIG process can be carried out in the linear energy range typical of duplex steel welding, although further optimization is needed.  相似文献   

13.
Dual-phase low-alloy steels combine a soft ferrite phase with a hard martensite phase to create desirable properties in terms of strength and ductility. Nickel additions to dual-phase low-alloy steels can increase the yield strength further and lower the transformation temperatures, allowing for microstructure refining. Determining the correct intercritical annealing temperature as a function of nickel content is paramount, as it defines the microstructure ratio between ferrite and martensite. Likewise, quantifying the influence of nickel on the intercritical temperature and its synergistic effect with the microstructure ratio on mechanical properties is vital to designing dual-phase steels suitable for corrosive oil and gas services as well as hydrogen transport and storage applications. In this work, we used a microstructural design to develop intercritical annealing heat treatments to obtain dual-phase ferritic–martensitic low-alloy steels. The intercritical annealing and tempering temperatures and times were targeted to achieve three different martensite volume fractions as a function of nickel content, with a nominal content varying between 0, 1, and 3-wt% Ni. Mechanical properties were characterized using tensile testing and microhardness measurements. Additionally, the microstructure was studied using scanning electron microscopy coupled with electron backscatter diffraction analysis. Tensile strength increased with increasing martensite ratio and nickel content, with a further grain refinement effect found in the 3-wt% Ni steel. The optimal heat treatment parameters for oil and gas and hydrogen transport applications are discussed.  相似文献   

14.
Some types of fiber-reinforced concrete (FRC) such as steel fiber-reinforced concrete (SFRC) or polyolefin fiber-reinforced concrete (PFRC) are suitable for structural uses but there is still scarce knowledge regarding their flexural fatigue behavior. This study aimed to provide some insight into the matter by carrying out flexural fatigue tests in pre-cracked notched specimens that previously reached the Service Limit State (SLS) or the Ultimate Limit State (ULS). The fatigue cycles applied between 30% and 70% of the pre-crack load at 5 Hz until the collapse of the material or until 1,000,000 cycles were reached. The results showed that the fatigue life of PFRC both at SLS or ULS was remarkably higher than the correspondent of SFRC. The fracture surface analysis carried out found a linear relation between the fibers present in the fracture surface and the number of cycles that both SFRC and PFRC could bear.  相似文献   

15.
In this study, the influence of different fire conditions on tempered 32CrB3 steel bolts of Grade 8.8 was investigated. In this research different temperatures, heating time, and cooling methods were correlated with the microstructure, hardness, and residual strength of the bolts. Chosen parameters of heat treatments correspond to simulated natural fire conditions that may occur in public facilities. Heat treated and unheated samples cut out from a series of tested bolts were subjected to microstructural tests using light microscopy (LM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), XRD phase analysis, and the quantitative analysis of the microstructure. The results of the microstructure tests were compared with the results of strength tests, including hardness and the ultimate residual tensile strength of the material (UTS) in the initial state and after the heat treatments. Results of the investigations revealed considerable microstructural changes in the bolt material as a result of exposing it to different fire conditions and cooling methods. A conducted comparative analysis also showed a significant effect of all such factors as the temperature level of the simulated fire, its duration, and the fire-fighting method on the mechanical properties of the bolts.  相似文献   

16.
In this paper, the recycled fine aggregates and powders produced from crushing old basaltic concrete and natural basalt were used to produce new concrete. The sand was partially replaced by two types of recycled wastes at five percentages: 0%, 20%, 40%, 60%, and 80%. The cement was partially replaced by recycled powders and silica fume (SF) at four percentages: 0, 5%, 10%, and 20%. The concrete strengths and water absorption were obtained at several curing ages. The obtained results emphasized the positive effects of increasing the curing time on enhancing the concrete properties, regardless of the types or the waste sources. Moreover, the recycled powders retarded the hydration reaction. In addition, the recycled fine aggregates and powders could achieve about 99.5% and 99.3% of the ordinary concrete strength and enhance the tensile strength. Furthermore, the mix containing 40% of recycled fine concrete aggregate diffused the highest contents of both calcium and silicate, which led to enhancing the interfacial transition zone (ITZ) and concrete properties, compared to the other tested mixes. Finally, the water absorption of all tested concrete mixes decreased with an increase in the curing age, while the mixes integrating 10% and 20% of SF experienced the lowest values of water absorption.  相似文献   

17.
This research study analysed the effect of adding fine—fMRA (0.25% and 50%)—and coarse—cMRA (0%, 25% and 50%)—mixed recycled aggregate both individually and simultaneously in the development of sustainable recycled concretes that require a lower consumption of natural resources. For this purpose, we first conducted a physical and mechanical characterisation of the new recycled raw materials and then analysed the effect of its addition on fresh and hardened new concretes. The results highlight that the addition of fMRA and/or cMRA does not cause a loss of workability in the new concrete but does increase the amount of entrained air. Regarding compressive strength, we observed that fMRA and/or cMRA cause a maximum increase of +12.4% compared with conventional concrete. Tensile strength increases with the addition of fMRA (between 8.7% and 5.5%) and decreases with the use of either cMRA or fMRA + cMRA (between 4.6% and 7%). The addition of fMRA mitigates the adverse effect that using cMRA has on tensile strength. Regarding watertightness, all designed concretes have a structure that is impermeable to water. Lastly, the results show the feasibility of using these concretes to design elements with a characteristic strength of 25 MPa and that the optimal percentage of fMRA replacement is 25%.  相似文献   

18.
This paper investigated the influence of recycled ceramics and grazed hollow beads on the mechanical, thermal conductivity and material properties of concrete. The results showed that the concentration of recycled ceramics and grazed hollow beads has significant optimization on the workability and thermal properties of the concrete. However, the superabundant concentration can reduce the hydration degree of the concrete, which results in the suppressed production of C-S-H gel and the increase of material defects. In summary, considering the coordinated development of key factors such as thermal insulation properties, mechanical properties and microstructure, 10% RCE and 60% GHB are the optimal material system design methods.  相似文献   

19.
This work addresses how vibration stirring, steel-fiber volume ratio, and matrix strength affect the mechanical properties of steel-fiber-reinforced concrete. The goal of the work is to improve the homogeneity of steel-fiber-reinforced concrete, which is done by comparing the mechanical properties of steel-fiber-reinforced concrete fabricated by ordinary stirring with that fabricated by vibration stirring. The results show that the mechanical properties of steel-fiber-reinforced concrete produced by vibration mixing are better than those produced by ordinary mixing. The general trend is that the mechanical properties of steel-fiber concrete have a linear relationship with the matrix strength and the volume ratio of steel fiber. The best mechanical properties are obtained for a steel-fiber volume ratio of less than 1%. We have also established calculation models for the mechanical performance index of vibration, mixing steel-fiber concrete based on the test results. Microscopic studies show that vibration stirring optimizes the microstructure of the transition zone between the concrete interface and the slurry, and improves the homogeneity of the steel-fiber-reinforced concrete, and enhances the adhesion between the mixture components.  相似文献   

20.
Polymer-modified concrete and fiber concrete are two excellent paving materials that improve the performance of some concrete, but the performance of single application material is still limited. In this paper, polymer-modified concrete with strong deformation and fiber concrete with obvious crack resistance and reinforcement effect were compounded by using the idea of composite material design so as to obtain a high-performance pavement material. The basic mechanical properties of high-content hybrid fiber–polymer-modified concrete, such as workability, compression, flexural resistance, and environmental durability (such as sulfate resistance) were studied by using the test regulations of cement concrete in China. The main results were as follows. (1) The hybrid fiber–polymer concrete displayed reliable working performance, high stiffness, and a modulus of elasticity as high as 35.93 GPa. (2) The hybrid fiber–polymer concrete had a compressive strength of 52.82 MPa, which was 31.2% higher than that of the plain C40 concrete (40.25 MPa); the strength of bending of the hybrid concrete was 11.51 MPa, 191.4% higher than that of the plain concrete (3.95 MPa). (3) The corrosion resistance value of the hybrid fiber–polymer concrete was 81.31%, indicating its adjustability to sulfate attack environments. (4) According to cross-sectional scanning electron microscope (SEM) images, the hybrid fiber–polymer concrete was seemingly more integrated with a dense layer of cementing substance on its surface along with fewer microholes and microcracks as when compared to the ordinary concrete. The research showed that hybrid fiber–polymer concrete had superior strength and environmental erosion resistance and was a pavement material with superior mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号