首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The effect of intravenous 1 alpha-hydroxyvitamin D3 [1 alpha(OH)D3] on circulating levels of intact parathyroid hormone (PTH 1-84) and COOH-terminal immunoreactive PTH(PTH 53-84) was examined in 13 patients on chronic hemodialysis. Thirteen patients were treated for 300 days (10 months), 9 patients for 520 days (14 months) and 6 patients for 720 days (2 years) with increasing doses of 1 alpha(OH)D3 intravenously under careful control of plasma Ca2+. Blood samples were obtained 1 week before start of treatment and then at every 2nd week. None of the patients had previously been treated with oral vitamin D metabolites. Intact PTH levels were maximally suppressed after 27-33 weeks of treatment by approximately 73%. At the end of the study periods, PTH 1-84 was still suppressed by 78 +/- 4.3% after 300 days, 78 +/- 8.8% after 520 days and 85 +/- 6.5% after 720 days. Plasma Ca2+ was kept within normal levels, but showed an initial increase from 1.14 +/- 0.03 to 1.27 +/- 0.15 mmol/l, and an adjustment of the doses of 1 alpha(OH)D3 was necessary. The present investigation demonstrated (1) that intravenous administration of the 1-hydroxylated vitamin D metabolite 1 alpha(OH)D3 induced a significant decrease in circulating levels of biologically active intact PTH, and (2) that it was possible to maintain the marked suppression of PTH secretion by intravenous treatment of 1 alpha (OH)D3 for up to 2 years. Hypercalcemia could be avoided by careful monitoring of plasma Ca2+ and adjustment of the doses of 1 alpha(OH)D3.  相似文献   

2.
Many hemodialysis patients are still suffering from secondary hyperparathyroidism although 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has been used to treat renal osteodystrophy for the last two decades. The main reason for its failure to correct the secondary hyperparathyroidism is that in patients, hypercalcemia occurs before adequate parathyroid hormone (PTH) suppression is obtained when a large daily dose of 1,25(OH)2D3 is started. In this study, the oral dose of 1,25(OH)2D3 (4.0 micrograms) was administered only twice a week at the end of hemodialysis ('oral 1,25(OH)2D3 pulse therapy'), in 19 patients with severe secondary hyperparathyroidism. Serum immunoreactive PTH started to decrease after 6 weeks of therapy, and the original level of 41.2 +/- 7.24 was reduced to 24.4 +/- 6.12 ng/ml by the end of the 6-month therapy (p less than 0.001). Serum alkaline phosphatase also was reduced by 64.4%. Three out of 19 patients suffered from hypercalcemia during the 4th month of therapy. Calcium supplement given to 6 other patients with severe secondary hyperparathyroidism did not lower serum PTH levels significantly after 6 weeks of therapy, although serum calcium levels increased and were sustained above 10 mg/dl for the last 5 weeks. These findings strongly suggest that the suppressive effect of the oral 1,25(OH)2D3 pulse therapy was attained by a direct action of 1,25(OH)2D3 on the parathyroid gland rather than by its ability to elevate serum calcium levels. In conclusion, the oral 1,25(OH)2D3 pulse therapy effectively lowered PTH levels in hemodialysis patients who cannot tolerate large daily doses of 1,25(OH)2D3.  相似文献   

3.
New vitamin D analogs   总被引:4,自引:0,他引:4  
BACKGROUND: 1,25-(OH)2D3 (calcitriol) controls parathyroid gland growth and suppresses the synthesis and secretion of parathyroid hormone. Because of this, 1,25-(OH)2D3 has been used successfully for the treatment of secondary hyperparathyroidism, which almost always accompanies renal failure. However, the potent effect of 1,25-(OH)2D3 on intestinal calcium and phosphorus absorption and bone mineral mobilization often leads to the development of hypercalcemia and hyperphosphatemia precluding 1,25-(OH)2D3 therapy. METHODS: This has led to the development of vitamin D analogs that retain the suppressive action on PTH and parathyroid gland growth, but that have less calcemic and phosphatemic activity. Currently, two analogs, 19-nor-1,25-(OH)2D2 and 1,alpha(OH)D2, are being used for the treatment of secondary hyperparathyroidism in the United States, and two are being used in Japan, 22-oxa-calcitriol and 1,25-(OH)2-26,27F6 D3. RESULTS: All four analogs suppressed PTH, but had less calcemic and phosphatemic activity than 1,25-(OH)2D3. In rats, 19-nor-1,25-(OH)2D2 has been shown to be less calcemic and phosphatemic compared to 1,alpha(OH)D2. CONCLUSION: Therapeutic doses of 19-nor-1,25-(OH)2D2 could produce a lower Ca x P product compared to 1,alpha(OH)D2, which could be an important consideration in patient treatment. Further studies are necessary to define these differences and to understand the mechanisms behind the differential actions of vitamin D analogs.  相似文献   

4.
Studies presented here were designed to investigate further the basis for an impaired cAMP response to parathyroid hormone (PTH) in osteoblastlike calvarial bone cells isolated from vitamin D-deficient rat pups. The goal was to perturb Ca, PTH, and vitamin D in vivo in order to see which factors might be responsible for the impaired in vitro bone cell cAMP response. Pups either were parathyroidectomized (PTX) 3-5 days, implanted with osmotic minipumps delivering high doses of PTH, given repeated, high doses of 1,25(OH)2D3, or were D-deficient (-D, i.e., born and suckled by D-deficient mothers). Osteoblastlike bone cells, isolated by sequential enzyme digestion and centrifugation, were exposed to PTH for 5 min in the presence of a phosphodiesterase inhibitor. In bone cells isolated from -D rat pups, both basal and PTH-induced cAMP accumulation were significantly lower than in +D bone cells. Earlier, we had shown that two daily injections of -D pups with 50 ng 1,25(OH)2D3 restores this reduced bone cAMP response of -D pups toward normal. In the present study, neither basal nor PTH-induced bone cell cAMP accumulation was affected by subjecting D-replete pups to PTX, PTH infusion, or repeated high doses of 1,25(OH)2D3 despite the fact that each treatment markedly changed serum Ca or serum immunoreactive PTH. The results indicate that the impaired bone cell cAMP response seen in -D pups is not a direct result of chronic hypocalcemia and that the "heterologous desensitization" seen in vitro with added 1,25(OH)2D3 could not be duplicated by in vivo treatment of +D pups with supraphysiologic doses of 1,25(OH)2D3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We studied the suppression of intact parathyroid hormone (PTH) in ten patients on chronic hemodialysis using different calcium concentrations of dialysate. Secondly, giving i.v. vitamin D3 at commencement of dialysis we investigated whether 1 alpha (OH)D3 or 1,25(OH)2D3 acutely modifies the responsiveness of the parathyroid gland to the suppressive effect of increased serum calcium. Dialysis with high-calcium dialysate (1.75 mmol/l) reverted the plasma PTH to normal limits. Lower-calcium dialysate (1.5 mmol/l) induced only a partial suppression of hyperparathyroidism. We found no differences in the suppression of hyperparathyroidism whether 1 alpha (OH)D3 or 1,25(OH)2D3 was given at the beginning of the dialysis or not. We conclude that the suppressibility of hyperparathyroidism in dialysis patients can be evaluated by different calcium concentrations of dialysate, and that i.v. vitamin D3 does not acutely modify the responsiveness of the parathyroid gland to the effect of calcium.  相似文献   

6.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] was tested for its effects on prostaglandin E2 (PGE2) production and bone resorption in cultured mouse parietal bones. We found that at 24 h 1,25-(OH)2D3 increased 45Ca release but did not affect PGE2 production. However, at 48 h 1,25-(OH)2D3 produced a dose-related increase in PGE2 production. PGE2 production was increased with 1,25-(OH)2D3 at 10(-10)-10(-8) M, and 45Ca release was increased with 1,25-(OH)2D3 at 10(-11)-10(-8) M. The effects of 1,25-(OH)2D3 on PGE2 production persisted in the presence of cortisol (10(-8) M), and the effects were greater in the presence of arachidonic acid (10(-5) M) or fetal bovine serum (10%). Human interleukin-1 alpha (IL-1, 1 ng/ml) and bovine parathyroid hormone-(1-34) (PTH, 10 ng/ml) increased PGE2 production earlier and to a greater extent than 1,25-(OH)2D3. The PGE2 response to IL-1 and PTH was not affected by 1,25-(OH)2D3 at 24 h, but at 48 h 1,25-(OH)2D3 (10(-8) M) increased the PGE2 response to both IL-1 and PTH. The stimulation of 45Ca release at 48 h by high concentrations of 1,25-(OH)2D3, PTH, or IL-1 was similar, and there was no evidence for an additive effect. To test for an effect of 1,25-(OH)2D3 on endogenous IL-1 production, experiments were performed in the presence of an IL-1 receptor antagonist (IL-1Ra, 1000 ng/ml), which has been found to block selectively IL-1 effects on bone resorption and PG production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
9.
Parathyroid suppression by intraperitoneal calcitriol (1,25(OH)2D3) during peritoneal dialysis. The purpose of this study was to determine if parathyroid hormone (PTH) suppression could be achieved by increasing calcium mass transfer (Ca MT) with high dialysate Ca (4 mEq/liter) or via intraperitoneal (i.p.) 1,25(OH)2D3 in patients undergoing continuous ambulatory peritoneal dialysis. Eleven patients were dialyzed for two months with standard Ca dialysate (3.5 mEq/liter) followed by two months with 4.0 mEq/liter Ca, then by three months of i.p. 1,25(OH)2D3. During the latter period, patients were randomized to groups whose dialysate contained either 3.5 mEq/liter or 4.0 mEq/liter Ca. We found that 4.0 mEq/liter Ca dialysate more than doubled Ca MT (37 +/- 17 mg/day to 84 +/- 6 mg/day) leading to a modest fall (P less than 0.05) in PTH levels (84 +/- 5.5% of controls). Ionized calcium levels did not change. With i.p. 1,25(OH)2D3, however, ionized calcium rose significantly (P less than 0.001) leading to a decline in PTH levels to 53.9 +/- 7.9% of control values. Serum 1,25(OH)2D3 levels rose from undetectable to 47.7 +/- 7.2 pg/dl (normal range 20 to 35). These studies indicate that increasing Ca MT using a 4.0 mEq/liter Ca dialysate leads to a small reduction in PTH concentrations. On the other hand, i.p. 1,25(OH)2D3 is well absorbed into the systemic circulation, raises ionized calcium levels, and leads to a marked suppression of PTH. Thus, i.p. 1,25(OH)2D3 may be a simple and effective means to suppress secondary hyperparathyroidism in patients undergoing CAPD.  相似文献   

10.
In the present study, concentrations of parathyroid hormone (PTH), determined by an intact PTH assay and a midregion/C-terminal PTH assay, 1,25-dihydroxyvitamin D [1,25(OH)2D3], ionized calcium and phosphate were measured in 15 patients with a stable creatinine clearance (Ccr) of 21.2 +/- 14.4 ml/min (mean +/- SD; group 1) and in 10 patients with a Ccr regularly undergoing hemodialysis (group 2, Ccr not measured). In group 1, the mean concentration of 1,25(OH)2D3 was significantly increased compared with the level in group 2, whereas no differences were found concerning the concentrations of intact PTH, midregion/C-terminal PTH, ionized calcium and phosphate. In group 1, the PTH concentration correlated inversely with ionized calcium concentration and Ccr, which in turn, was directly correlated. The concentration of 1,25(OH)2D3 correlated inversely with phosphate concentration, but did not correlate with either PTH or ionized calcium concentrations. In group 2 no correlation was found between any of the biochemical variables. The data demonstrate that in patients with stable renal failure, the concentration of ionized calcium still regulates PTH secretion but other variables such as parathyroid cell mass and setpoint may interfere with the interrelation. The elevated concentration of phosphate in renal failure may override PTH as a regulator of the renal 1,25(OH)2D3 formation. The lack of correlation in the hemodialyzed patients may be attributed to extrarenal production of 1,25(OH)2D3, reduced binding of 1,25(OH)2D3 to parathyroid tissue or the major changes in calcium homeostasis caused by the hemodialysis.  相似文献   

11.
Serum parathyroid hormone (PTH) and low-normal serum phosphorus (P) concentrations have well-known trophic effects on renal 1-hydroxylase. A role for serum ionized calcium (Ca2+) in the day-to-day regulation of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] has not been identified in normal humans. The associations between serum Ca2+, PTH, P, and plasma 1,25-(OH)2D3 were evaluated in a cross-sectional study of 275 healthy postmenopausal women. Partial correlations of Ca2+, PTH, and P (each controlled for the other two) with 1,25-(OH)2D3 were sought within quintiles of Ca2+. At low-normal concentrations (less than 1.26 mmol/liter, quintile 1) Ca2+ was inversely correlated with 1,25-(OH)2D3 (rp = -0.30, p = 0.028). At mid-normal concentrations Ca2+ was not significantly correlated with 1,25-(OH)2D3. At high-normal concentrations (greater than 1.32 mmol/liter, quintile 5) Ca2+ attenuated the positive associations of both PTH and low-normal P with 1,25-(OH)2D3. In quintile 5 Ca2+, PTH, and P together accounted for none of the variability in 1,25-(OH)2D3 (R2 = 0.03, p = 0.671). Women with Ca2+ below 1.32 mmol/liter were next examined by quintile of P. As expected, at low-normal concentrations (less than 1.03 mmol/liter, quintile 1) P was significantly correlated with 1,25-(OH)2D3 (rp = -0.32, p = 0.047). The association between PTH and 1,25-(OH)2D3 was statistically significant only at mid-normal concentrations of P (rp = 0.52, p = 0.001, quintile 3). We conclude that Ca2+, along with PTH and P, is associated with the plasma concentration of 1,25-(OH)2D3 in normal postmenopausal women.  相似文献   

12.
The effect of oxidation of human parathyroid hormone 1-34 (hPTH 1-34) on the hormone's biological activity was assessed in vivo using a multiparameter, thyroparathyroidectomized (TPTX) rat model. The peptide was oxidized by treatment with hydrogen peroxide, and the oxidized form (8,18-methionine sulfoxide) was isolated by reverse-phase HPLC. Vitamin D-deficient rats were infused with either intact or oxidized hormone along with a 5 mM calcium chloride solution for 4 or 18 hr. Infusion of nonoxidized hormone (0.1-0.8 nmoles/hr) resulted in dose-dependent increases in serum calcium, decreases in serum phosphate, decreases in urine calcium, increases in urine phosphate and cAMP, and increased renal 1,25-dihydroxyvitamin D3 (1,25 (OH)2D3) production. Oxidized PTH infused at doses up to 0.8 nmole/hr had no effect on any of these parameters. To assess the effect of oxidation on the ability of PTH to inhibit the production of the 24,25-dihydroxyvitamin D3 (24,25(OH)2D3), the infusion protocol was performed in vitamin D-deficient rats repleted with 1,25(OH)2D3 by injection. In these experiments, intact hormone markedly suppressed 24,25(OH)2D3 production, whereas the oxidized form was without effect. We conclude that intact methionine residues at positions 8 and 18 of hPTH 1-34 are necessary for all its major biological actions, including its effect on the renal metabolism of 25-hydroxyvitamin D3(25(OH)D3).  相似文献   

13.
14.
15.
Li W  Farach-Carson MC 《BONE》2001,29(3):231-235
1,25(OH)(2)D(3) enhances parathyroid hormone (PTH)-induced Ca(2+) signaling in osteoblasts by activating plasma membrane voltage-sensitive Ca(2+) channels (VSCCs). The ability of 1,25(OH)(2)D(3) or the VSCC-activating analog AT (25-hydroxy-16-ene-23-yne-D(3)) to enhance parathyroid hormone-stimulated (45)Ca(2+) release from cultured new-born rat calvaria was measured. Analog BT (1,24-dihydroxy-22-ene-24-cyclopropyl-D(3)), that does not mobilize Ca(2+), also was tested along with PTH. Control experiments were performed with and without PTH and with and without serum. Individual calvaria labeled in utero with (45)Ca(2+) were cultivated in serum-free medium on filters at the medium/air interface of 24-well culture plates and (45)Ca(2+) release followed over 72 h. The results demonstrated that 1,25(OH)(2)D(3) and the Ca(2+)-mobilizing analog, AT, but not the nuclear receptor-binding analog, BT, enhanced PTH-stimulated (45)Ca(2+) release under serum-free conditions. This enhancement effect of the seco-steroids was not evident in the presence of 10% fetal calf serum. The effect of analog AT was faster than that of 1,25(OH)(2)D(3). Nitrendipine, a specific L-type VSCC blocker, attenuated enhancement by vitamin D compounds, indicating that the high-threshold L-type VSCC is a molecular transducer of costimulation. These results emphasize the synergy between the calcitropic hormones 1,25(OH)(2)D(3) and PTH in cultures containing osteoblasts and osteoclasts, and suggest that the Ca(2+)-mobilizing activity of 1,25(OH)(2)D(3) enhances Ca(2+) release from bone.  相似文献   

16.
BACKGROUND: Vitamin D compounds are used clinically to control secondary hyperparathyroidism (SHPT) due to renal failure. Newer vitamin D compounds retain the suppressive action of 1,25(OH)(2)D(3) on the parathyroid glands and may have less Ca(2+)-mobilizing activity, offering potentially safer therapies. METHODS: This study investigated the effect of a single dose of compound (1,25(OH)(2)D(3), 1,24(OH)(2)D(2), or 1alpha(OH)D(2)) on renal and intestinal Ca(2+) transport proteins, including TRPV5 and TRPV6, and serum Ca(2+), in a novel SHPT model, the 25-OH-D(3)-1alpha-hydroxylase knockout mouse, which lacks endogenous 1,25(OH)(2)D(3) and is severely hypocalcemic. Animals were injected intraperitoneally with compound (100 ng/mouse). RESULTS: Serum levels of 1,25(OH)(2)D(3) and 1,24(OH)(2)D(2) peaked at four hours post-injection (pi), then declined rapidly. 1,25(OH)(2)D(2) generated from 1alpha(OH)D(2) peaked at 12 hours pi and then remained stable. Serum Ca(2+) was increased to near-normal within four hours by 1,25(OH)(2)D(3) and 1,24(OH)(2)D(2), and within 12 hours by 1alpha(OH)D(2). 1,25(OH)(2)D(3) and 1,24(OH)(2)D(2) up-regulated duodenal TRPV5 and TRPV6 mRNA to a similar degree within four hours; mRNA levels decreased by 12 hours after 1,24(OH)(2)D(2) treatment, and by 24 hours after 1,25(OH)(2)D(3) treatment. 1,25(OH)(2)D(3) increased kidney levels of TRPV5, calbindin-D(28K), and calbindin-D(9K) mRNA within four hours; 1,24(OH)(2)D(2) did not change kidney TRPV5 levels and modestly increased calbindin D(9K) by 48 hours. 1alpha(OH)D(2) produced later-onset effects, increasing duodenal TRPV6 and calbindin-D(9K) mRNA levels by 12 hours and TRPV5 by 48 hours. CONCLUSION: In kidney, 1alpha(OH)D(2) increased TRPV5, calbindin-D(28K), and calbindin-D(9K) mRNA levels by 12 hours. This study indicates that Ca(2+) transport proteins, including TRPV5 and TRPV6, are differentially up-regulated by vitamin D compounds.  相似文献   

17.
Three hypercalcemic renal transplant recipients with stable, excellent renal function (creatinine clearance 74 +/- 11.8 ml/min) were treated with 60 micrograms 24,25(OH)2D3 by mouth daily for three months. Immunoreactive c-terminal PTH, intact PTH, 1,25(OH)2D3, 25(OH)D3, 24,25(OH)2D3, and serum and 24 h urine calcium, phosphate, magnesium and creatinine were obtained before, at one week, one month and three months of treatment, and at six weeks post-treatment. Significant elevations in serum levels of 24,25(OH)2D3 were induced by therapy (1.32 +/- .16 ng/ml to 30.06 +/- 5.18 ng/ml at one month). Moderate elevations of c-terminal PTH and normal levels of intact PTH remained unchanged throughout the study. Serum calcium remained elevated, serum phosphate and magnesium remained depressed and creatinine clearance and urinary excretion of calcium, phosphate, and magnesium remained unchanged. Furthermore, 1,25(OH)2D3 and 25(OH)D3 remained in the normal range throughout the study. We conclude that 24,25(OH)2D3 did not have a suppressant effect on levels of iPTH in the clinical setting of persistent hyperparathyroidism after successful renal transplantation.  相似文献   

18.
The effects of high calcium and 1,25-(OH)2D3 on parathyroid cell growth, PTH secretion, and steady-state levels of pre-proPTH mRNA in proliferating bovine parathyroid cells were examined. Cells were established in primary tissue culture and then tested in passages 2 and 5. Cell proliferation was suppressed by 10(-9)-10(-7) M 1,25-(OH)2D3 but not by high calcium (2.5 mM). Cells at passages 2 and 5 were grown to subconfluence and then exposed for 72 h to 2.5 mM calcium or 10(-7) M 1,25-(OH)2D3. Pre-proPTH mRNA was decreased to approximately 50% of control by 2.5 mM calcium compared with 0.3 and 1.0 mM calcium. PTH secretion, as tested by low calcium stimulation for 1 h at the end of 72 h incubation, was inhibited by 50% in cells that had been exposed to high calcium compared with control. Incubation with 10(-7) M 1,25-(OH)2D3 caused a decrease in the levels of pre-proPTH mRNA and PTH release to 50% of control at 72 h. These results suggest that cultured bovine parathyroid cells, at least in early passages, have responses to high calcium and 1,25-(OH)2D3 similar to those in primary nonproliferating cultures studied earlier and that 1,25-(OH)2D3 inhibits the proliferation of parathyroid cells in a dose-responsive fashion.  相似文献   

19.
BACKGROUND: The therapeutic equivalence of 1,25(OH)(2)D(3) and 1alpha(OH)D(3) on the suppression of PTH synthesis and secretion has not clearly been established. The aim of the present study was to evaluate the pharmacokinetics of 1,25(OH)(2)D(3) and 1alpha(OH)D(3) after oral and i.v. administration in healthy volunteers and uraemic patients. METHODS: Six healthy volunteers and 12 uraemic patients were included in the study. With an interval of 2 weeks, 4 microg of 1,25(OH)(2)D(3) i.v., 4 microg of 1,25(OH)(2)D(3) orally, 4 microg of 1alpha(OH)D(3) i.v. and 4 microg of 1alpha(OH)D(3) orally were administered. Blood samples for analysis of plasma-Ca(2+), plasma-1,25(OH)(2)D(3), and plasma-PTH were drawn at time 0, 0.25, 0.5, 1, 2, 4, 6, 9, 12, 24, 48, and 72 h. The healthy volunteers were studied in all four protocols and the uraemic patients in either the 1alpha(OH)D(3) (n=6) or the 1,25(OH)(2)D(3) (n=6) protocol. RESULTS: After oral administration of 1,25(OH)(2)D(3) the bioavailability of 1,25(OH)(2)D(3) was 70.6+/-5.8/72.2+/-4.8% in healthy volunteers/uraemic patients (n.s.). After i.v. administration the volume of distribution of 1,25(OH)(2)D(3) was similar, 0.49+/-0.14 vs 0.27+/-0.06 l/kg in healthy volunteers vs uraemic patients (n.s.), while the metabolic clearance rate of 1,25(OH)(2)D(3) was 57% lower in the uraemic patients, 23.5+/-4.34 vs 10.1+/-1.35 ml/min in healthy volunteers vs uraemic patients, respectively (P<0.03). The bioavailability of 1,25(OH)(2)D(3) after i.v. administration of 1alpha(OH)D(3) was 42.4+/-11.0/42.0+/-2.0% in healthy volunteers/uraemic patients (n.s.); and after oral administration of 1alpha(OH)D(3) 42.0+/-2.0/29.8+/-3.1% in healthy volunteers/uraemic patients (n.s.). A small, but significant increase in plasma-Ca(2+) was seen after administration of 1,25(OH)(2)D(3) to the uraemic patients, while no increase was seen after administration of 1alpha(OH)D(3). PTH levels were significantly suppressed in the healthy volunteers 24 h after administration of 4 microg of 1,25(OH)(2)D(3) i.v., 4 microg of 1,25(OH)(2)D(3) orally, and 4 microg of 1alpha(OH)D(3) orally by 35+/-7, 30+/-8, and 35+/-4%, respectively (all P<0.03). In the uraemic patients, PTH levels were significantly suppressed after administration of 4 microg of 1,25(OH)(2)D(3) i.v., 4 microg of 1,25(OH)(2)D(3) orally, and 4 microg of 1alpha(OH)D(3) i.v. by 30+/-10, 45+/-7, and 40+/-7%, respectively (all P<0.04). The effect was transitory in the healthy volunteers and lasted for at least 72 h in the uraemic patients. CONCLUSION: The present study found a 57% lower metabolic clearance rate of 1,25(OH)(2)D(3) in uraemic patients, as compared with that of healthy volunteers (P<0.03). The bioavailability of 1,25(OH)(2)D(3) following administration of 1alpha(OH)D(3) i.v. and orally in both healthy volunteers and uraemic patients was markedly lower than after administration of oral 1,25(OH)(2)D(3) (P<0.03). In spite of lower plasma-1,25(OH)(2)D(3) levels after administration of 1alpha(OH)D(3), no significant difference was observed on the suppressive effect of 4 microg i.v. of either 1,25(OH)(2)D(3) or 1alpha(OH)D(3) on the plasma-PTH levels in the uraemic patients. This might suggest the existence of an effect of 1alpha(OH)D(3) on the parathyroid glands which is independent of the plasma-1,25(OH)(2)D(3) levels, that are achieved after oral or i.v. administration of 1alpha(OH)D(3).  相似文献   

20.
Summary Studies presented here were designed to investigate further the basis for an impaired cAMP response to parathyroid hormone (PTH) in osteoblastlike calvarial bone cells isolated from vitamin D-deficient rat pups. The goal was to perturb Ca, PTH, and vitamin Din vivo in order to see which factors might be responsible for the impairedin vitro bone cell cAMP response. Pups either were parathyroidectomized (PTX) 3–5 days, implanted with osmotic minipumps delivering high doses of PTH, given repeated, high doses of 1,25(OH)2D3, or were D-deficient (-D, i.e., born and suckled by D-deficient mothers). Osteoblastlike bone cells, isolated by sequential enzyme digestion and centrifugation, were exposed to PTH for 5 min in the presence of a phosphodiesterase inhibitor. In bone cells isolated from -D rat pups, both basal and PTH-induced cAMP accumulation were significantly lower than in +D bone cells. Earlier, we had shown that two daily injections of -D pups with 50 ng 1,25(OH)2D3 restores this reduced bone cAMP response of -D pups toward normal. In the present study, neither basal nor PTH-induced bone cell cAMP accumulation was affected by subjecting D-replete pups to PTX, PTH infusion, or repeated high doses of 1,25(OH)2D3 despite the fact that each treatment markedly changed serum Ca or serum immunoreactive PTH. The results indicate that the impaired bone cell cAMP response seen in -D pups is not a direct result of chronic hypocalcemia and that the “heterologous desensitization” seenin vitro with added 1,25(OH)2D3 could not be duplicated byin vivo treatment of +D pups with supraphysiologic doses of 1,25(OH)2D3. Finally the lack of alteration in the bone cell cAMP response to PTHin vitro after chronic PTH infusionin vivo fails to support the notion that the impaired response in -D bone cells can be explained entirely by “homologous desensitization” induced by high circulating levels of PTH in the hypocalcemic, -D rat pup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号