首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory survival tests were conducted with an indigenous infaunal amphipod, Corophium colo, on 103 sediment samples from Sydney Harbor (NSW, Australia) and vicinity, containing a wide range of chemicals and concentrations. The present study describes the sensitivity of C. colo to the sediments and compares the results to data for North American amphipods (Rhepoxynius abronius and Ampelisca abdita) previously used to establish and validate sediment-quality guidelines (SQGs). The incidence of toxicity increased with increasing contamination, as indicated by increasing numbers of SQGs exceeded and increasing mean SQG quotients. The incidence of highly toxic results (p < 0.05 and mean amphipod survival of < 80% that of controls) for highly contaminated samples was approximately half (28-40%) that of a large U.S. database (74%). The incidence of highly toxic responses for samples with intermediate levels of contamination also was lower in the present study (5-13%) compared to the results in large U.S. studies (approximately 30-50%). Corophium colo reburial tests showed greater sensitivity compared to survival tests, with a maximum incidence of statistically significant responses in moderately contaminated sediments of 70%. The present study showed that adult Corophium organisms are suitable for testing lethal responses in highly contaminated sediments (i.e., with mean effects range-median quotients of >1.5). Reburial results provide additional sensitivity.  相似文献   

2.
When sediments are found to be toxic usually there is a mixture of chemicals present. Often it is important to establish which chemicals contribute to the toxicity. Establishing causality can be difficult and often requires fractionation with subsequent toxicity testing. The sample collection and manipulation process can alter chemical bioavailability and toxicity. An in situ toxicity identification evaluation (iTIE) chamber is described that was placed in sediments and fractionated pore-water chemicals into nonpolar chemicals, metals, and ammonia-type groups. This method was field tested and compared to the laboratory-based, U.S. Environmental Protection Agency (U.S. EPA) toxicity identification evaluation (TIE) method. Field studies were performed at three sites contaminated primarily with polycyclic aromatic hydrocarbons (PAHs) (Little Scioto River, OH, USA), polychlorinated biphenyls (PCBs) (Dicks Creek, OH, USA), and chlorobenzenes (Sebasticook River, ME, USA). Both the iTIE and the U.S. EPA TIE methods used Daphnia magna in 24-h exposures. Although the iTIE and TIE were conducted on sediments from the same location, there was significantly more toxicity observed in the iTIE testing. The dominant chemical classes were separated by the iTIE method and revealed which fractions contributed to toxicity. The loss of toxicity in the TIE approach did not allow for subsequent fractionation and stressor identification. Advantages of the iTIE over the TIE method were greater sensitivity and ability to detect causative toxic chemical fractions; lack of sediment collection and subsequent manipulation; and, thus, reduction in potential artifacts, more realistic exposure with slow, continual pore-water renewal in situ, ability to evaluate pore waters in sandy or rocky substrates where pore waters are difficult to collect, and a quicker phase I evaluation. Limitations of the iTIE method as compared to the TIE methods were extensive pretest assembly process, fewer phase I fractionation possibilities, and restriction to shallow waters. The results of these studies suggest that the iTIE method provides a more accurate and sensitive evaluation of pore water toxicity than the laboratory TIE method.  相似文献   

3.
Individual chemical logistic regression models were developed for 37 chemicals of potential concern in contaminated sediments to predict the probability of toxicity, based on the standard 10-d survival test for the marine amphipods Ampelisca abdita and Rhepoxynius abronius. These models were derived from a large database of matching sediment chemistry and toxicity data, which includes contaminant gradients from a variety of habitats in coastal North America. Chemical concentrations corresponding to a 20, 50, and 80% probability of observing sediment toxicity (T20, T50, and T80 values) were calculated to illustrate the potential for deriving application-specific sediment effect concentrations and to provide probability ranges for evaluating the reliability of the models. The individual chemical regression models were combined into a single model, using either the maximum (P(Max) model) or average (P(Avg) model) probability predicted from the chemicals analyzed in a sample, to estimate the probability of toxicity for a sample. The average predicted probability of toxicity (from the P(Max) model) within probability quartiles closely matched the incidence of toxicity within the same ranges, demonstrating the overall reliability of the P(Max) model for the database that was used to derive the model. The magnitude of the toxic effect (decreased survival) in the amphipod test increased as the predicted probability of toxicity increased. Users have a number of options for applying the logistic models, including estimating the probability of observing acute toxicity to estuarine and marine amphipods in 10-d toxicity tests at any given chemical concentration or estimating the chemical concentrations that correspond to specific probabilities of observing sediment toxicity.  相似文献   

4.
Tampa Bay is a large, urban estuary that is located in west central Florida. Although water quality conditions represent an important concern in this estuary, information from numerous sources indicates that sediment contamination also has the potential to adversely affect aquatic organisms, aquatic-dependent wildlife, and human health. As such, protecting relatively uncontaminated areas of the bay from contamination and reducing the amount of toxic chemicals in contaminated sediments have been identified as high-priority sediment management objectives for Tampa Bay. To address concerns related to sediment contamination in the bay, an ecosystem-based framework for assessing and managing sediment quality conditions was developed that included identification of sediment quality issues and concerns, development of ecosystem goals and objectives, selection of ecosystem health indicators, establishment of metrics and targets for key indicators, and incorporation of key indicators, metrics, and targets into watershed management plans and decision-making processes. This paper describes the process that was used to select and evaluate numerical sediment quality targets (SQTs) for assessing and managing contaminated sediments. These SQTs included measures of sediment chemistry, whole-sediment and pore-water toxicity, and benthic invertebrate community structure. In addition, the paper describes how the SQTs were used to develop site-specific concentration-response models that describe how the frequency of adverse biological effects changes with increasing concentrations of chemicals of potential concern. Finally, a key application of the SQTs for defining sediment management areas is discussed.  相似文献   

5.
Identification of individual chemical groups is critical in evaluating sediment quality and fractionating these groups of chemicals in a mixture is important to determine the primary chemicals causing toxicity. The in situ toxicity identification evaluation (iTIE) is a novel method that was developed to fractionate chemicals in contaminated sediments and waters and assess toxicity organisms. The study objectives were to verify that the iTIE can help identify contaminant chemical classes and improve the toxicity assessment process; and compare the iTIE and U.S. Environmental Protection Agency's (U.S. EPA) toxicity identification evaluation (TIE) methods. The iTIE exposure chamber is powered by a portable air pump that suctions pore water, via a Venturi system, through selective sorption materials. After passing through the sorptive materials, the pore water passes into an exposure chamber containing Daphnia magna. The chemical sorption materials included Ambersorb 563 for nonpolar organic chemical adsorption, Chelex for metals chelation, and multiple zeolite types for ammonia adsorption. The laboratory studies were performed using water and sediments spiked with ammonia, cadmium, and fluoranthene. The laboratory validation of the iTIE approach showed that different classes of compounds readily could be separated via the resin treatments, resulting in significant differences in concentrations and thus exposures to in situ exposed organisms. Ammonia, cadmium, and fluoranthene were significantly removed by zeolite, Chelex, and Ambersorb, respectively. Although there was some cross-adsorption to the other nontarget resins, it was limited and allowed for treatment differences to be detected. Survival in the treatment resins exposed to the target compounds was as high as control survivals. A 24-h exposure period appeared optimal, allowing for replacement of initial culture water with pore waters, while longer exposures occasionally allowed for breakthrough of contaminants. The iTIE was more sensitive than the U.S. EPA TIE method, in that it detected toxicity more readily due to the greater loss of contaminant concentrations in the TIE manipulation process.  相似文献   

6.
The U.S. Environmental Protection Agency has standardized methods for performing acute marine amphipod sediment toxicity tests. A test design reducing sediment volume from 200 to 50 ml and overlying water from 600 to 150 ml was recently proposed. An interlaboratory comparison was conducted to evaluate the precision of this reduced sediment volume toxicity test method using the marine amphipod Ampelisca abdita. A negative control and three sediment samples of varying degrees of toxicity ranging from low to high were tested by six laboratories. Complete agreement was reached in rank of relative toxicity for all samples tested by five out of six laboratories. Test acceptability for control survival was achieved by all laboratories, and 69% agreement in classification of the sediments as toxic or nontoxic was documented. Coefficients of variation in all test samples were similar to those reported in other interlaboratory studies using marine amphipods. Results of this study indicate that the reduced sediment volume test using A. abdita is a reliable and precise measure of acute toxicity in marine sediment samples.  相似文献   

7.
Tenax extraction is a simple, inexpensive approach to estimate the bioavailability of hydrophobic organic contaminants from sediment. In the present study, a single-point Tenax extraction was evaluated regarding its correlation with the acute toxicity to Hyalella azteca using field-collected sediments in California, USA. Pyrethroids were believed to be the primary contributor to the observed toxicity, and a significant correlation existed between the expected toxicity (given pyrethroid concentrations) and the mortality at most sampling sites. A small subset of sites, however, showed unexpectedly low toxicity to H. azteca despite high concentrations of pyrethroids. These samples were evaluated by Tenax extraction with the expectation that this procedure, which qualifies bioavailable instead of total pyrethroid concentration in sediment, would better explain the anomalously low toxicity. The term bioavailable toxic unit was proposed to link sediment toxicity with chemical availability, and the toxicity in the 17 selected sediments was better explained using Tenax extraction. The r2 value of the regression between sediment toxicity and toxic unit for the 17 sediments increased from 0.24 to 0.60 when the Tenax-extractable concentration was used in place of the total concentration. Results also showed that adsorption to sand particles might play a controlling role in pyrethroid bioavailability and, in turn, sediment toxicity to benthic invertebrates.  相似文献   

8.
When Hurricane Katrina struck the U.S. Gulf Coast, levees surrounding New Orleans, Louisiana, USA, were breached, leading to widespread flooding of the city and potential contamination from industrial spills, residential sources, and redistribution of pre-existing pollutants. We chemically characterized sediment samples from five New Orleans locations and used early development and mutagenesis in Japanese medaka (Oryzias latipes) as metrics of the toxic effects of these sediments. Sediment samples were analyzed for organohalogen pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and metals. One month after Hurricane Katrina, four of the five sites had unsafe concentrations of arsenic and one or more pesticides, pesticide metabolites, or polycyclic aromatic hydrocarbons. Medaka embryonic mortality and time to hatching both increased during exposure to aqueous extracts of sediments, with the greatest toxicity observed for the most heavily contaminated sediment. Exposure to sediment extracts did not, however, result in significantly elevated rates of mutagenesis. When the most contaminated site was resampled 4.5 months later, the sediment had lower contaminant concentrations and fewer deleterious effects on medaka development. Using the medaka bioassay, therefore, we demonstrate toxic effects of post-Hurricane Katrina sediments immediately following the storm, with some amelioration over time of contaminant concentrations and their negative biological effects.  相似文献   

9.
A Sediment Quality Triad (SQT) study consisting of chemical characterization in sediment, sediment toxicity and bioaccumulation testing, and benthic community assessments was performed in the Lower Hackensack River, New Jersey. Chemistry data in sediment and porewater were evaluated based on the equilibrium partitioning approach and other published information to investigate the potential for chemical effects on benthic organisms and communities. Relationships were supported by laboratory toxicity and bioaccumulation experiments to characterize chemical effects and bioavailability. Benthic community results were evaluated using a regional, multimetric benthic index of biotic integrity and four heterogeneity indices. Evidence of slight benthic community impairment was observed in five of nine sediment sample stations. Severe lethal toxicity to amphipods (Leptocheirus plumulosus) occurred in four of these five stations. Although elevated total chromium concentrations in sediment (as high as 1900 mg/kg) were the rationale for conducting the investigation, toxicity was strongly associated with concentrations of polycyclic aromatic hydrocarbons (PAHs) rather than total chromium. PAH toxic units (ΣPAH TU) in sediment and ΣPAH concentrations in laboratory organisms from the bioaccumulation experiment showed a clear dose–response relationship with toxicity, with 0% survival observed in sediments in which ΣPAH TU > 1–2 and ΣPAH concentrations in Macoma nasuta were >2 μmol/g, lipid weight. Metals detected in sediment and porewater, with the possible exception of copper, did not correlate with either toxicity or levels in tissue, likely because acid-volatile sulfide levels exceeded concentrations of simultaneous extracted metals at all sample locations. The study reinforces the value of using multiple lines of evidence approaches such as the SQT and the importance of augmenting chemical and biological analyses with modeling and/or other approaches to evaluate chemical bioavailability and toxicity of sediments.  相似文献   

10.
A method for a whole-sediment toxicity test using alginate immobilized microalgae Pseudokirchneriella subcapitata was developed using spiked sediments and applied to contaminated field sediment samples. For method development, a growth inhibition test (72 h) with algal beads was conducted for the sediments spiked with Cu or diuron. The method was validated by determining dose-response relationships for Cu and diuron in both fine-grained and coarse-grained sediments. The results of a spiked sediment toxicity test suggested that sediment particle size distribution (clay content) had a significant effect on the growth of P. subcapitata. The developed method using immobilized microalgae P. subcapitata beads was applied successfully in the toxicity test and toxicity identification evaluation (TIE) for the four field sediment samples. After a series of extractions with 0.01 M CaCl(2) solution, acetone, and dichloromethane, the extracted sediment, which was shown to be nontoxic to algae, was used as the control and diluent for the same sediment in the whole-sediment toxicity test. The results showed that all investigated field sediment samples were found to be toxic to the immobilized algae P. subcapitata, with their median effective concentration (EC50) values ranging from 41.4 to 79.0% after 72 h exposure. In the whole sediment TIE, growth of P. subcapitata was improved to varying degrees after adding zeolite, resin, or activated charcoal, suggesting different contributions to toxicity from ammonia, metals, and organic contaminants in the tested sediments.  相似文献   

11.
The St. Lucie estuary (SLE) ecosystem in South Florida has been shown to be contaminated with metals and pesticides. Our earlier studies also showed that aquatic organisms, especially benthic species in the SLE ecosystem, might be potentially at high risk from copper (Cu) exposure. The objectives of this study were to conduct studies with separate groups of organisms exposed to seven field-collected sediment samples from the St. Lucie River according to standard procedures to evaluate toxicity and tissue concentrations of Cu and zinc (Zn). Short term and longer term whole sediment acute toxicity studies were performed with Ampelisca abdita and Mercenaria mercenaria. Analysis of sediment chemical characteristics showed that Cu and Zn are of most concern because their concentrations in 86 % of the sediments were higher than the threshold effect concentrations for Florida sediment quality criteria and the National Oceanic and Atmospheric Administration Screening Quick Reference Tables (SQuiRTs) sediment values. There was no significant effect on survival of the tested organisms. However, increased Cu and Zn concentrations in the test organisms were found. Dry weight of the tested organisms was also inversely related to Cu and Zn concentrations in sediments and organisms. The effects on organism weight and Cu and Zn uptake raise concerns about the organism population dynamics of the ecosystem because benthic organisms are primary food sources in the SLE system and are continuously exposed to Cu- and Zn-contaminated sediments throughout their life cycle. The results of the present study also indicate that Cu and Zn exposures by way of sediment ingestion are important routes of exposure.  相似文献   

12.
The objective of this study was to evaluate the toxicity of sediments from the Grand Calumet River and Indiana Harbor Canal located in northwestern Indiana, USA. Toxicity tests used in this assessment included 10-day sediment exposures with the amphipod Hyalella azteca, 31-day sediment exposures with the oligochaete Lumbriculus variegatus, and the Microtox Solid-Phase Sediment Toxicity Test. A total of 30 sampling stations were selected in locations that had limited historic matching toxicity and chemistry data. Toxic effects on amphipod survival were observed in 60% of the samples from the assessment area. Results of a toxicity test with oligochaetes indicated that sediments from the assessment area were too toxic to be used in proposed bioaccumulation testing. Measurement of amphipod length after the 10-day exposures did not provide useful information beyond that provided by the survival endpoint. Seven of the 15 samples that were identified as toxic in the amphipod tests were not identified as toxic in the Microtox test, indicating that the 10-day H. azteca test was more sensitive than the Microtox test. Samples that were toxic tended to have the highest concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The toxic samples often had an excess of simultaneously extracted metals (SEM) relative to acid volatile sulfide (AVS) and had multiple exceedances of probable effect concentrations (PECs). Metals may have contributed to the toxicity of samples that had both an excess molar concentration of SEM relative to AVS and elevated concentrations of metals in pore water. However, of the samples that had an excess of SEM relative to AVS, only 38% of these samples had elevated concentration of metals in pore water. The lack of correspondence between SEM-AVS and pore water metals indicates that there are variables in addition to AVS controlling the concentrations of metals in pore water. A mean PEC quotient of 3.4 (based on concentrations of metals, PAHs, and PCBs) was exceeded in 33% of the sediment samples and a mean quotient of 0.63 was exceeded in 70% of the thirty sediment samples from the assessment area. A 50% incidence of toxicity has been previously reported in a database for sediment tests with H. azteca at a mean quotient of 3.4 in 10-day exposures and at a mean quotient of 0.63 in 28-day exposures. Among the Indiana Harbor samples, most of the samples with a mean PEC quotient above 0.63 ( i.e., 15 of 21; 71%) and above 3.4 ( i.e., 10 of 10; 100%) were toxic to amphipods. Results of this study and previous studies demonstrate that sediments from this assessment area are among the most contaminated and toxic that have ever been reported.  相似文献   

13.
Responses of benthic organisms to contaminated sediments in the laboratory historically have been assessed as survival, growth, and reproduction. However, these responses do not include behavioral aspects of organisms, which also can influence species distribution and abundance in benthic communities. This study documents avoidance behavior of the freshwater oligochaete Lumbriculus variegatus to contaminated sediments in the laboratory, utilizing a chamber specifically built to facilitate the measurement of this response. A number of field-collected sediments from sites with known contamination, several of which exhibited little or no toxicity in standard tests examining growth and/or survival, were evaluated. The oligochaetes exhibited marked avoidance to many of the sediments, indicating the potential utility of this assay in identifying effects of contaminated sediments on benthic community structure. Received: 29 September 1997/Accepted: 6 January 1998  相似文献   

14.
Polycyclic aromatic hydrocarbon (PAH) partitioning coefficients between sediment organic carbon and water (K(OC)) values were determined using 114 historically contaminated and background sediments collected from eight different rural and urban waterways in the northeastern United States. More than 2100 individual K(OC) values were measured in quadruplicate for PAHs ranging from two to six rings, along with the first reported K(OC) values for alkyl PAHs included in the U.S. Environmental Protection Agency's (U.S. EPA) sediment narcosis model for the prediction of PAH toxicity to benthic organisms. Sediment PAH concentrations ranged from 0.2 to 8600 microg/g (U.S. EPA 16 parent PAHs), but no observable trends in K(OC) values with concentration were observed for any of the individual PAHs. Literature K(OC) values that are commonly used for environmental modeling are similar to the lowest measured values for a particular PAH, with actual measured values typically ranging up to two orders of magnitude higher for both background and contaminated sediments. For example, the median log K(OC) values we determined for naphthalene, pyrene, and benzo[a]pyrene were 4.3, 5.8, and 6.7, respectively, compared to typical literature K(OC) values for the same PAHs of 2.9, 4.8, and 5.8, respectively. Our results clearly demonstrate that the common practice of using PAH K(OC) values derived from spiked sediments and modeled values based on n-octanol-water coefficients can greatly overestimate the actual partitioning of PAHs into water from field sediments.  相似文献   

15.
Pyrethroids are hydrophobic insecticides commonly used in both agricultural and urban environments. Their high toxicity to aquatic organisms, including benthic invertebrates, and detection in the sediment at many locations in California, U.S.A., have spawned interest in understanding their bioavailability in bed sediments. A recent study showed good correlation between uptake of 14C-permethrin in Chironomus tentans and solid-phase microextraction (SPME) fibers in sediments. The present study was directed at the development of an SPME technique applicable to trace levels of nonlabeled pyrethroids in sediment. Disposable polydimethylsiloxane fibers were used to detect freely dissolved pore-water concentrations of bifenthrin, fenpropathrin, cis-permethrin, trans-permethrin, cyfluthrin, cypermethrin, and esfenvalerate under agitated and static conditions. Partition equilibrium between fiber and sediment was reached in <5 d when the samples were agitated on a shaker at low speed, while much longer times (>23 d) were needed without agitation. Polydimethylsiloxane to water partition ratios (K(PDMS)) of the seven pyrethroids were measured separately and ranged from 2.83 x 10(5) to 1.89 x 10(6). When applied to field-contaminated sediments, agitated matrix-SPME was able to detect pore-water concentrations as low as 0.1 ng/L. The method developed in the present study may be coupled with bioassays to gain mechanistic understanding of factors affecting pyrethroid toxicities, and applied to field samples to better predict sediment toxicities from pyrethroid contamination.  相似文献   

16.
Sediment quality was assessed in San Francisco Bay, California, USA, using a two-tiered approach in which 111 sites were initially screened for sediment toxicity. Sites exhibiting toxicity were then resampled and analyzed for chemical contamination, recurrent toxicity, and, in some cases, benthic community impacts. Resulting data were compared with newly derived threshold values for each of the metrics in a triad-based weight-of-evidence evaluation. Sediment toxicity test results were compared with tolerance limits derived from reference site data, benthic community data were compared with threshold values for a relative benthic index based on the presence and abundance of pollution-tolerant and -sensitive taxa, and concentrations of chemicals and chemical mixtures were compared with sediment quality guideline-based thresholds. A total of 57 sites exceeded threshold values for at least one metric, and each site was categorized based on triad inferences. Nine sites were found to exhibit recurrent sediment toxicity associated with elevated contaminant concentrations, conditions that met program criteria for regulatory attention. Benthic community impacts were also observed at three of these sites, providing triad evidence of pollution-induced degradation. Multi- and univariate correlations indicated that chemical mixtures, heavy metals, chlordanes, and other organic compounds were associated with measured biological impacts in the Bay. Toxicity identification evaluations indicated that metals were responsible for pore-water toxicity to sea urchin larvae at two sites. Gradient studies indicated that the toxicity tests and benthic community metrics employed in the study predictably tracked concentrations of chemical mixtures in Bay sediments.  相似文献   

17.
Recent studies by researchers at the U.S. Environmental Protection Agency and U.S. Geological Survey have evaluated the toxicity of Cr in freshwater and marine sediments, primarily during laboratory studies in which clean sediments were spiked with Cr. Results of those studies showed that Cr is relatively insoluble and nontoxic when present in the trivalent form, Cr(III), rather than in the more soluble and more toxic hexavalent form, Cr(VI). The studies concluded that Cr toxicity should be low in sediments with measurable concentrations of acid-volatile sulfide (AVS), because AVS is formed only in anoxic sediments and Cr(VI) is thermodynamically unstable under such conditions. The present study evaluates the toxicity and bioavailability of Cr in sediments associated with chromite ore processing residue (COPR). Ten stations were sampled in the Hackensack River (NJ, USA) to represent a wide range of total Cr concentrations (199-3,970 mg/kg) with minimal interference from potentially toxic, co-occurring chemicals. Sediment toxicity was evaluated using two amphipod tests: The 10-d Ampelisca abdita test (survival as endpoint), and the 28-d Leptocheirus plumulosus test (survival and biomass as endpoints). Measurable concentrations of AVS were present at eight stations, and nearly all Cr was present as Cr(III). In addition, results of electron-microprobe analyses showed that most Cr was associated with phases in which Cr has limited bioavailability (i.e., chromite and iron oxide). Sediment toxicity showed no correlation with concentrations of total Cr, and the maximum no-effect concentration for total Cr was estimated as 1,310 mg/ kg. These results indicate that Cr can be present in sediments associated with COPR at highly elevated concentrations without causing sediment toxicity.  相似文献   

18.
Acid mine drainage (AMD) is produced when pyrite (FeS2) is oxidized on exposure to oxygen and water to form ferric hydroxides and sulfuric acid. If produced in sufficient quantity, iron precipitate, heavy metals (depending on soil mineralogy), and sulfuric acid may contaminate surface and ground water. A previous study of an AMD impacted watershed (Puckett's Creek, Powell River drainage, southwestern Virginia, USA) conducted by these researchers indicated that both water column and sediment toxicity were significantly correlated with benthic macroinvertebrate community impacts. Sites that had toxic water or sediment samples had significantly reduced macroinvertebrate taxon richness. The present study was designed to investigate the relative acute toxicity of acid mine drainage (AMD) water column and sediments to a single test organism (Daphnia magna) and to determine which abiotic factors were the best indicators of toxicity in this system. Nine sampling stations were selected based on proximity to major AMD inputs in the watershed. In 48-h exposures, sediment samples from three stations were acutely toxic to D. magna, causing 64–100% mortality, whereas water samples from five stations caused 100% mortality of test organisms. Forty-eight-hour LC50 values ranged from 35 to 63% for sediment samples and 27 to 69% for water column samples. Sediment iron concentration and several water chemistry parameters were the best predictors of sediment toxicity, and water column pH was the best predictor of water toxicity. Based on these correlations and on the fact that toxic sediments had high percent water content, water chemistry appears to be a more important adverse influence in this system than sediment chemistry. Received: 22 April 1999/Accepted: 21 October 1999  相似文献   

19.
The xenobiotics accumulated in sediments represent a hazard to organisms. In order to study the toxic effects of xenobiotics in organisms, body residue has been proposed as a more relevant dose-metric than the environmental concentration of the chemical. In this study, the benthic oligochaetes Lumbriculus variegatus were exposed to sediment-spiked pentachlorophenol (PCP) in a chronic study at different exposure concentrations. The aim was to examine sublethal toxic effects in sediment-dwelling and sediment-ingesting organisms, and to link the effects with chemical body residues. Growth, reproduction, and egestion rate were used as sublethal endpoints. Bioaccumulation, sublethal toxic effects, and biotransformation of PCP were investigated by exposing organisms to both artificial and natural sediments with similar organic carbon content. Sediment characteristics were assumed to have an effect on toxicity since PCP retarded both growth and reproduction in L. variegatus in the artificial sediment. In natural sediment, growth, and reproduction was also reduced in control treatments, probably indicating poor nutritional quality. Most of the extracted chemicals in L. variegatus tissues were water-soluble metabolites, indicating that L. variegatus was capable of biotransforming PCP. The extractable parent PCP body residues (CBR(50)) for L. variegatus growth and reproduction were in agreement with the values estimated for respiratory uncouplers in the literature.  相似文献   

20.
Toxicity assessments and numerical quality assessment guidelines for estuarine sediments are rarely based on information for aquatic plants. The effect of this lack of information on contaminated sediment toxicity evaluations is largely unknown. For this reason, the toxicities of whole sediments collected from 15 sites in three urbanized Florida bayou-estuaries were determined for the benthic invertebrates Mysidopsis bahia and Ampelisca abdita and the plants Scirpus robustus Pursh (saltmarsh bulrush) and Spartina alterniflora Loisel (saltmarsh cordgrass). The results of the bioassays, conducted for 7 to 28 days, were compared for interspecific differences and to effects-based, sediment quality assessment guidelines. A variety of inorganic and organic analytes were detected in the estuarine sediments, and concentrations of as many as 7 analytes exceeded the sediment guidelines at the 15 sampling locations. Toxicity occurred at 2 of the 15 sampling stations based on invertebrate survival. Twelve of the 15 sediments had either a significant stimulatory or inhibitory effect on early seedling growth relative to a reference sediment (p < 0.05). The phytoresponse was specific to the location, test species, and plant tissue. There was no consistent trend between the sensitivities of the plants and invertebrates exposed to the sediments collected from the same sites. Of the 12 sediments that significantly affected seedling growth, 10 were not acutely toxic to the invertebrates. Consequently, the plant test species provided information that would have been missing if only animal test species were used. For this reason, the phytotoxicity database needs to be expanded for contaminated sediments to further evaluate interspecific sensitivities and to provide perspective on the environmental relevancy of proposed sediment quality criteria and effects-based assessment guidelines for which this information is usually missing. However, additional test method development and field validation are needed to support this effort, which includes the identification of sensitive plant test species, response parameters, and the chemical and physical sediment factors that influence plant growth. Received: 8 March 2000/Accepted: 22 July 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号