首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Alpha-adrenoceptor antagonistic action of amiloride   总被引:1,自引:0,他引:1  
1. In isolated perfused rat liver, the effects of alpha-adrenergic stimulation by phenylephrine (2 microM), such as an increase of portal pressure, glucose output, Ca2+ release into the perfusate and the characteristic K+ flux changes across the hepatocyte plasma membrane were almost completely abolished in the presence of amiloride (0.5 mM). 2. When the phenylephrine concentration was raised to about 100 microM, the effects of the alpha-adrenergic agonist on hepatic metabolism, Ca2+ and K+ fluxes, but not on the portal venous pressure, were restored, suggesting a competitive antagonism by amiloride. 3. Amiloride antagonized in a concentration-dependent manner noradrenaline-induced isometric contractions of strips of the rabbit pulmonary artery. The concentration-response curve of noradrenaline was shifted to the right, and the maximal response obtained was also depressed, suggesting a mixed competitive and non-competitive antagonism. The estimated amiloride-adrenoceptor-dissociation constant was 8 microM. 4. The affinity of amiloride to the alpha- and beta-adrenoceptor subtypes was determined by radioligand binding assays using [125I]BE 2254 binding to rat liver plasma membranes (alpha 1-subtype), [3H]yohimbine binding to human platelet membranes (alpha 2-subtype), (-)-[125I]iodocyanopindolol (ICYP) binding to rabbit lung membranes in presence of the beta 2-adrenoceptor antagonist ICI 118,551 (beta 1-subtype) and ICYP binding to rat lung membranes in presence of the beta 1-blocker atenolol (beta 2-subtype). In all systems, amiloride inhibited specific ligand binding concentration-dependently, the Ki values for amiloride were about 25, 52, 148 and 161 microM for alpha 1- alpha 2-, beta 1- and beta 2-adrenoceptor subtypes, respectively. 5. It is concluded that amiloride in concentrations below those required for inhibition of the Na+/H+ exchanger is a potent antagonist of alpha- and beta-adrenoceptors in a variety of experimental systems. Whether the adrenergic antagonism of amiloride is important for antihypertensive therapy, remains to be elucidated.  相似文献   

2.
Some interactions of calcium antagonists with [3H]prazosin and [3H]yohimbine binding sites were investigated in bovine aorta membranes. Diphenylalkylamines (flunarizine, cinnarizine and bepridil) acted as competitors of the two ligands with Ki values in the microM range. With the exception of verapamil, reference compounds (nifedipine, Bay-K 8644, diltiazem) and the peripheral benzodiazepine receptor antagonist PK 11195 did not displace the ligands. The apparent affinity of the diphenylalkylamines for alpha-adrenoceptor was consistent with the concentrations producing vasodilatation.  相似文献   

3.
We studied the correlation between the high affinity binding of Ca2+ channel blockers to purified synaptic plasma membranes (SPM) and the effect of these drugs in blocking the 45Ca2+ uptake and the release of [3H]gamma-aminobutyric acid [( 3H]GABA) by preloaded synaptosomes. The Ca2+ channel blocker binding sites were characterized by studying the binding of the dihydropyridine, [3H]nimodipine, and of the phenylalkylamine, (-)-[3H]desmethoxyverapamil, to purified SPM isolated from sheep brain cortex synaptosomes. The purified SPM had high affinity binding sites for both Ca2+ channel blockers. The binding parameters were similar to those previously reported for whole brain homogenates: KD = 0.64 nM and Bmax = 160 fmol/mg of protein for [3H]nimodipine, and KD = 7.9 nM and Bmax = 1,500 fmol/mg of protein for (-)-[3H]desmethoxyverapamil. The Ca2+ channel blockers inhibited the release of [3H]GABA induced by K+ depolarization in the presence or in the absence of Ca2+. The Ca2+-dependent component of [3H]GABA release was inhibited by verapamil, (-)-D 600, d-cis-diltiazem, nifedipine and PY 108-86 with IC50 values of 2.2 X 10(-5) M, 6.3 X 10(-5) M, 3 X 10(-4) M, greater than 10(-4) M and 3 X 10(-5) M, respectively. Furthermore, the Ca2+ channel blockers also inhibited the Ca2+-independent [3H]GABA release which occurred in the presence, but not in the absence, of external Na+. The Ca2+ channel blockers at concentrations which inhibited [3H]GABA release inhibited the entry of Ca2+ through the Ca2+ channels and also the entry of Ca2+ by Na+/Ca2+ exchange. We conclude that the concentrations of Ca2+ blockers necessary to block Ca2+ uptake through the Ca2+ channels and by Na+/Ca2+ exchange coincide with the concentrations at which they inhibit [3H]GABA release, but that their effect on the relationship between Ca2+ uptake and [3H]GABA release is different for the various blockers. The effects of the drugs on Ca2+ movements and [3H]GABA release are not specifically mediated through the high affinity binding of the drugs since relatively high concentrations were necessary (greater than 10(-5) M) for the effects reported here.  相似文献   

4.
The newly developed antihypertensive agent naftopidil blocks alpha 1-adrenoceptors and inhibits Ca2+ entry via potential-dependent channels in vascular muscle. The aim of our study was to detect possible Ca2+ channel blocking activity in various isolated preparations of the guinea pig heart. Prazosin and verapamil were used for reference. In papillary muscles, 10 microM of all drugs reduced the force of contraction Fc. The action potential duration and the refractory period were hardly affected by naftopidil, decreased by verapamil, and slightly increased by prazosin. In constant-flow Langendorff hearts, the drugs reduced the perfusion pressure, decreased the Fc, and slowed the spontaneous heart rate (order of potency: verapamil much greater than naftopidil greater than prazosin). In voltage-clamped ventricular cardiomyocytes, the calcium current ICa was completely inhibited by verapamil (pD2 value of 6.9) and to 53.5% by naftopidil (pD2 value of 6.4). Prazosin (10 microM) decreased ICa by little more than 10%. There were no differences in the steady-state inhibition of ICa by the two enantiomers of naftopidil. The block of ICa was clearly use dependent. Radioligand binding studies with (+)-[3H]PN 200-110. (-)-[3H]desmethoxy-verapamil, and (+)-cis-[3H]diltiazem in guinea pig skeletal muscle T-tubulus membranes demonstrated that racemic naftopidil exhibited some affinity for the three distinct drug receptor domains of the L-type Ca2+ channel. In conclusion, the present data are consistent with the hypothesis that naftopidil is a weak ligand for L-type calcium channels. It partially blocks ICa and shows no stereoselectivity.  相似文献   

5.
1. In the present study, the properties of glaucine (an aporphine structurally related to papaverine) were compared with those of papaverine, diltiazem, nifedipine and prazosin. The work includes functional studies on rat isolated aorta contracted with noradrenaline, caffeine or KCl, and a determination of the affinity of glaucine at calcium channel binding sites of alpha-adrenoceptors, by use of [3H]-(+)-cis-diltiazem, [3H]-nitrendipine and [3H]-prazosin binding to cerebral cortical membranes. The effects of glaucine on the different molecular forms of cyclic nucleotide phosphodiesterases (PDE) isolated from bovine aorta were also determined. 2. Contraction evoked by noradrenaline (1 microM) or depolarizing solution (60 mM KCl) were inhibited in a concentration-dependent manner by all the compounds tested. As expected, prazosin showed a greater selectivity of action on NA-induced contraction, whereas nifedipine and diltiazem appeared more potent on KCl-induced contraction. Glaucine had a greater potency on the contraction elicited by noradrenaline whereas papaverine acted non specifically. 3. In Ca(2+)-free solution, prazosin (0.1 microM) and glaucine (0.1 mM) inhibited the contraction evoked by NA; diltiazem (0.1 mM) diminished this contraction whereas nifedipine (1 microM) had no effect. Preincubation of tissues with glaucine, diltiazem, nifedipine and prazosin did not modify the contractile response induced by caffeine. In contrast, papaverine (0.1 mM) significantly inhibited the contractions evoked by NA or caffeine in Ca(2+)-free medium. 4. Glaucine and papaverine show affinity at the [3H]-prazosin binding site and at the benzothiazepine binding site of the Ca(2+)-channel receptor complex, but have no effect at the dihydropyridine binding site in rat cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The interaction of tetramethylpyrazine, a vasoactive ingredient of a Chinese traditional medicinal plant, with the vascular muscle alpha 1-adrenoceptors was investigated by a direct radioligand binding technique using [3H]prazosin and vascular smooth muscle microsomes isolated from dog aorta and mesenteric artery. Tetramethylpyrazine inhibited the binding of [3H]prazosin to vascular muscle membranes in a concentration-dependent manner at a suboptimal concentration of prazosin. Scatchard analysis of the effect of tetramethylpyrazine on the saturation profile of [3H]prazosin binding to vascular muscle microsomes of either arterial muscle indicated a substantial increase of Kd values (the affinity for prazosin) without a change in Bmax (maximal binding sites for prazosin). Thus, the present results provide supporting evidence that the inhibitory effect of tetramethylpyrazine on the vasoconstriction of dog mesenteric artery induced by phenylephrine in the earlier studies may be, at least, in part due to a direct action at the recognition sites of alpha 1-adrenoceptors. Amiloride and amiloride-related compounds, which shares a common pyrazine ring structure with tetramethylpyrazine and other related derivatives, also inhibits the binding of [3H]prazosin to aortic muscle microsomal membranes. Functional studies of dog saphenous vein also indicated that both tetramethylpyrazine and its ethyl derivatives inhibited the responses induced by phenylephrine and B-HT 920 in the presence and absence of extracellular Ca2+. Together with our earlier findings that amiloride also inhibits [3H]prazosin and [3H]rauwolscine binding to vascular muscle alpha 1- and alpha 2-adrenoceptors, the present radioligand binding study in canine arteries and functional study in saphenous veins suggest that the above compounds containing the pyrazine nucleus indeed interacted at the alpha-adrenoceptor sites.  相似文献   

7.
In order to characterize putative high- and low-affinity states of the renal alpha 1-adrenoceptor, binding sites for the selective antagonist radioligand [3H]prazosin were examined in washed membranes prepared from rat renal cortex and medulla. Norepinephrine competition curves at [3H]prazosin sites were biphasic and were best fit by a two-site model. Na+ and GTP selectively decreased the proportion of sites exhibiting a high affinity for norepinephrine. In contrast, Mg2+ facilitated high-affinity interactions of norepinephrine at the renal alpha 1-receptor. Guanine nucleotides and Na+ increased the affinity of some antagonists [( 3H]prazosin, WB-4101), but not others (phentolamine). Mg2+ again had opposite effects. The effects of ions and nucleotides on both agonist and antagonist interactions were concentration-dependent. The order of potencies for monovalent cations (Na+ greater than Li+ much greater than K+), divalent cations (Mn2+ greater than Mg2+) and nucleotides (Gpp (NH)p, GTP much greater than GMP, ATP) were similar to those reported for cyclase-coupled receptor systems. However, unlike other divalent cations Ca2+ decreased both agonist and antagonist binding, possibly due to a Ca2+-sensitive proteinase. Receptor binding properties were similar in renal cortex and medulla. Renal alpha 1-receptor sites appear to display high- and low-affinity states with respect to agonists, and the equilibrium between these states may be modulated by guanine nucleotides and mono- and divalent metal ions. Some antagonists appear to bind preferentially to sites with low agonist affinity, and this effect is probably independent of retained endogenous catecholamines.  相似文献   

8.
The binding of [3H]prazosin and [3H]clonidine to rat jejunal epithelial cell membranes has been studied. The membrane preparation was enriched in baso-lateral components as determined by Na+, K+ ATPase and alkaline phosphatase activities. The membranes possessed two saturable specific binding sites for [3H]prazosin, a high affinity (Kd 0.17 nM) low capacity (Bmax 27.3 fmole bound per mg protein) and a low affinity (Kd 5.0 nM) high capacity (Bmax 276 fmole bound per mg protein) site. The specificity of both sites was similar and was related to alpha 1-adrenoceptors. [3H]Clonidine bound to the membranes in a saturable fashion (Kd 7.3 nM). The specificity of this site was related to alpha 2-adrenoceptors. The [3H]clonidine binding site was present in the membranes in much lower density (Bmax 22.8 fmole bound per mg protein) suggesting that alpha 1-adrenoceptors predominate in this tissue.  相似文献   

9.
Mibefradil is a novel Ca(2+) antagonist which blocks both high-voltage activated and low voltage-activated Ca(2+) channels. Although L-type Ca(2+) channel block was demonstrated in functional experiments its molecular interaction with the channel has not yet been studied. We therefore investigated the binding of [(3)H]-mibefradil and a series of mibefradil analogues to L-type Ca(2+) channels in different tissues. [(3)H]-Mibefradil labelled a single class of high affinity sites on skeletal muscle L-type Ca(2+) channels (K(D) of 2.5+/-0.4 nM, B(max)=56.4+/-2.3 pmol mg(-1) of protein). Mibefradil (and a series of analogues) partially inhibited (+)-[(3)H]-isradipine binding to skeletal muscle membranes but stimulated binding to brain L-type Ca(2+) channels and alpha1C-subunits expressed in tsA201 cells indicating a tissue-specific, non-competitive interaction between the dihydropyridine and mibefradil binding domain. [(3)H]-Mibefradil also labelled a heterogenous population of high affinity sites in rabbit brain which was inhibited by a series of nonspecific Ca(2+) and Na(+)-channel blockers. Mibefradil and its analogue RO40-6040 had high affinity for neuronal voltage-gated Na(+)-channels as confirmed in binding (apparent K(i) values of 17 and 1.0 nM, respectively) and functional experiments (40% use-dependent inhibition of Na(+)-channel current by 1 microM mibefradil in GH3 cells). Our data demonstrate that mibefradil binds to voltage-gated L-type Ca(2+) channels with very high affinity and is also a potent blocker of voltage-gated neuronal Na(+)-channels. More lipophilic mibefradil analogues may possess neuroprotective properties like other nonselective Ca(2+)-/Na(+)-channel blockers.  相似文献   

10.
1. The mechanisms of action of semotiadil fumarate, a novel Ca2+ antagonist, were examined by measuring the cytosolic Ca2+ level ([Ca2+]i) and force of contraction in porcine coronary arteries, and by determining [3H]-pyrilamine binding to bovine cerebellar membranes. 2. Semotiadil or verapamil (0.1 and 1 microM) inhibited both the high KCl-induced increases in [Ca2+]i and force in a concentration-dependent manner. 3. Histamine (30 microM) produced transient increases followed by sustained increases in [Ca2+]i and force, which were inhibited by semotiadil and verapamil (1 and 10 microM). The agents were different in that semotiadil reduced the maximum [Ca2+]i and force responses to histamine, but not pD2 values, whereas verapamil did reduce the pD2 values for histamine, but not the maximum responses. 4. Verapamil (10 microM), but not semotiadil, inhibited histamine-induced increases in [Ca2+]i and force in Ca(2+)-free solution. Neither semotiadil nor verapamil affected the increases in [Ca2+]i and force induced by caffeine. Semotiadil even at the higher concentration (10 microM) did not displace specific binding of [3H]-pyrilamine to bovine cerebellar membranes. 5. These results suggest that semotiadil inhibits both KCl- and histamine-induced contractions mainly by blocking voltage-dependent L-type Ca2+ channels.  相似文献   

11.
[3H]Idazoxan is a labelled ligand that is frequently used to study alpha 2-adrenoceptors in the central nervous system. In pig kidney membranes, [3H]idazoxan labelled high-affinity binding sites (Kd = 1.5 nM) that were not alpha 2-adrenoceptors and which recognized clonidine with low affinity. This new class of binding sites was recognized by amiloride derivatives; however, it is not likely that these sites are the well-known targets of amiloride in the kidney: the Na+/H+ exchanger and the epithelium Na+ channel. These binding sites may be the normal target of a series of imidazolidines derivatives (guanabenz, guanochlor, guanoxan), which are known for their antihypertensive properties.  相似文献   

12.
The human U373 MG astrocytoma cell line has been widely used as a model system for the investigation of astrocyte function. The aim of this study was to establish which alpha1-adrenoceptors are present on these cells. The specific binding of [3H]prazosin to membranes of U373 MG cells (Bmax 32+/-3 fmol mg(-1) protein, Kd 0.27+/-0.03 nM) was inhibited in a monophasic manner by alpha1-antagonists that have different affinities for alpha1A-, alpha1B- and alpha1D-adrenoceptors. Estimates for pKi values were: prazosin 9.69+/-0.06, 5-methylurapidil 7.10+/-0.21; (+)-niguldipine 7.06+/-0.26; WB 4101 8.26+/-0.16; and BMY 7378 6.60+/-0.21. The specific binding of [3H]prazosin was reduced to low levels by pretreatment of cells with 10 microM chloroethylclonidine for 15 min. In the presence of 30 mM LiCl, 100 microM noradrenaline stimulated [3H]inositol phosphate accumulation by 2.1+/-0.1-fold of basal after 30-min incubation. The EC50 for the accumulation of [3H]IP1, the major product detected (85+/-2% of total [3H]IP1 + [3H]IP2 + [3H]IP3), was 0.38+/-0.05 microM. Noradrenaline-induced [3H]IP1 accumulation was also inhibited by alpha1-antagonists. Estimates for pKi values were: 5-methylurapidil 6.95+/-0.01; WB 4101 8.31+/-0.07; and BMY 7378 6.71+/-0.28. The accumulation of [3H]IP1 in response to 100 microM noradrenaline was not significantly affected by raising the extracellular Ca2+ concentration from 1.3 to 4 mM. Noradrenaline (100 microM) also produced an increase in intracellular Ca2+ (mean peak 86+/-5 nM above basal). Pretreatment with chloroethylclonidine (10 microM, 15 min) abolished noradrenaline-induced [3H]IP1 accumulation and Ca2+ mobilisation. Activation of the alpha1B-adrenoceptors by 10 microM phenylephrine increased [3H]thymidine uptake to 140+/-5% of control uptake. Taken together, these results indicate that U373 MG cells express a single class of alpha1-adrenoceptors, the alpha1B-subtype, which are coupled to phosphoinositide hydrolysis and calcium mobilisation, and which mediate a mitogenic response to alpha1-agonists.  相似文献   

13.
1. The alpha 1-adrenoceptor subtypes of rat heart were characterized in binding experiments performed with [3H]-prazosin as the radiolabel. The specific binding to the alpha 1-adrenoceptors was determined with 0.3 microM prazosin, because phentolamine (10 microM) was insufficient to inhibit completely the specific binding of high concentrations of [3H]-prazosin. 2. In saturation experiments, [3H]-prazosin bound to two distinct affinity sites (pKD = 10.39 and 8.19). The proportion of the low affinity sites was approximately 84% of total specific binding. Membranes pretreated with chloroethylclonidine (CEC, 10 microM) also showed two distinct affinity sites for [3H]-prazosin, although the maximum numbers of high and low affinity sites were reduced by 86 and 64%, respectively. 3. In competition experiments, [3H]-prazosin (100 pM) binding was inhibited by WB4101 (2-(2,6-dimethoxy-phenoxyethyl)aminomethyl-1,4-benzodioxane) and 5-methylurapidil. The inhibition curves displayed shallow slopes which could be subdivided into high and low affinity components (pKi = 10.43 and 8.36 for WB4101, 8.62 and 6.61 for 5-methylurapidil). However, unlabelled prazosin or HV723 (alpha-ethyl-3,4,5-trimethoxy-alpha-(3-((2-(2-methoxyphenoxy)-ethyl)amin o) propyl)benzeneacetonitrile fumarate) competed for [3H]-prazosin binding monophasically (pKi = 10.34 and 8.28, respectively). In CEC-pretreated membranes, prazosin, WB4101, 5-methylurapidil and HV723 antagonized the [3H]-prazosin (100 pM) binding monophasically (pKi = 9.70, 9.56, 8.60 and 8.82, for each antagonist). 4. On the other hand, 1000 pM [3H]-prazosin binding was inhibited by unlabelled prazosin biphasically (pKi = 10.49 and 8.49). HV723 did not discriminate both prazosin-high and low affinity sites (pKi = 8.18).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Amiloride, a potassium sparing diuretic, is known to interact with a number of ion transport systems, receptors and enzymes. Here, we report on the interaction between this drug and the adenosine A1 receptor as present in calf brain membranes. Adenosine A1 receptors are characterized by a subnanomolar affinity for the antagonists [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and the agonist [3H]N6-R-1-phenyl-2-propyladenosine ([3H]PIA). Amiloride displaces both agonist and antagonist binding with a Ki value in the low micromolar range. This inhibition is counteracted by NaCl and protons, in contrast to the binding of [3H]PIA and [3H]DPCPX. The results suggest that amiloride interacts with the adenosine A1 receptor at a site distinct from the ligand binding site. In order to elucidate the role of one of the ion transport systems known to be inhibited by amiloride, eight amiloride analogues with different sensitivities for these systems were tested. The potency and order of potency of these compounds towards adenosine A1 receptors excludes the involvement of the epithelial Na+ channel, Na+/H+ exchanger or Na+/Ca2+ exchanger.  相似文献   

15.
In the present study, we used [3H]idazoxan and [3H]rauwolscine to characterize the imidazoline-guanidinium receptive site (IGRS) and alpha 2-adrenoceptors in the human renal proximal tubule, respectively. In purified basolateral membranes, 11-fold enriched in Na(+)-K+ ATPase. [3H]idazoxan and [3H]rauwolscine binding was twofold higher than in homogenates ([3H]idazoxan: 87 +/- 19 vs. 45 +/- 23.3 fmol/mg protein, P less than 0.05; [3H]rauwolscine: 56.4 +/- 21.4 vs. 25.2 +/- 7.3 fmol/mg protein, P less than 0.01). In competition studies performed at saturating concentration of [3H]idazoxan (15 NM), specific binding was competed for by epinephrine and rauwolscine only by 10-15% but was completely inhibited by imidazoline and guanidinium compounds. Thus, in human renal proximal tubule. [3H]idazoxan mainly binds to an IGRS. The highest density of alpha 2-adrenoceptors in basolateral membranes and of IGRS in partially purified membrane preparations, suggests that these two binding sites have a different subcellular localization. When compared to the rabbit renal IGRS, the human [3H]idazoxan binding site displays different affinities for guanabenz, rilmenidine, clonidine, amiloride and its derivatives that persist after membrane solubilization. In contrast, the human and rabbit renal IGRS share similar regulatory properties such as the sensitivity to K+ and the insensitivity to Na+, divalent cations and 5'-guanylylimidodiphosphate (Gpp(NH)p). In conclusion, we demonstrated that, in the human renal proximal tubule, alpha 2-adrenoceptors are mainly located in basolateral membranes while IGRS appear to be associated with another cell compartment. As indicated by their common interaction with imidazoline and guanidinium derivatives and by similar regulatory properties, human and rabbit IGRS belong to the same family of membrane proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
High affinity, stereoselective specific binding sites for [3H]leukotriene D4 [( 3H]LTD4) have been demonstrated in guinea pig lung membranes. Purine nucleotides quantitatively reduced [3H]LTD4 specific binding with a rank order potency of guanosine-5'-O-3-thiotriphosphate (GTP gamma S) = guanyl-5'-yl-imido-diphosphate [Gpp(NH)p] greater than GTP greater than ATP greater than GDP. In the presence of 1 microM Gpp(NH)p, the maximum number (Bmax) of [3H]LTD4 specific binding sites was reduced to 41 +/- 10 percent of the control level (950 +/- 150 fmol/mg membrane protein). In the presence of 3 microM Gpp(NH)p, the rate of association of [3H]LTD4 to the specific sites was estimated to have increased 2.5-fold. The rate of dissociation of [3H]LTD4 from the specific sites was also increased significantly in the presence of 50 microM Gpp(NH)p. The divalent cations, Ca2+ and Mg2+ (10 mM), increased the Bmax 2-fold and had minimal effects on the dissociation constant (Kd) of [3H]LTD4 specific binding. Sodium ions, at a concentration of 50 mM, reduced the Bmax, and had minimal effects on the Kd of [3H]LTD4 specific binding. These data indicate that guanine nucleotides, Na+, Mg2+ and Ca2+ regulate [3H]LTD4 binding to its receptors in guinea pig lung.  相似文献   

17.
1. Two binding sites for the 1,4-dihydropyridine (DHP) derivative [3H]-nitrendipine have been found in the bovine adrenal medulla. The high-affinity site (Kd = 0.48 nM and Bmax = 128 fmol mg-1 protein) was specifically located in purified plasma membranes. The low-affinity site (Kd = 252 nM and Bmax = 169 pmol mg-1 protein) was located only in mitochondria. Chromaffin granule membranes lacked specific binding sites for [3H]-nitrendipine. 2. Kinetic analysis of the rates of association and dissociation of [3H]-nitrendipine, saturation isotherms and displacement experiments with unlabelled nitrendipine and PN200-110 revealed single, homogeneous populations of high- and low-affinity sites in plasma and mitochondrial membranes, respectively. 3. The high affinity site was sensitive to Ca2+ deprivation and heating; it was practically unaffected by changes in ionic strength of the medium and its optimal pH was slightly alkaline. This site exhibited a strong DHP stereoselectivity; diltiazem increased and verapamil decreased the affinity of [3H]-nitrendipine. 4. In contrast, binding of [3H]-nitrendipine to the low affinity site was more heat resistant and less affected by Ca2+ removal. Its optimal pH was slightly acid and the increase in ionic strength enhanced the number of available sites. The site had no DHP stereoselectivity. Verapamil decreased the dissociation constant of [3H]-nitrendipine acting in a non-competitive manner; diltiazem did not affect equilibrium binding parameters of [3H]-nitrendipine. 5. These results suggest that both biding sites reflect different receptor entities. The high-affinity binding site corresponds to the dihydropyridine receptor associated with the L-type calcium channel. The function of the mitochondrial, low-affinity binding site is, at present, unknown.  相似文献   

18.
The characteristics of [3H]-prazosin binding in renal cortical membranes of the rat have been assessed under a variety of buffer conditions. At 37 degrees, in Krebs' phosphate and Tris buffer, [3H]-prazosin bound to two sites, a small population of high affinity sites with properties of alpha1-adrenoceptors and a much larger population of low affinity sites with different characteristics. High affinity [3H]-prazosin binding was insensitive to Na+, K+, Ca2+ and Mg2+ ions, but low affinity [3H]-prazosin binding was markedly increased in Krebs' phosphate or sodium phosphate buffer and further enhanced in membranes pretreated with EGTA. Binding was decreased in the presence of Ca2+, the decrease in binding mainly being due to a decrease in the number of low affinity sites labelled by the ligand. Low affinity [3H]-prazosin binding was increased at 37 degrees and relatively insensitive to alpha-adrenoceptor antagonists which were weak competitors while catecholamines failed to compete for low affinity binding. Scatchard plots of [3H]-prazosin binding performed using (-)-noradrenaline (1 mM) to define non-specific binding defined binding only to alpha 1-adrenoceptors. This provides a means of differentiating high and low affinity [3H]-prazosin binding.  相似文献   

19.
1 Saturable binding of (+/-)-[3H]-baclofen and [3H]-gamma- aminobutyric acid ([3H]-GABA) to rat brain crude synaptic membranes has been examined by means of a centrifugation assay. 2 The binding of [3H]-baclofen could be detected in fresh or previously frozen tissue and was dependent on the presence of physiological concentrations of Ca2+ or Mg2+ although a lower affinity Na+ -dependent component could also be observed. Both components probably reflect binding to receptor recognition sites. 3 The saturable portion of bound [3H]-baclofen formed 20.3 +/- 6.9% of total bound ligand. This could be displaced by GABA (IC50 = 0.04 microM), (-)-baclofen (0.04 microM) and to a much lesser extent by (+)-baclofen (33 microM). Isoguvacine, piperidine-4-sulphonic acid and bicuculline methobromide were inactive (up to 100 microM) and muscimol was only weakly active (IC50 = 12.3 microM). 4 Saturable binding of [3H]-GABA increased on adding CaCl2 or MgSO4 (up to 2.5 mM and 5.0 mM respectively) to the Tris-HCl incubation solution. This binding (GABAB site binding) was additional to the bicuculline-sensitive binding of GABA (GABAA site binding) and could be completely displaced by (-)-baclofen (IC50 = 0.13 microM). 5 Increasing the Ca2+ concentration (0 to 2.5 mM) increased the binding capacity of the membranes without changing their affinity for the ligand. 6 The binding of [3H]-GABA to GABAB sites could be demonstrated in fresh as well as previously frozen membranes with a doubling of the affinity being produced by freezing. Further incubation with the non-ionic detergent Triton-X-100 (0.05% v/v) reduced the binding capacity by 50%. 7 The pharmacological profile of displacers of [3H]-GABA from GABAB sites correlated well with that for [3H]-baclofen displacement. A correlation with data previously obtained in isolated preparations of rat atria and mouse vas deferens was also apparent. 8 It is concluded that [3H]-baclofen or [3H]-GABA are both ligands for the same bicuculline-insensitive, divalent cation-dependent binding sites in the rat brain.  相似文献   

20.
The properties of alpha adrenoceptors in rat-tail artery membranes were studied using tritiated ligands that are selective for the alpha 1 and alpha 2 subtypes. High-affinity saturable binding was obtained for the alpha 1 antagonist prazosin yielding a Bmax of 144 +/- 31.6 fmol/mg protein (mean +/- SEM, N = 3) and a Kd of 0.17 +/- 0.04 nM, and also for the alpha 2 antagonist rauwolscine which yielded a Bmax of 141.3 +/- 19.3 fmol/mg protein and a Kd of 1.57 +/- 0.32 nM. The [3H]prazosin-labelled sites displayed a pharmacological profile characteristic of an alpha 1 adrenoceptor, whereas the [3H]rauwolscine-labelled sites exhibited the expected alpha 2 adrenoceptor profile. Agonist affinity for [3H]rauwolscine sites was reduced by Gpp(NH)p and Na+, and the effects appeared synergistic for adrenaline, but non-interactive for UK-14304. Agonist interaction with [3H]prazosin sites in the rat-tail artery was also regulated by Gpp(NH)p and Na+, although clearly in a qualitatively and quantitatively different manner from the [3H]rauwolscine sites. These results suggest that distinct binding sites for [3H]prazosin and [3H]rauwolscine could be differentiated with antagonist ligands. These distinct antagonist recognition sites demonstrate the pharmacological profile expected for alpha 1 and alpha 2 adrenoceptors, and the quantitatively differing abilities of Na+ and Gpp(NH)p to regulate agonist interactions with these sites are suggestive, but do not necessarily prove, that different G proteins may be involved in this regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号