首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
目的明确面神经额支在颧弓及颞部的软组织走行层次和分布。方法对9具尸头(18侧)颜面行大体解剖观察。结果面神经额支的分支数目为3~7支,平均5支,无恒定的行径及体表投影。将颧弓均分成三段,统计跨过各段表面的额支分支数,发现额支并非仅限于颧弓的中后段,而是近全颧弓均有额支分支跨过,其分布密度以中1/3段最高,占总数的4444%(40/90);前1/3段次之,占3889%(35/90);后1/3段又次之,占1667%(15/90)。额支分布于颧弓和颞部的浅筋膜层(即SMAS)的深面,其前段表面分支支配下外侧的眼轮匝肌,中段表面分支支配外侧的眼轮匝肌及少部分额肌,后段表面分支支配额肌和耳前肌。结论行骨膜下剥离面部上提术时,为减少面神经额支的损伤,应注意辨认颞部和颧弓部位的软组织层次,并非靠限制颧弓部位的解剖范围。  相似文献   

2.
目的明确面神额支在颧弓及颢部的软组织走行层次和分布。方法对9具尸头(18侧)颜面行大体解剖观察。结果面神经额支的分支数目为3~7支,平均5支,无恒定的行径及体表投影。将颧弓均分成三段,统计跨过各段表面的额支分支数,发现额支并非仅限于颧弓的中后段,而是近全颧弓均有额支分支跨过,其分布密度以中1/3段最高,占总数的44.44%(40/90);前1/3段次之,占38.89%(35/90);后1/3段又次之,占16.67%(15/90)。额支分布于颧弓和颞部的浅筋膜层(即 SMAS)的深面,其前段表面分支支配下外侧的眼轮匝肌,中段表面分支支配外侧的眼轮匝肌及少部分额肌,后段表面分支支配额肌和耳前肌。结论行骨膜下剥离面部上提术时,为减少面神经额支的损伤,应注意辨认颞部和颧弓部位的软组织层次,并非靠限制颧弓部位的解剖范围。  相似文献   

3.
现代面部除皱术的面神经解剖学研究   总被引:1,自引:0,他引:1  
目的明确 SMAS 与面神经的关系。方法对12具(24侧)成人尸头行大体解剖观察。结果 SMAS 分布于面中部,向前逐渐变薄,于口角水平外侧有小范围的“洞区”。面神经出腮腺后,并非在 SMAS 深面,而是在咬肌筋膜深面走行。面神经额支在颧弓以下0.5cm 区域穿出深筋膜,跨过颧弓。在颊脂肪垫区,大部分面神经分支走行在垫内,小部分分支形成面神经丛,分布于其表面。在颧大肌表面上1/3恒定有一颧支跨过,支配眼轮匝肌下外侧9例(占37.5%);颧大、小肌及眼轮匝肌8例(占33.3%);颧大、小肌7例(占29.2%)。结论面部多层次剥离除皱术应在颧弓以下0.5cm 区域行 SMAS 下剥离,至面中部时,应注意保护颧大肌表面上1/3段的面神经颧支,只在颧大肌中下2/3段区域进行剥离,向内掀起颧脂肪垫;或通过下睑缘皮肤切口,向下掀起眼轮匝肌(注意保护位于颧大肌上1/3段的面神经颧支),与经耳前 SMAS 下剥离腔隙连通,如上操作可避免面神经损伤。  相似文献   

4.
现代面部除皱术的面神经解剖学研究   总被引:7,自引:0,他引:7  
目的明确SMAS与面神经的关系。方法对12具(24侧)成人尸头行大体解剖观察。结果SMAS分布于面中部,向前逐渐变薄,于口角水平外侧有小范围的“洞区”。面神经出腮腺后,并非在SMAS深面,而是在咬肌筋膜深面走行。面神经额支在颧弓以下05cm区域穿出深筋膜,跨过颧弓。在颊脂肪垫区,大部分面神经分支走行在垫内,小部分分支形成面神经丛,分布于其表面。在颧大肌表面上1/3恒定有一颧支跨过,支配眼轮匝肌下外侧9例(占375%);颧大、小肌及眼轮匝肌8例(占333%);颧大、小肌7例(占292%)。结论面部多层次剥离除皱术应在颧弓以下05cm区域行SMAS下剥离,至面中部时,应注意保护颧大肌表面上1/3段的面神经颧支,只在颧大肌中下2/3段区域进行剥离,向内掀起颧脂肪垫;或通过下睑缘皮肤切口,向下掀起眼轮匝肌(注意保护位于颧大肌上1/3段的面神经颧支),与经耳前SMAS下剥离腔隙连通,如上操作可避免面神经损伤。  相似文献   

5.
现代面中除皱术的面神经解剖学研究   总被引:15,自引:0,他引:15  
目的 明确SMAS与面神经的关系。方法 对12具(24例)成人尸头行大体解剖观察。结果 SMAS分布于面中部,向前逐渐变薄,于口角水平外侧水小范围的“洞区”。面神经出腮腺后,并非在SMAS深面。而是在咬肌筋膜深面走行。面神经额支在颧弓以下0.5cm区域穿出深筋膜,跨过颧弓。在颊脂肪垫区,大部分神经分支走行在垫内,小部分分支形成面神经丛,分布于其表面。在颧大肌表面上1/3恒定有一颧支跨过,支配眼轮匝  相似文献   

6.
目的:了解支配皱眉肌的神经来源、走行和分布。方法:对13具成人尸体标本共26侧颜面的眶区内、外侧面神经进行大体和显微局部解剖分离,研究支配皱眉肌的神经来源、走行和分布。结果:从眶外侧区走行支配皱眉肌的神经是穿经眼轮匝肌的颞支前、中支吻合网,其入肌区域分布于皱眉肌外侧1/2;在眶内侧区进入眼轮匝肌的神经主要由面神经颧支中下支穿经颧大肌、颧小肌深层向内上进入眼轮匝肌下方深层并行向内眦方向走行,自深面发出分支进入眶区内侧面的降眉间肌、降眉肌,最后自深面进入皱眉肌,其入肌区域分布于皱眉肌内侧即近起点端1/3。结论:支配皱眉肌的神经受皱眉肌内侧及外侧面神经的双重支配,对选择性神经阻断除皱手术在眶内侧区的应用具有指导意义。  相似文献   

7.
面神经颧支支配颧肌的显微解剖学研究   总被引:1,自引:0,他引:1  
目的 明确面神经颧支的终末分支进入颧肌的位置和体表标志.方法 将10具(20侧)10%甲醛固定的成人尸头标本,解剖观察面神经颧支的走行及分支情况,以经口角的水平线为X轴,经同侧外眦角的垂线为Y轴,测量并记录颧支入肌支在坐标轴上的位置并进行体表定位.结果 面神经颧支自腮腺前上缘出腮腺,分为1~3支型,以2支型为主(占65%,13侧).浅支经颧大肌头侧浅面支配眼轮匝肌,深支有2~6支为主干支,平均(3.40±1.06)支,从颧大肌上1/2深面呈节段"爪"形支配该肌,入肌神经数为3~8支,平均(6.00±1.49)支.结论 在行中面部手术时,在颧大肌下2/3表面进行分离是安全的,尽量避免在颧肌的深面进行分离,尤其是上1/2深面,极易损伤面神经颧支;在其下1/2深面分离时,应紧贴颧大肌,以免损伤从其深面经过的面神经颊支.  相似文献   

8.
目的:明确颞区的血管神经分布,为内窥镜辅助颞部切口中面部提升术提供详细的颞区解剖层次。方法:收集10具24h内死亡的新鲜尸体头标本,将标本随机分为2组,分别进行血管造影和神经解剖染色等处理。结果:颞区位于颅顶的两侧,为颞肌和颞筋膜在头部的分布区域。此部位的组织层次由浅入深有血管的层次可分为:颞浅筋膜、颞浅脂肪垫、颞肌、颅骨,共4层。无血管的层次为:皮肤、皮下组织、颞深筋膜深浅层、颞深脂肪垫、颅骨骨膜,共6层。颞浅筋膜层有颞浅动静脉、面神经的颞支、颧支和颞浅神经分布。颞深筋膜分为浅、深两层,两层之间有颞浅脂肪垫和颞中静脉。结论:颞部切口常被应用于颞部除皱术和面部提升术,较安全且有效的解剖层面需要分区描述。切口的分离层次在颞深筋膜深层;眶外缘注意哨兵静脉彻底止血;向下在融合线处走在颞脂肪垫的浅层,注意保护颞中动静脉;触及颧弓则进入骨膜下;穿过颧弓后面中部的分离层次在SMAS层深面,SMAS层深面剥离后,在颧弓处向浅层纵向分离保护面神经分支。为了确保手术的安全性,术中避免损伤面神经及血管,需要注意切口,融合线,颧弓位置的不同层次。  相似文献   

9.
从解剖学角度探讨应用锯齿线行面部提升术的可行性   总被引:2,自引:1,他引:1  
目的:以解剖学研究为基础,探讨应用锯齿线行面部提升术的适应证、禁忌证与手术层次。方法:对10例(20侧)防腐人头标本进行头面部逐层解剖,观察面部脂肪分布与眶上血管神经、滑车上血管神经、面神经的走行特点。结果:额正中部皮肤与皮下组织的厚度(1.9±0.2)mm,颞部发际缘处皮肤与皮下组织的厚度(2.4±0.3)mm,面颊部颊脂肪垫处皮肤与皮下组织的厚度(3.1±0.4)mm。眶上血管神经分为内侧支和外侧支,分别穿过额肌、帽状腱膜进入头皮。滑车上血管神经穿过额肌分布于近中线的额部皮肤。面神经颞支向前上方走行于颞浅筋膜深面。面神经颊支出腮腺后走行于表浅肌肉腱膜系统(SMAS)的深面,其分支相互吻合呈立体网格状。结论:额部于额肌深面、颞部于颞浅筋膜浅面、面颊部于SMAS浅面,是锯齿线的安全植入层次。  相似文献   

10.
内窥镜鱼尾纹除皱术的颞额区应用解剖学   总被引:6,自引:0,他引:6  
在开展内窥镜眼角鱼尾纹除皱术中减少面神经颞支损伤的概率。方法 在36侧成人头部标本上,探讨颞额区层次特点及其面神经颞支的定位。结果 面神经颞支位于颞浅筋膜和额肌的深层,通常有1-4分支,第1支先位于关节结节前方8.1±2.1mm,然后向内上方于走进入额肌或眼轮匝肌上部,位于骨性眼外毗外毗上方33.8±4.9mm。  相似文献   

11.
面神经额支的分布与面部上提术的关系   总被引:11,自引:0,他引:11  
目的 明确面神经额支在颧部的软组织走行层次的分布。方法 对9人尸头(18例)颜面行大体解剖观察。结果 面神经额支的分支数目为3 ̄7支,平均5支,无恒定的行径及体表投影。将颧弓均分成三段,统计跨过各段表面的额支分支数,发现额支交非仅限于颧弓的中后段,而是近全颧弓均有额支分支跨过,其分布密度以中1/3段最高,占总数的44.4%(40/90);前1/3段次之,中38.89%(35/90);后1/3段又次  相似文献   

12.
The microsurgical anatomy of the temporal and zygomatic branches of the facial nerve are presented along with related local vasculature (frontal and parietal branches of the superficial temporal artery [STA]) as encountered when using subfascial and submuscular temporal muscle dissection techniques for anterolateral craniotomies. Twenty sides were studied in 10 cadaveric specimens that had been previously injected with latex. The rami of the temporal and zygomatic branches of the facial nerve and branches of the STA were dissected out through pterional and orbitozygomatic approaches by using a submuscular or subfascial temporal muscle dissection technique. The three rami of the temporal branch of the facial nerve (the auricularis, frontalis, and orbicularis) were found to run within the galeal plane of the scalp. The zygomatic branch of the facial nerve was found to course deeper than the most caudal extension of the galea, known as the superficial musculoaponeurotic layer. The frontal branch of the STA served as an important landmark for the subfascial or submuscular dissections because excessive reflection of the scalp flap inferior to the level of this vessel would inadvertently injure the frontalis branch of the facial nerve. Subfascial and submuscular dissections of the temporal muscle offer an alternative to the interfascial technique during anterolateral craniotomies. Scalp and temporal dissection performed with careful attention to anatomical landmarks (frontal branch of the STA and the suprafascial fat pad) provides a safe and expeditious alternative to the traditional interfascial technique.  相似文献   

13.
面神经在眶周区的解剖研究   总被引:8,自引:2,他引:6  
目的探讨面神经颠支、颧支的终末分支进入眼轮匝肌位置和体表解剖。方法选择6具新鲜尸体标本。观察解剖面神经颠支、颧支,辨别出进入眼轮匝肌的颠支、颧支与外眦的关系。通过外眦做一垂线和水平线,使之分别与矢状面和冠状面平行。通过外眦的垂线和水平线来确定进入眼轮匝肌的神经分支与外眦的解剖关系。结果颠支进入眼轮匝肌时.位于外眦水平线平均为2.64cm,位于外眦垂线外平均为2.40cm。在眼轮匝肌的侧缘、颞支和颧支的垂直距离平均为1.54cm。结论位于面神经走行的上或下、与其平行的切口,不易损伤面神经分支。  相似文献   

14.
Temporoparietal Fascia Plication in Rhytidectomy   总被引:2,自引:0,他引:2  
Background The temporal region has a complex subcutaneous fascial structure known as the temporoparietal fascia, which is part of the subcutaneous musculoaponeurotic system. The temporoparietal fascia is continuous with the superficial musculoaponeurotic system (SMAS) of the face in the inferior border, the frontalis muscle, and the orbicularis oculi muscle in the anterior border. Therefore, a properly planned temporoparietal fascia plication can increase the tightness of the SMAS. In addition, plication of the temporoparietal fascia can provide lifting to decrease lateral canthal wrinkles with elevation of the lateral brows in rhytidectomy. Furthermore, plication of the temporoparietal fascia can yield deep tissue support, which prevents alopecia and visible scar formation in the temporal region by decreasing the tension along the skin incision. Methods Plication of the temporoparietal fascia was performed for 16 patients who had undergone face-lifts over the previous 10 years. Careful subcutaneous dissection, performed immediately under the hair follicles to avoid frontal nerve injury, provides excellent exposure of the temporoparietal fascia for plication in rhytidectomy and protects the auriculotemporal nerve and the superficial temporal vessels. Results There were no complications such as hematoma, facial nerve injury, alopecia, or visible scar formation attributable to the temporoparietal fascia plication. Conclusion Temporoparietal fascia plication can be performed simply during rhytidectomy as an additional procedure. It not only augments the effects of the rhytidectomy, especially in the lateral brows, the lateral canthal, and the temporal regions, but also decreases the risk of possible complications.  相似文献   

15.
Background: Blepharoplasty and midface access incisions that are currently used were designed on the premise that innervation to the lower eyelid orbicularis oculi muscle approaches the muscle from its lateral aspect and that its segmental fascicles run parallel to the muscle's fibers. These incisions yield a high rate of complications that include ectropion and other eyelid malpositions. Objective: The goal of this study was to investigate the innervation of the lower orbicularis oculi muscle and determine how it is affected by lower eyelid surgery. Methods: Macroscopic anatomic dissections were performed on 10 frozen cadavers, and the origin and distribution of innervation was mapped. An additional 12 fresh cadaver specimens were dissected through use of 3.5× loupe magnification. Six ultrafresh cadaver specimens were used for histologic examination. Fixation was done in 10% formaldehyde. Axial incisions perpendicular to the facial plane were made at 5-mm intervals from the lower forehead level to the oral commissure. Hematoxylin and eosin specimens and Masson's trichrome specimens were made from alternating slices taken at 5-mm intervals. Results: The results of this anatomic study suggest that the upper eyelid orbicularis oculi muscle is innervated by fascicles of the temporal branch of the facial (VII) nerve. These nerves travel along the undersurface of the muscle and branch out parallel to the muscle fibers. The lower eyelid orbicularis oculi muscle seems to be innervated by 3 to 5 branches of the zygomatic nerve, which splits into 2 large groups of fascicles as it crosses the zygomaticus major muscle. These nerves continue toward the orbicularis oculi muscle, splitting into a plexus of nerves that approaches the orbicularis oculi muscle fibers at an angle of approximately 90°. No significant branches from the lateral aspect of the lower orbicularis oculi were observed in this study. Conclusions: The results of this anatomic study indicate that techniques that (1) approach the midface through the lower eyelid and (2) change the plane of dissection from deep to the orbicularis oculi muscle to superficial to the zygomaticus major muscle may place the innervation of the orbicularis oculi muscle at much higher risk.  相似文献   

16.
The purpose of this study is to clarify the mechanisms of the problems that develop after neurectomy for blepharospasm. The left facial nerves in 10 Japanese cadavers were dissected under a surgical microscope. The temporal, zygomatic, and buccal branches innervated to the orbicularis oculi muscle. These three groups formed a well-communicating plexus posterior to the orbicularis. The most inferior buccal branch curved in the deep layer in the lower part of the cheek. In the cheek, both the buccal and the temporal branches had ramifications of other facial muscles. The information given in previous anatomical textbooks did not specifically define the denervation of the orbicularis. When neurectomy was done in the past, the inferior buccal branch may have been kept intact, or other facial muscles as well as the orbicularis may have been denervated which caused the blepharospasm to recur and complications to develop after neurectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号