首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain B cells termed as “regulatory B cells” (Bregs) can suppress the ongoing immune responses and a splenic CD5+CD1dhi Breg subset identified earlier was shown to exert its regulatory functions through secretion of IL-10. Though FasL expression is an alternative mechanism of immune suppression used by B cells, little is known about the FasL expressing CD5+CD1dhi Bregs. In this study, we isolated splenocytes or splenic CD19+ B cells and compared the efficiency of toll-like receptor(TLR)4 ligand (lipopolysaccharide) with TLR9 ligand (CpG), anti-CD40 and TLR9 ligand (CpG) plus anti-CD40 on the FasL expression of splenic CD5+CD1dhi Bregs by flow cytometry. FasL expression in CD5+CD1dhi B cells was rapidly increased after TLR4 ligation. Intriguingly, anti-CD40 and CpG plus anti-CD40 combinations failed to stimulate FasL expression in CD5+CD1dhi B cells although the IL-10 production was up-regulated in this subset. In addition, LPS and other B10-cell inducers increased the expression of surface molecules like CD86 and CD25, which are correlated to the regulatory functions of B cells. Furthermore, NF-κB and NF-AT inhibitors decreased the TLR4-activated FasL expression in CD5+CD1dhi B cells. Then we sorted splenic CD5+CD1dhi Bregs using flow cytometry and found that TLR4-activated CD5+CD1dhi Bregs suppressed the proliferation of CFSE-labeled CD4+ T cells in vitro, which was partly blocked by anti-FasL antibody. In oxazolone-sensitized mice having contact hypersensitivity, FasL expression in splenic CD5+CD1dhi B cells was decreased compared to the control group after TLR4 ligation. Our findings suggest that the regulatory function of CD5+CD1dhi B cells could be partly mediated by Fas-FasL pathway and this FasL expressing CD5+CD1dhi Bregs might participate in the regulation of inflammatory diseases.  相似文献   

2.
Chronic HCV infection can lead to cirrhosis and is associated with increased mortality. Interleukin (IL)-10-producing B cells (B10 cells) are regulatory cells that suppress cellular immune responses. Here, we aimed to determine whether HCV induces B10 cells and assess the roles of the B10 cells during HCV infection. HCV-induced B10 cells were enriched in CD19hi and CD1dhiCD5+ cell populations. HCV predominantly triggered the TLR2-MyD88-NF-κB and AP-1 signaling pathways to drive IL-10 production by B cells. In a humanized murine model of persistent HCV infection, to neutralize IL-10 produced by B10 cells, mice were treated with pcCD19scFv-IL-10R, which contains the genes coding the anti-CD19 single-chain variable fragment (CD19scFv) and the extracellular domain of IL-10 receptor alpha chain (sIL-10Ra). This treatment resulted in significant reduction of B10 cells in spleen and liver, increase of cytotoxic CD8+ T-cell responses against HCV, and low viral loads in infected humanized mice. Our results indicate that targeting B10 cells via neutralization of IL-10 may offer a novel strategy to enhance anti-HCV immunotherapy.  相似文献   

3.
4.
CD38 is a transmembrane protein expressed in B lymphocytes, and is able to induce responses as proliferation, differentiation or apoptosis. Several reports propose that CD38 deficiency accelerates autoimmune processes in murine models of autoimmune diabetes, lymphoproliferation and rheumatoid arthritis. Other reports have shown elevated CD38 expression in B and T cells from patients with autoimmunity; however, the role of CD38 is still unclear in the development of autoimmunity. Recently, it has been characterized as CD1dhi CD5+ regulatory B cell subpopulation able to produce IL‐10, and the loss of these cells exacerbates the autoimmunity in murine models. Here, we report that CD38 / mice exhibited elevated titres of ANAS, anti‐dsDNA autoantibodies from 12 months of age and were higher by 16 months of age and mice presented kidney damage. Interestingly, there is a reduction in the survival of CD38 / mice compared to the WT. Furthermore, CD38 is highly expressed by CD1dhigh CD5+ regulatory B cells, and the agonistic anti‐CD38 stimulus plus LPS was able to increase the percentage of this cell subset and its ability to induce IL‐10 production. Together, these results suggest that CD38 could play a role in the control of autoimmune diseases through their expression on regulatory B cells.  相似文献   

5.
In contrast to antibody‐induced inflammatory responses, some B‐cell subpopulations suppress inflammation through the production of interleukin (IL)‐10. However, the mechanisms underlying Il10 gene expression during B‐cell development is elusive. Here, we identify IgM+B220loCD138hi cells responsible for marked IL‐10 production in the bone marrow and spleen of mice. These murine IL‐10‐producing cells predominantly secrete IgM and have unique characteristics of long‐lived plasma cells in spite of high expression of surface IgM. We found that IL‐10 production is strongly correlated with the expression level of Prdm1 (encoding the Blimp‐1 protein), an essential regulator of plasma cell development. Furthermore, overexpression of Prdm1 induces Il10 expression in naïve B cells. Immunoglobulin class‐switching recombination events resulted in the downregulation of both Il10 and Prdm1 expression in differentiating B cells. Thus, the prolonged elevation of Blimp‐1 expression during the formation of IgM+CD138hi cells without class‐switching elicits IL‐10 production. Adoptive transfer of Il10‐deficient B cells into B‐cell‐deficient mice demonstrated that IgM+CD138hi cell‐derived IL‐10 supports the survival of class‐switched plasma cells and their antibody production in response to antigen challenge. These findings reveal an important role for IL‐10 secretion by IgM+CD138hi cells in the complete and efficient humoral response.  相似文献   

6.
Background In human asthma, and experimental allergic airways disease in mice, antigen‐presenting cells and CD4+ effector cells at the airway mucosa orchestrate, and CD4+CD25+ regulatory T cells attenuate, allergen immunity. UV irradiation of skin before sensitization with ovalbumin (OVA) causes significantly reduced asthma‐like responses in respiratory tissues. Objective To determine whether UV‐induced changes in CD11c+ cells, CD4+CD25+ effector cells or CD4+CD25+ regulatory cells in the trachea and airway draining lymph nodes (ADLNs) were responsible for reduced allergic airways disease. Methods The phenotype and function of CD11c+ cells and CD4+CD25+ cells in the trachea and ADLNs of UV‐ and non‐irradiated, OVA‐sensitized mice was examined 24 h after a single exposure to aerosolized OVA. Results No changes in the function of CD11c+ cells from UV‐irradiated mice were observed. CD4+CD25+ cells from UV‐irradiated, OVA‐sensitized mice harvested 24 h after OVA aerosol proliferated less in response to OVA in vitro and were unable to suppress the proliferation of OVA‐sensitized responder cells. This result suggested reduced activation of effector T cells in the airway mucosa of UV‐irradiated, OVA‐sensitized mice. To exclude regulatory cells of any type, there was similar proliferation in vivo to aerosolized OVA by CFSE‐loaded, OVA‐TCR‐specific CD4+ cells adoptively transferred into UV‐ and non‐irradiated, OVA‐sensitized mice. In addition, there was no difference in the expression of regulatory T cell markers (Foxp3, IL‐10, TGF‐β mRNA). To examine effector T cells, ADLN cells from UV‐irradiated, OVA‐sensitized and ‐challenged mice were cultured with OVA. There was reduced expression of the early activation marker CD69 by CD4+CD25+ cells, and reduced proliferation in the absence of the regulatory cytokine, IL‐10. Conclusion Reduced allergic airways disease in UV‐irradiated mice is due to fewer effector CD4+CD25+ cells in the trachea and ADLNs, and not due to UV‐induced regulatory cells. Cite this as: J. P. McGlade, D. H. Strickland, M. J. M. Lambert, S. Gorman, J. A. Thomas, M. A. Judge, J. T. Burchell, G. R. Zosky and P. H. Hart, Clinical & Experimental Allergy, 2010 (40) 772–785.  相似文献   

7.
Numerous population studies and experimental models suggest that helminth infections can ameliorate immuno‐inflammatory disorders such as asthma and autoimmunity. Immunosuppressive cell populations associated with helminth infections include Treg and alternatively‐activated macrophages. In previous studies, we showed that both CD4+CD25+ Treg, and CD4 MLN cells from Heligmosomoides polygyus‐infected C57BL/6 mice were able to transfer protection against allergic airway inflammation to sensitized but uninfected animals. We now show that CD4CD19+ MLN B cells from infected, but not naïve, mice are able to transfer a down‐modulatory effect on allergy, significantly suppressing airway eosinophilia, IL‐5 secretion and pathology following allergen challenge. We further demonstrate that the same cell population can alleviate autoimmune‐mediated inflammatory events in the CNS, when transferred to uninfected mice undergoing myelin oligodendrocyte glycoprotein(p35–55)‐induced EAE. In both allergic and autoimmune models, reduction of disease was achieved with B cells from helminth‐infected IL‐10?/? donors, indicating that donor cell‐derived IL‐10 is not required. Phenotypically, MLN B cells from helminth‐infected mice expressed uniformly high levels of CD23, with follicular (B2) cell surface markers. These data expand previous observations and highlight the broad regulatory environment that develops during helminth infections that can abate diverse inflammatory disorders in vivo.  相似文献   

8.
9.
Persistence of memory CD8+ T cells is known to be largely controlled by common gamma chain cytokines, such as IL‐2, IL‐7 and IL‐15. However, other molecules may be involved in this phenomenon. We show here that TLR2?/? mice have a decreased frequency of memory phenotype CD8+ T cells when compared with WT mice. This prompted us to investigate the role of TLR2 in the homeostasis of memory CD8+ T cells. We describe here a new TLR2‐dependent mechanism which, in the absence of specific antigen, directly controls memory CD8+ T‐cell proliferation and IFN‐γ secretion. We demonstrate that TLR2 engagement on memory CD8+ T cells increases their proliferation and expansion induced by IL‐7 both in vitro and in vivo. We also show that TLR2 ligands act in synergy with IL‐2 to induce IFN‐γ secretion in vitro. Both conclusions are obtained with spontaneously arising memory phenotype and antigen‐specific memory CD8+ T cells. Altogether, our data support the idea that continuous TLR2 signaling in response to microbial stimuli or endogenous danger signals might directly contribute to the maintenance of the diversity memory CD8+ T cells in the organism.  相似文献   

10.
The mechanistic basis of memory T‐cell development is poorly defined. Phenotypic markers that define precursors at effector stages have been characterized for acute systemic infections with high antigen load. We asked whether such markers can identify memory precursors from early effectors (d6) to late memory (>d500) for two immunodominant CD8+ responses during the course of a localized low‐load influenza infection in mice. CD8+ T cells stained with the DbNP366 and DbPA224 tetramers were characterized as IL‐7Rαhi, IL‐7RαhiCD62Lhi or IL‐7RαhiKLRG1lo. While the DbNP366‐ and DbPA224‐specific responses were comparable in size, decay kinetics and memory precursor frequency, their expansion characteristics differed. This correlated with a divergence in the IL‐7Rαhi, IL‐7RαhiCD62Lhi and IL‐7RαhiKLRG1lo phenotypes on effector, but not naïve, CD8+ populations. That effect was abrogated by priming with viruses engineered to present equivalent levels of NP366 and PA224 peptides, indicating that memory phenotypes reflect early antigenic experience rather than memory potential. Thus, the IL‐7RαhiKLRG1lo phenotype had a poor predictive value in identifying memory precursors in the spleen and at the site of infection. Greater consistency in influenza‐specific IL‐7RαhiKLRG1loCD8+ T‐cell numbers was found in draining lymph nodes, suggesting that this may be the preferential site for memory establishment and maintenance following localized virus infections.  相似文献   

11.
Host protection to helminth infection requires IL‐4 receptor α chain (IL‐4Rα) signalling and the establishment of finely regulated Th2 responses. In the current study, the role of IL‐4Rα‐responsive T cells in Schistosoma mansoni egg‐induced inflammation was investigated. Egg‐induced inflammation in IL‐4Rα‐responsive BALB/c mice was accompanied with Th2‐biased responses, whereas T‐cell‐specific IL‐4Rα‐deficient BALB/c mice (iLckcreIl4ra?/lox) developed Th1‐biased responses with heightened inflammation. The proportion of Foxp3+ Treg in the draining LN of control mice did not correlate with the control of inflammation and was reduced in comparison to T‐cell‐specific IL‐4Rα‐deficient mice. This was due to IL‐4‐mediated inhibition of CD4+Foxp3+ Treg conversion, demonstrated in adoptively transferred Rag2?/? mice. Interestingly, reduced footpad swelling in Il4ra?/lox mice was associated with the induction of IL‐4 and IL‐10‐secreting CD4+CD25?CD103+Foxp3? cells, confirmed in S. mansoni infection studies. Transfer of IL‐4Rα‐responsive CD4+CD25?CD103+ cells, but not CD4+CD25high or CD4+CD25?CD103? cells, controlled inflammation in iLckcreIl4ra?/lox mice. The control of inflammation depended on IL‐10, as transferred CD4+CD25?CD103+ cells from IL‐10‐deficient mice were not able to effectively downregulate inflammation. Together, these results demonstrate that IL‐4 signalling in T cells inhibits Foxp3+ Treg in vivo and promotes CD4+CD25?CD103+Foxp3? cells that control S. mansoni egg‐induced inflammation via IL‐10.  相似文献   

12.
Schistosoma mansoni infection has been associated with protection against allergies. The mechanisms underlying this association may involve regulatory cells and cytokines. We evaluated the immune response induced by the S. mansoni antigens Sm22·6, PIII and Sm29 in a murine model of ovalbumin (OVA)‐induced airway inflammation. BALB/c mice were sensitized with subcutaneously injected OVA‐alum and challenged with aerolized OVA. Mice were given three doses of the different S. mansoni antigens. Lung histopathology, cellularity of bronchoalveolar lavage (BAL) and eosinophil peroxidase activity in lung were evaluated. Immunoglobulin (Ig)E levels in serum and cytokines in BAL were also measured. Additionally, we evaluated the frequency of CD4+forkhead box P3 (FoxP3)+ T cells in cultures stimulated with OVA and the expression of interleukin (IL)‐10 by these cells. The number of total cells and eosinophils in BAL and the levels of OVA‐specific IgE were reduced in the immunized mice. Also, the levels of IL‐4 and IL‐5 in the BAL of mice immunized with PIII and Sm22·6 were decreased, while the levels of IL‐10 were higher in mice immunized with Sm22·6 compared to the non‐immunized mice. The frequency of CD4+FoxP3+ T cells was higher in the groups of mice who received Sm22·6, Sm29 and PIII, being the expression of IL‐10 by these cells only higher in mice immunized with Sm22·6. We concluded that the S. mansoni antigens used in this study are able to down‐modulate allergic inflammatory mediators in a murine model of airway inflammation and that the CD4+FoxP3+ T cells, even in the absence of IL‐10 expression, might play an important role in this process.  相似文献   

13.
The severity of allergic diseases may be modified by vitamin D. However, the immune pathways modulated by the active form of vitamin D, 1,25‐dihydroxyvitamin D3 [1,25(OH)2D3], are yet to be fully elucidated. In this study, naturally occurring CD4+ CD25+ cells from the skin‐draining lymph nodes (SDLN) of mice treated with topical 1,25(OH)2D3 had an increased ability to suppress T helper type 2 (Th2) ‐skewed immune responses. CD4+ CD25+ cells transferred from mice treated with topical 1,25(OH)2D3 into ovalbumin (OVA) ‐sensitized mice challenged intranasally with OVA 18 hr later, significantly suppressed the capacity of airway‐draining lymph node (ADLN) cells to proliferate and secrete cytokines in response to further OVA stimulation ex vivo. The CD4+ CD25+ cells from 1,25(OH)2D3‐treated mice also reduced airway hyperresponsiveness and the proportions of neutrophils and eosinophils in bronchoalveolar lavage fluid (BALF). To test the effect of 1,25(OH)2D3 on cells able to respond to a specific antigen, CD4+ CD25+ cells were purified from the SDLN of OVA‐T‐cell receptor (TCR) transgenic mice treated 4 days earlier with topical 1,25(OH)2D3. CD4+ CD25+ cells from OVA‐TCR mice treated with 1,25(OH)2D3 were able to alter BALF cell content and suppress ADLN responses to a similar degree to those cells from non‐transgenic mice, suggesting that the effect of 1,25(OH)2D3 was not related to TCR signalling. In summary, topical 1,25(OH)2D3 increased the regulatory capacity of CD4+ CD25+ cells from the SDLN to suppress Th2‐mediated allergic airway disease. This work highlights how local 1,25(OH)2D3 production by lung epithelial cells may modulate the suppressive activity of local regulatory T cells.  相似文献   

14.
Summary: Interleukin‐10 (IL‐10)‐secreting T regulatory type 1 (Tr1) cells are defined by their specific cytokine production profile, which includes the secretion of high levels of IL‐10 and transforming growth factor‐β(TGF‐β), and by their ability to suppress antigen‐specific effector T‐cell responses via a cytokine‐dependent mechanism. In contrast to the naturally occurring CD4+CD25+ T regulatory cells (Tregs) that emerge directly from the thymus, Tr1 cells are induced by antigen stimulation via an IL‐10‐dependent process in vitro and in vivo. Specialized IL‐10‐producing dendritic cells, such as those in an immature state or those modulated by tolerogenic stimuli, play a key role in this process. We propose to use the term Tr1 cells for all IL‐10‐producing T‐cell populations that are induced by IL‐10 and have regulatory activity. The full biological characterization of Tr1 cells has been hampered by the difficulty in generating these cells in vitro and by the lack of specific marker molecules. However, it is clear that Tr1 cells play a key role in regulating adaptive immune responses both in mice and in humans. Further work to delineate the specific molecular signature of Tr1 cells, to determine their relationship with CD4+CD25+ Tregs, and to elucidate their respective role in maintaining peripheral tolerance is crucial to advance our knowledge on this Treg subset. Furthermore, results from clinical protocols using Tr1 cells to modulate immune responses in vivo in autoimmunity, transplantation, and chronic inflammatory diseases will undoubtedly prove the biological relevance of these cells in immunotolerance.  相似文献   

15.
We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4+ T cells and upregulate TCR‐triggered IFN‐γ secretion and cell proliferation in vitro. Here we examined the role of CD4+ T‐cell‐expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag‐specific T‐cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4+ T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1‐like response was observed in the context of both polyclonal and Ag‐specific TCR stimulation. To evaluate the role of T‐cell TLR2 in priming of CD4+ T cells in vivo, naive MTB Ag85B‐specific TCR transgenic CD4+ T cells (P25 TCR‐Tg) were adoptively transferred into Tlr2?/? recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3Cys‐SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN‐γ‐secreting P25 TCR‐Tg T cells 1 week after immunization. P25 TCR‐Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4+ T cells increases MTB Ag‐specific responses and may contribute to protection against MTB infection.  相似文献   

16.
Follicular helper T (Tfh) cells provide crucial help to germinal center B (GCB) cells for proper antibody production, and a specialized subset of regulatory T cells, follicular regulatory T (Tfr) cells, modulate this process. However, Tfr‐cell function in the GC is not well understood. Here, we define Tfr cells as a CD4+ Foxp3+ CXCR5hi PD‐1hi CD25low TIGIThigh T‐cell population. Furthermore, we have used a novel mouse model (“Bcl6FC”) to delete the Bcl6 gene in Foxp3+ T cells and thus specifically deplete Tfr cells. Following immunization, Bcl6FC mice develop normal Tfh‐ and GCB‐cell populations. However, Bcl6FC mice produce altered antigen‐specific antibody responses, with reduced titers of IgG and significantly increased IgA. Bcl6FC mice also developed IgG antibodies with significantly decreased avidity to antigen in an HIV‐1 gp120 “prime‐boost” vaccine model. In an autoimmune lupus model, we observed strongly elevated anti‐DNA IgA titers in Bcl6FC mice. Additionally, Tfh cells from Bcl6FC mice consistently produce higher levels of Interferon‐γ, IL‐10 and IL‐21. Loss of Tfr cells therefore leads to highly abnormal Tfh‐cell and GCB‐cell responses. Overall, our study has uncovered unique regulatory roles for Tfr cells in the GC response.  相似文献   

17.
The expression of the integrin αE (CD103), may enhance the retention of regulatory T cells to peripheral inflammatory sites and possibly contribute to their suppressive potential. The aim of this study was to define the regulatory role of IL‐2 and TGF‐β1 on the CD103 expression and the optimal in vitro conditions for the induction/expansion of human CD4+ and CD8+ Tregs. Cord blood mononuclear cells (CBMC) were stimulated under various culture conditions, including anti‐CD3, anti‐CD28, IL‐2 and TGF‐β1. TGF‐β1 and IL‐2 were both required for optimal expression of CD103. In addition, TGF‐β1 and IL‐2 synergistically induced CD103 expression on CD8+ T cells, whereas, only additive induced expression was noted on CD4+ T cells. Surprisingly, CD103 expression was not dependent upon CD28 costimulation. IL‐2 also played a central role in CD103 expression by CD25hi Foxp3+ Tregs. IL‐2, TGF‐β1 and anti‐CD3 defined the optimal stimulatory conditions favouring the induction/expansion of both CD4+ and CD8+ human Tregs from naive CBMC. Thus, this study provides new insights into the regulatory role of IL‐2 upon CD103 expression by human cord blood CD4+ and CD8+ T cells. Furthermore, it identifies the in vitro culture conditions driving the differentiation of the novel phenotype CD4+ and CD8+ CD103+ CD25hi Foxp3+ Tregs from human CBMC.  相似文献   

18.
Pathogenesis of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis is B cell-dependent, although how particular B cell subsets modulate immunopathogenesis remains unknown. Although their phenotype remains controversial, regulatory B cells (Bregs), play a role in immunological tolerance via interleukin (IL)-10. Putative CD19+CD24hiCD38hi and CD19+CD24hiCD27+ Bregs were evaluated in addition to their CD5+ subsets in 69 patients with ANCA-associated vasculitis (AAV). B cell IL-10 was verified by flow cytometry following culture with CD40 ligand and cytosine–phosphate–guanosine (CpG) DNA. Patients with active disease had decreased levels of CD5+CD24hiCD38hi B cells and IL-10+ B cells compared to patients in remission and healthy controls (HCs). As IL-10+ and CD5+CD24hiCD38hi B cells normalized in remission within an individual, ANCA titres decreased. The CD5+ subset of CD24hiCD38hi B cells decreases in active disease and rebounds during remission similarly to IL-10-producing B cells. Moreover, CD5+ B cells are enriched in the ability to produce IL-10 compared to CD5neg B cells. Together these results suggest that CD5 may identify functional IL-10-producing Bregs. The malfunction of Bregs during active disease due to reduced IL-10 expression may thus permit ANCA production.  相似文献   

19.
Interleukin‐15 (IL‐15) is an inflammatory cytokine whose role in autoimmune diseases has not been fully elucidated. Th17 cells have been shown to play critical roles in experimental autoimmune encephalomyelitis (EAE) models. In this study, we demonstrate that blockade of IL‐15 signaling by TMβ‐1 mAb treatment aggravated EAE severity. The key mechanism was not NK‐cell depletion but depletion of CD8+CD122+ T cells. Adoptive transfer of exogenous CD8+CD122+ T cells to TMβ‐1‐treated mice rescued animals from severe disease. Moreover, transfer of preactivated CD8+CD122+ T cells prevented EAE development and significantly reduced IL‐17 secretion. Naïve effector CD4+CD25? T cells cultured with either CD8+CD122+ T cells from wild‐type mice or IL‐15 transgenic mice displayed lower frequencies of IL‐17A production with lower amounts of IL‐17 in the supernatants when compared with production by effector CD4+CD25? T cells cultured alone. Addition of a neutralizing antibody to IL‐10 led to recovery of IL‐17A production in Th17 cultures. Furthermore, coculture of CD8+CD122+ T cells with effector CD4+ T cells inhibited their proliferation significantly, suggesting a regulatory function for IL‐15 dependent CD8+CD122+ T cells. Taken together, these observations suggest that IL‐15, acting through CD8+CD122+ T cells, has a negative regulatory role in reducing IL‐17 production and Th17‐mediated EAE inflammation.  相似文献   

20.
The gastric pathogen Helicobacter pylori infects over half the world's population. The lifelong infection induces gastric inflammation but the host fails to generate protective immunity. To study the lack of protective H. pylori immunity, CD4+CD25+ Treg cells were investigated for their ability to down‐regulate H. pylori‐specific CD4+CD25 cells in a murine model. CD25 lymphocytes from infected mice were hyporesponsive to antigenic stimulation in vitro even in the absence of CD25+ Treg cells unless treated with high‐dose IL‐2. Transfer of CD45RBhi naïve CD25 cells from infected mice into rag1−/− mice challenged with H. pylori resulted in severe gastritis and reduced bacterial loads, whereas transfer of CD45RBlo memory CD25 cells from H. pylori‐infected mice resulted in only mild gastritis and persistent infection. CD25 cells stimulated in the absence of CD25+ cells in rag1−/− mice promoted bacterial clearance, but lost this ability when subsequently transferred to WT mice harboring CD25+ cells. These results demonstrate that CD25+ cells induce anergy in CD25 cells in response to H. pylori infection but are not required to maintain hyporesponsiveness. In addition, CD25+ cells are able to suppress previously activated CD25 cells when responding to H. pylori challenge in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号