首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TGF‐β plays an important role in the induction of Treg and maintenance of immunologic tolerance, but whether other members of TGF‐β superfamily act together or independently to achieve this effect is poorly understood. Although others have reported that the bone morphogenetic proteins (BMP) and TGF‐β have similar effects on the development of thymocytes and T cells, in this study, we report that members of the BMP family, BMP‐2 and ‐4, are unable to induce non‐regulatory T cells to become Foxp3+ Treg. Neutralization studies with Noggin have revealed that BMP‐2/4 and the BMP receptor signaling pathway is not required for TGF‐β to induce naïve CD4+CD25? cells to express Foxp3; however, BMP‐2/4 and TGF‐β have a synergistic effect on the induction of Foxp3+ Treg. BMP‐2/4 affects non‐Smad signaling molecules including phosphorylated ERK and JNK, which could subsequently promote the differentiation of Foxp3+ Treg induced by TGF‐β. Data further advocate that TGF‐β is a key signaling factor for Foxp3+ Treg development. In addition, the synergistic effect of BMP‐2/4 and TGF‐β indicates that the simultaneous manipulation of TGF‐β and BMP signaling might have considerable effects in the clinical setting for the enhancement of Treg purity and yield.  相似文献   

2.
The transfer of alloreactive regulatory T (aTreg) cells into transplant recipients represents an attractive treatment option to improve long‐term graft acceptance. We recently described a protocol for the generation of aTreg cells in mice using a nondepleting anti‐CD4 antibody (aCD4). Here, we investigated whether adding TGF‐β and retinoic acid (RA) or rapamycin (Rapa) can further improve aTreg‐cell generation and function. Murine CD4+ T cells were cultured with allogeneic B cells in the presence of aCD4 alone, aCD4+TGF‐β+RA or aCD4+Rapa. Addition of TGF‐β+RA or Rapa resulted in an increase of CD25+Foxp3+‐expressing T cells. Expression of CD40L and production of IFN‐γ and IL‐17 was abolished in aCD4+TGF‐β+RA aTreg cells. Additionally, aCD4+TGF‐β+RA aTreg cells showed the highest level of Helios and Neuropilin‐1 co‐expression. Although CD25+Foxp3+ cells from all culture conditions displayed complete demethylation of the Treg‐specific demethylated region, aCD4+TGF‐β+RA Treg cells showed the most stable Foxp3 expression upon restimulation. Consequently, aCD4+TGF‐β+RA aTreg cells suppressed effector T‐cell differentiation more effectively in comparison to aTreg cells harvested from all other cultures, and furthermore inhibited acute graft versus host disease and especially skin transplant rejection. Thus, addition of TGF‐β+RA seems to be superior over Rapa in stabilising the phenotype and functional capacity of aTreg cells.  相似文献   

3.
Treg cells can secrete latent TGF‐β1 (LTGF‐β1), but can also utilize an alternative pathway for transport and expression of LTGF‐β1 on the cell surface in which LTGF‐β1 is coupled to a distinct LTGF‐β binding protein termed glycoprotein A repetitions predominant (GARP)/LRRC32. The function of the GARP/LTGF‐β1 complex has remained elusive. Here, we examine in vivo the roles of GARP and TGF‐β1 in the induction of oral tolerance. When Foxp3? OT‐II T cells were transferred to wild‐type recipient mice followed by OVA feeding, the conversion of Foxp3? to Foxp3+ OT‐II cells was dependent on recipient Treg cells. Neutralization of IL‐2 in the recipient mice also abrogated this conversion. The GARP/LTGF‐β1 complex on recipient Treg cells, but not dendritic cell‐derived TGF‐β1, was required for efficient induction of Foxp3+ T cells and for the suppression of delayed hypersensitivity. Expression of the integrin αvβ8 by Treg cells (or T cells) in the recipients was dispensable for induction of Foxp3 expression. Transient depletion of the bacterial flora enhanced the development of oral tolerance by expanding Treg cells with enhanced expression of the GARP/LTGF‐β1 complex.  相似文献   

4.
5.
HCV is remarkable at disrupting human immunity to establish chronic infection. The accumulation of Treg cells at the site of infection and upregulation of inhibitory signaling pathways (such as T‐cell Ig and mucin domain protein‐3 (Tim‐3) and galectin‐9 (Gal‐9)) play pivotal roles in suppressing antiviral effector T (Teff) cells that are essential for viral clearance. While Tim‐3/Gal‐9 interactions have been shown to negatively regulate Teff cells, their role in regulating Treg cells is poorly understood. To explore how Tim‐3/Gal‐9 interactions regulate HCV‐mediated Treg‐cell development, here we provide pilot data showing that HCV‐infected human hepatocytes express higher levels of Gal‐9 and TGF‐β, and upregulate Tim‐3 expression and regulatory cytokines TGF‐β/IL‐10 in co‐cultured human CD4+ T cells, driving conventional CD4+ T cells into CD25+Foxp3+ Treg cells. Additionally, recombinant Gal‐9 protein can transform TCR‐activated CD4+ T cells into Foxp3+ Treg cells in a dose‐dependent manner. Importantly, blocking Tim‐3/Gal‐9 ligations abrogates HCV‐mediated Treg‐cell induction by HCV‐infected hepatocytes, suggesting that Tim‐3/Gal‐9 interactions may regulate human Foxp3+ Treg‐cell development and function during HCV infection.  相似文献   

6.
Foxp3+ Treg cells, which are crucial for maintenance of self-tolerance, mainly develop within the thymus, where they arise from CD25+Foxp3 or CD25Foxp3+ Treg cell precursors. Although it is known that infections can cause transient thymic involution, the impact of infection-induced thymus atrophy on thymic Treg (tTreg) cell development is unknown. Here, we infected mice with influenza A virus (IAV) and studied thymocyte population dynamics post infection. IAV infection caused a massive, but transient thymic involution, dominated by a loss of CD4+CD8+ double-positive (DP) thymocytes, which was accompanied by a significant increase in the frequency of CD25+Foxp3+ tTreg cells. Differential apoptosis susceptibility could be experimentally excluded as a reason for the relative tTreg cell increase, and mathematical modeling suggested that enhanced tTreg cell generation cannot explain the increased frequency of tTreg cells. Yet, an increased death of DP thymocytes and augmented exit of single-positive (SP) thymocytes was suggested to be causative. Interestingly, IAV-induced thymus atrophy resulted in a significantly reduced T-cell receptor (TCR) repertoire diversity of newly produced tTreg cells. Taken together, IAV-induced thymus atrophy is substantially altering the dynamics of major thymocyte populations, finally resulting in a relative increase of tTreg cells with an altered TCR repertoire.  相似文献   

7.
Transforming growth factor beta (TGF‐β) is a pleiotropic cytokine that has been shown to influence the differentiation and function of T cells. The role that TGF‐β plays in immune‐mediated disease, such as multiple sclerosis (MS), has become a major area of investigation since CD4+ T cells appear to be a major mediator of autoimmunity. This review provides an analysis of the literature on the role that TGF‐β plays in the generation and regulation of encephalitogenic and regulatory T cells (Treg) in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, as well as in T cells of MS patients. Since TGF‐β plays a major role in the development and function of both CD4+ effector and Treg, which are defective in MS patients, recent studies have found potential mechanisms to explain the basis for these T‐cell defects to establish a foundation for potentially modulating TGF‐β signaling to restore normal T‐cell function in MS patients.  相似文献   

8.
9.
10.
11.
12.
Problem: Spontaneous abortions in DBA/2‐mated CBA/J mice can be prevented by an immune response to BALB/c, and CD4+25+ Treg cells as well as CD8+ T cells have been proposed to confer protection. Recently a 2 ng dose of intravaginal TGF‐β3 at the time of exposure to DBA/2 semen was shown to be effective. TGF‐β is known to facilitate development of Treg cells. Is there evidence for local Treg induction? Methods: The phenotype of cellular recruitment to the vaginal wall and uterus was established by immunostaining tissue sections from CBA/J females following intravaginal TGF‐β treatment. The phenotype of cells in vaginal washings 48 hr after TGF‐β was determined by flow cytometry. Results: Increased numbers of CD3+, CD25+, and CD11c+ cells were found in vaginal mucosa with increasing doses of TGF‐β. A 2 ng TGF‐β3 treatment at the time of estrus recruited Foxp3+ cells to the vaginal lumen, and the majority of these were CD8+; CD4+ cells were also present, but expressed only low levels of CD25 and CTLA4. A 20 ng dose recruited predominantly CD4+8+ Foxp3+ cells. Conclusion: Induction of Tregs to semen‐associated DBA/2 antigens may prevent pregnancy loss in the CBAxDBA/2 model without the need for BALB/c as an immunogen. The Treg phenotype in the genital tract is compatible with additional members of the Treg family that recognize Class I MHC and associated paternal peptides and prevent abortions.  相似文献   

13.
14.
Foxp3+ regulatory T (Treg) cells, which play a central role for the maintenance of immune homeostasis and self‐tolerance, are known to be both generated in the thymus (thymus‐derived, tTreg cells) and in the periphery, where they are converted from conventional CD4+ T cells (induced Treg (iTreg) cells). Recent data suggest a division of labor between these two Treg‐cell subsets since their combined action was shown to be essential for protection in inflammatory disease models. Here, using the transfer colitis model, we examined whether tTreg cells and iTreg cells fill different niches within the CD4+ T‐cell compartment. When naive T cells were co‐transferred with either pure tTreg cells or with a mixture of tTreg cells and iTreg cells, induction of Foxp3+ Treg cells from naive T cells was not hampered by preoccupation of the Treg‐cell niche. Using neuropilin‐1 (Nrp1) as a surface marker to separate tTreg cells and iTreg cells, we demonstrate that tTreg cells and iTreg cells alone can completely fill the Treg‐cell niche and display comparable TCR repertoires. However, when transferred together Nrp1+ tTreg cells outcompeted Nrp1? iTreg cells and dominated the Treg‐cell compartment. Taken together, our data suggest that tTreg cells and iTreg cells share a common peripheral niche.  相似文献   

15.
Interleukin‐2 (IL‐2) is a mainstay for current immunotherapeutic protocols but its usefulness in patients is reduced by severe toxicities and because IL‐2 facilitates regulatory T (Treg) cell development. IL‐21 is a type I cytokine acting as a potent T‐cell co‐mitogen but less efficient than IL‐2 in sustaining T‐cell proliferation. Using various in vitro models for T‐cell receptor (TCR)‐dependent human T‐cell proliferation, we found that IL‐21 synergized with IL‐2 to make CD4+ and CD8+ T cells attain a level of expansion that was impossible to obtain with IL‐2 alone. Synergy was mostly evident in naive CD4+ cells. IL‐2 and tumour‐released transforming growth factor‐β (TGF‐β) are the main environmental cues that cooperate in Treg cell induction in tumour patients. Interleukin‐21 hampered Treg cell expansion induced by IL‐2/TGF‐β combination in naive CD4+ cells by facilitating non‐Treg over Treg cell proliferation from the early phases of cell activation. Conversely, IL‐21 did not modulate the conversion of naive activated CD4+ cells into Treg cells in the absence of cell division. Treg cell reduction was related to persistent activation of Stat3, a negative regulator of Treg cells associated with down‐modulation of IL‐2/TGF‐β‐induced phosphorylation of Smad2/3, a positive regulator of Treg cells. In contrast to previous studies, IL‐21 was completely ineffective in counteracting the suppressive activity of Treg cells on naive and memory, CD4+ and CD8+ T cells. Present data provide proof‐of‐concept for evaluating a combinatorial approach that would reduce the IL‐2 needed to sustain T‐cell proliferation efficiently, thereby reducing toxicity and controlling a tolerizing mechanism responsible for the contraction of the T‐cell response.  相似文献   

16.
Regulatory B (Breg) cells have been shown to play a critical role in immune homeostasis and in autoimmunity models. We have recently demonstrated that combined anti‐T cell immunoglobulin domain and mucin domain‐1 and anti‐CD45RB antibody treatment results in tolerance to full MHC‐mismatched islet allografts in mice by generating Breg cells that are necessary for tolerance. Breg cells are antigen‐specific and are capable of transferring tolerance to untreated, transplanted animals. Here, we demonstrate that adoptively transferred Breg cells require the presence of regulatory T (Treg) cells to establish tolerance, and that adoptive transfer of Breg cells increases the number of Treg cells. Interaction with Breg cells in vivo induces significantly more Foxp3 expression in CD4+CD25? T cells than with naive B cells. We also show that Breg cells express the TGF‐β associated latency‐associated peptide and that Breg‐cell mediated graft prolongation post‐adoptive transfer is abrogated by neutralization of TGF‐β activity. Breg cells, like Treg cells, demonstrate preferential expression of both C‐C chemokine receptor 6 and CXCR3. Collectively, these findings suggest that in this model of antibody‐induced transplantation tolerance, Breg cells promote graft survival by promoting Treg‐cell development, possibly via TGF‐β production.  相似文献   

17.
Statins are widely used drugs for the treatment of hypercholesterolaemia. A number of recent studies have suggested that statins also have pleiotropic effects on immune responses and statins have proven to be effective in the treatment of autoimmune diseases in animal models. Foxp3+ T regulatory cells are a unique subset of CD4+ T cells that mediate immunosuppression. Foxp3+ T cells develop in the thymus, but can also be induced in peripheral sites in the presence of transforming growth factor‐β (TGF‐β). We demonstrate here that simvastatin blockade of the mevalonate pathway can mediate induction of mouse Foxp3+ T cells and that simvastatin can synergize with low levels of TGF‐β to induce Foxp3+ T cells. The effects of simvastatin are secondary to a blockade of protein geranylgeranylation, are mediated at late time‐points after T‐cell activation, and are associated with demethylation of the Foxp3 promoter. One major effect of simvastatin was inhibition of the induction of Smad6 and Smad7, inhibitory Smads that inhibit TGF‐β signalling. Our results suggest that one mechanism responsible for the immunosuppressive effects of statins is the ability to promote the generation of Foxp3+ T regulatory cells.  相似文献   

18.
19.
20.
The gut is home to a large number of Treg, with both CD4+ CD25+ Treg and bacterial antigen‐specific Tr1 cells present in normal mouse intestinal lamina propria. It has been shown recently that intestinal mucosal DC are able to induce Foxp3+ Treg through production of TGF‐β plus retinoic acid (RA). However, the factors instructing DC toward this mucosal phenotype are currently unknown. Curcumin has been shown to possess a number of biologic activities including the inhibition of NF‐κB signaling. We asked whether curcumin could modulate DC to be tolerogenic whose function could mimic mucosal DC. We report here that curcumin modulated BM‐derived DC to express ALDH1a and IL‐10. These curcumin‐treated DC induced differentiation of naïve CD4+ T cells into Treg resembling Treg in the intestine, including both CD4+CD25+ Foxp3+ Treg and IL‐10‐producing Tr1 cells. Such Treg induction required IL‐10, TGF‐β and retinoic acid produced by curcumin‐modulated DC. Cell contact as well as IL‐10 and TGF‐β production were involved in the function of such induced Treg. More importantly, these Treg inhibited antigen‐specific T‐cell activation in vitro and inhibited colitis due to antigen‐specific pathogenic T cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号