首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With increasing interest in alternative options to interferon‐alpha‐based treatments, IFN‐λ has shown therapeutic promise in a variety of diseases. Although the antiviral activity of IFN‐λ has been extensively studied, there is limited knowledge regarding the immunological functions of IFN‐λ and how these differ from those of other classes of IFNs. In this study, we investigated the effects of IFN‐λ on primary human NK cells, both in a direct and indirect capacity. We demonstrate that in contrast to interferon‐alpha, IFN‐λ is unable to directly stimulate NK cells, due to the absence of IFN‐λ receptor chain 1 (IFN‐λR1) on NK cells. However, IFN‐λ, in combination with TLR4 challenge, is able to induce the production of select members of the IL‐12 family of cytokines in monocyte‐derived macrophages. We further show that through macrophage‐mediated IL‐12 production, IFN‐λ is able to indirectly affect NK cells and ultimately induce IFN‐γ production.  相似文献   

2.
Interleukin‐1α is mainly expressed on the cell membrane, but can also be secreted during inflammation. The roles of secreted and membrane IL‐1α in acute liver inflammation are still not known. Here, we examined the functions of secreted and membrane IL‐1α in a mouse model of carbon tetrachloride‐induced acute liver injury. We show that secreted IL‐1α aggravates liver damage and membrane IL‐1α slightly protects mice from liver injury. Further studies showed that secreted IL‐1α promotes T‐cell activation. It also increased the expansion of CD11b+Gr1+ myeloid cells, which may serve as a negative regulator of acute liver inflammation. Moreover, secreted IL‐1α induced IL‐6 production from hepatocytes. IL‐6 neutralization reduced the proliferation of CD11b+Gr1+ myeloid cells in vivo. CCL2 and CXCL5 expression was increased by secreted IL‐1α in vitro and in vivo. Antagonists of the chemokine receptors for CCL2 and CXCL5 significantly reduced the migration of CD11b+Gr1+ myeloid cells. These results demonstrate that secreted and membrane IL‐1α play different roles in acute liver injury. Secreted IL‐1α could promote T‐cell activation and the recruitment and expansion of CD11b+Gr1+ myeloid cells through induction of CCL2, CXCL5, and IL‐6. The controlled release of IL‐1α could be a critical regulator during acute liver inflammation.  相似文献   

3.
IL‐27, a member of the IL‐12 family of cytokines, is produced by APCs, and displays pro‐ and anti‐inflammatory effects. How IL‐27 affects human NK cells still remains unknown. In this study, we observed that mature DCs secreted IL‐27 and that blockade of IL‐27R (CD130) reduced the amount of IFN‐γ produced by NK cells during their coculture, showing the importance of IL‐27 during DC–NK‐cell crosstalk. Accordingly, human rIL‐27 stimulated IFN‐γ secretion by NK cells in a STAT1‐dependent manner, induced upregulation of CD25 and CD69 on NK cells, and displayed a synergistic effect with IL‐18. Preincubation experiments demonstrated that IL‐27 primed NK cells for IL‐18‐induced IFN‐γ secretion, which was associated with an IL‐27‐driven upregulation of T‐bet expression. Also, IL‐27 triggered NKp46‐dependent NK‐cell‐mediated cytotoxicity against Raji, T‐47D, and HCT116 cells, and IL‐18 enhanced this cytotoxic response. Such NK‐cell‐mediated cytotoxicity involved upregulation of perforin, granule exocytosis, and TRAIL‐mediated cytotoxicity but not Fas‐FasL interaction. Moreover, IL‐27 also potentiated Ab‐dependent cell‐mediated cytotoxicity against mAb‐coated target cells. Taken together, IL‐27 stimulates NK‐cell effector functions, which might be relevant in different physiological and pathological situations.  相似文献   

4.
5.
TGF‐β and IL‐4 were recently shown to selectively upregulate IL‐9 production by naïve CD4+ T cells. We report here that TGF‐β interactions with IL‐1α, IL‐1β, IL‐18, and IL‐33 have equivalent IL‐9‐stimulating activities that function even in IL‐4‐deficient animals. This was observed after in vitro antigenic stimulation of immunized or unprimed mice and after polyclonal T‐cell activation. Based on intracellular IL‐9 staining, all IL‐9‐producing cells were CD4+ and 80–90% had proliferated, as indicated by reduced CFSE staining. In contrast to IL‐9, IL‐13 and IL‐17 were strongly stimulated by IL‐1 and either inhibited (IL‐13) or were unaffected (IL‐17) by addition of TGF‐β. IL‐9 and IL‐17 production also differed in their dependence on IL‐2 and regulation by IL‐1/IL‐23. As IL‐9 levels were much lower in Th2 and Th17 cultures, our results identify TGF‐β/IL‐1 and TGF‐β/IL‐4 as the main control points of IL‐9 synthesis.  相似文献   

6.
7.
Macrophages play a central role in immune and tissue responses of granulomatous lung diseases induced by pathogens and foreign bodies. Circulating monocytes are generally viewed as central precursors of these tissue effector macrophages. Here, we provide evidence that granulomas derive from alveolar macrophages serving as a local reservoir for the expansion of activated phagocytic macrophages. By exploring lung granulomatous responses to silica particles in IL‐1‐deficient mice, we found that the absence of IL‐1α, but not IL‐1β, was associated with reduced CD11bhigh phagocytic macrophage accumulation and fewer granulomas. This defect was associated with impaired alveolar clearance and resulted in the development of pulmonary alveolar proteinosis (PAP). Reconstitution of IL‐1α?/? mice with recombinant IL‐1α restored lung clearance functions and the pulmonary accumulation of CD11bhigh phagocytic macrophages. Mechanistically, IL‐1α induced the proliferation of CD11blow alveolar macrophages and differentiated these cells into CD11bhigh macrophages which perform critical phagocytic functions and organize granuloma. We newly discovered here that IL‐1α triggers lung responses requiring macrophage proliferation and maturation from tissue‐resident macrophages. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

8.
9.
IL‐18 has been implicated in inflammatory bowel disease (IBD), however its role in the regulation of intestinal CD4+ T‐cell function remains unclear. Here we show that murine intestinal CD4+ T cells express high levels of IL‐18Rα and provide evidence that IL‐18Rα expression is induced on these cells subsequent to their entry into the intestinal mucosa. Using the CD45RBhi T‐cell transfer colitis model, we show that IL‐18Rα is expressed on IFN‐γ+, IL‐17+, and IL‐17+IFN‐γ+ effector CD4+ T cells in the inflamed colonic lamina propria (cLP) and mesenteric lymph node (MLN) and is required for the optimal generation and/or maintenance of IFN‐γ‐producing cells in the cLP. In the steady state and during colitis, TCR‐independent cytokine‐induced IFN‐γ and IL‐17 production by intestinal CD4+ T cells was largely IL‐18Rα?dependent. Despite these findings however, IL‐18Rα?deficient CD4+ T cells induced comparable intestinal pathology to WT CD4+ T cells. These findings suggest that IL‐18‐dependent cytokine induced activation of CD4+ T cells is not critical for the development of T‐cell‐mediated colitis.  相似文献   

10.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

11.
Type I interferons (IFNs) have the dual ability to promote the development of the immune response and exert an anti‐inflammatory activity. We analyzed the integrated effect of IFN‐α, TCR signal strength, and CD28 costimulation on human CD4+ T‐cell differentiation into cell subsets producing the anti‐ and proinflammatory cytokines IL‐10 and IFN‐γ. We show that IFN‐α boosted TCR‐induced IL‐10 expression in activated peripheral CD45RA+CD4+ T cells and in whole blood cultures. The functional cooperation between TCR and IFN‐α efficiently occurred at low engagement of receptors. Moreover, IFN‐α rapidly cooperated with anti‐CD3 stimulation alone. IFN‐α, but not IL‐10, drove the early development of type I regulatory T cells that were mostly IL‐10+ Foxp3? IFN‐γ? and favored IL‐10 expression in a fraction of Foxp3+ T cells. Our data support a model in which IFN‐α costimulates TCR toward the production of IL‐10 whose level can be amplified via an autocrine feedback loop.  相似文献   

12.
Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell‐specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL‐1β production. Because polymorphisms in Card9 were recurrently associated with human IBD, we investigated the function of Card9 in a colitis‐associated cancer (CAC) model. Card9?/? mice develop smaller, less proliferative and less dysplastic tumors compared to their littermates and in the regenerating mucosa we detected dramatically impaired IL‐1β generation and defective IL‐1β controlled IL‐22 production from group 3 innate lymphoid cells. Consistent with the key role of immune‐derived IL‐22 in activating STAT3 signaling during normal and pathological intestinal epithelial cell (IEC) proliferation, Card9?/? mice also exhibit impaired tumor cell intrinsic STAT3 activation. Our results imply a Card9‐controlled, ILC3‐mediated mechanism regulating healthy and malignant IEC proliferation and demonstrates a role of Card9‐mediated innate immunity in inflammation‐associated carcinogenesis.  相似文献   

13.
14.
15.
IL‐15 is an essential survival factor for CD8αα+ intestinal intraepithelial lymphocytes (iIELs) in vitro and in vivo. However, the IL‐15‐induced survival signals in primary CD8αα+ iIELs remains elusive. Although Bcl‐2 level in CD8αα+ iIELs positively correlates with IL‐15Rα expression in the intestinal epithelial cells, overexpression of Bcl‐2 only moderately restores CD8αα+ γδ iIELs in Il15?/? mice. Here, we found that IL‐15 promptly activated a Jak3‐Jak1‐PI3K‐Akt pathway that led to the upregulation of Bcl‐2 and Mcl‐1. This pathway also induced a delayed but sustained ERK1/2 activation, which not only was necessary for the maintenance of Bcl‐2 but also resulted in the phosphorylation of extra‐long Bim at Ser65. The latter event facilitated the dissociation of Bim from Bcl‐2 without affecting Bim abundance in IL‐15‐treated CD8αα+ iIELs. Using an adoptive cell transfer approach, we found that either overexpression of Bcl‐2 or removal of Bim from CD8αα+ iIELs promoted their survival in Il15ra?/? mice. Taken together, IL‐15 promotes CD8αα+ iIEL survival by both increasing Bcl‐2 levels and dissociating Bim from Bcl‐2 through activation of a Jak3‐Jak1‐PI3K‐Akt‐ERK1/2 pathway, which differs from a previously reported IL‐15‐induced survival signal.  相似文献   

16.
Macrophages orchestrate the immune response via the polarization of CD4+ T helper (Th) cells. Different subsets of macrophages with distinct phenotypes, and sometimes opposite functions, have been described. M‐CSF and IL‐34 induce the differentiation of monocytes into IL‐10high IL‐12low immunoregulatory macrophages, which are similar to tumor‐associated macrophages (TAMs) in ovarian cancer. In this study, we evaluated the capacity of human macrophages induced in the presence of M‐CSF (M‐CSF macrophages) or IL‐34 (IL‐34 macrophages) and ovarian cancer TAMs to modulate the phenotype of human CD4+ T cells. Taken together, our results show that M‐CSF‐, IL‐34 macrophages, and TAMs switch non‐Th17 committed memory CD4+ T cells into conventional CCR4+ CCR6+ CD161+ Th17 cells, expressing or not IFN‐gamma. Contrary, the pro‐inflammatory GM‐CSF macrophages promote Th1 cells. The polarization of memory T cells into Th17 cells is mediated via membrane IL‐1α (mIL‐1α), which is constitutively expressed by M‐CSF‐, IL‐34 macrophages, and TAMs. This study elucidates a new mechanism that allows macrophages to maintain locally restrained and smoldering inflammation, which is required in angiogenesis and metastasis.  相似文献   

17.
Recent studies have revealed IL‐33 as a key factor in promoting antiviral T‐cell responses. However, it is less clear as to how IL‐33 regulates innate immunity. In this study, we infected wild‐type (WT) and IL‐33?/? mice with lymphocytic choriomeningitis virus and demonstrated an essential role of infection‐induced IL‐33 expression for robust innate IFN‐γ production in the liver. We first show that IL‐33 deficiency resulted in a marked reduction in the number of IFN‐γ+ γδ T and NK cells, but an increase in that of IL‐17+ γδ T cells at 16 h postinfection. Recombinant IL‐33 (rIL‐33) treatment could reverse such deficiency via increasing IFN‐γ‐producing γδ T and NK cells, and inhibiting IL‐17+ γδ T cells. We also found that rIL‐33‐induced type 2 innate lymphoid cells were not involved in T‐cell responses and liver injury, since the adoptive transfer of type 2 innate lymphoid cells neither affected the IFN‐γ and TNF‐α production in T cells, nor liver transferase levels in lymphocytic choriomeningitis virus infected mice. Interestingly, we found that while IL‐33 was not required for costimulatory molecule expression, it was critical for DC proliferation and cytokine production. Together, this study highlights an essential role of IL‐33 in regulating innate IFN‐γ‐production and DC function during viral hepatitis.  相似文献   

18.
A single nucleotide polymorphism within the PTPN22 gene is a strong genetic risk factor predisposing to the development of multiple autoimmune diseases. PTPN22 regulates Syk and Src family kinases downstream of immuno‐receptors. Fungal β‐glucan receptor dectin‐1 signals via Syk, and dectin‐1 stimulation induces arthritis in mouse models. We investigated whether PTPN22 regulates dectin‐1 dependent immune responses. Bone marrow derived dendritic cells (BMDCs) generated from C57BL/6 wild type (WT) and Ptpn22?/? mutant mice, were pulsed with OVA323‐339 and the dectin‐1 agonist curdlan and co‐cultured in vitro with OT‐II T‐cells or adoptively transferred into OT‐II mice, and T‐cell responses were determined by immunoassay. Dectin‐1 activated Ptpn22?/? BMDCs enhanced T‐cell secretion of IL‐17 in vitro and in vivo in an IL‐1β dependent manner. Immunoblotting revealed that compared to WT, dectin‐1 activated Ptpn22?/? BMDCs displayed enhanced Syk and Erk phosphorylation. Dectin‐1 activation of BMDCs expressing Ptpn22R619W (the mouse orthologue of human PTPN22R620W) also resulted in increased IL‐1β secretion and T‐cell dependent IL‐17 responses, indicating that in the context of dectin‐1 Ptpn22R619W operates as a loss‐of‐function variant. These findings highlight PTPN22 as a novel regulator of dectin‐1 signals, providing a link between genetically conferred perturbations of innate receptor signaling and the risk of autoimmune disease.  相似文献   

19.
In conventional mice, the T cell receptor (TCR)αβ+ CD8αα+ and CD8αβ+ subsets of the intestinal intraepithelial lymphocytes (IEL) constitute two subpopulations. Each comprise a few hundred clones expressing apparently random receptor repertoires which are different in individual genetically identical mice (Regnault, A., Cumano, A., Vassalli, P., Guy-Grand, D. and Kourilsky, P., J. Exp. Med. 1994. 180: 1345). We analyzed the repertoire diversity of sorted CD8αα and CD8αβ+ IEL populations from the small intestine of individual germ-free mice that contain ten times less TCRαβ+ T cells than conventional mice. The TCRβ repertoire of the CD8αα and the CD8αβ IEL populations of germ-free adult mice shows the same degree of oligoclonality as that of conventional mice. These results show that the intestinal microflora is not responsible for the repertoire oligoclonality of TCRαβ+ IEL. The presence of the microflora leads to an expansion of clones which arise independently of bacteria. To evaluate the degree of expansion of IEL clones in conventional mice, we went on to measure their clone sizes in vivo by quantitative PCR in the total and in adjacent sections of the small intestine of adult animals. We found that both the CD8αα and the CD8αβ TCRαβ IEL clones have a heterogeneous size pattern, with clones containing from 3 × 103 cells up to 1.2 × 106 cells, the clones being qualitatively and quantitatively different in individual mice. Cells from a given IEL clone are not evenly distributed throughout the length of the small intestine. The observation that the TCRαβ IEL populations comprise a few hundred clones of very heterogeneous size and distribution suggests that they arise from a limited number of precursors, which may be slowly but continuously renewed, and undergo extensive clonal expansion in the epithelium.  相似文献   

20.
Studies show that the Th17/IL ‐17A axis plays an important role in the pathogenesis of kidney diseases. Previously, we also showed that IL ‐17A may play a role in the pathogenesis of primary nephrotic syndrome; however, the underlying mechanism(s) is unclear. The aim of this study was to explore the molecular mechanism of IL ‐17A‐inducing podocyte injury in vitro. In this study, the NLRP 3 inflammasome activation and the morphology of podocytes were detected by Western blot and immunofluorescence. The results showed that podocytes persistently expressed IL ‐17A receptor and that NLRP 3 inflammasome in these cells was activated upon exposure to IL ‐17A. Also, activity of caspase‐1 and secretion of IL ‐1β increased in the presence of IL ‐17A. In addition, IL ‐17A disrupted podocyte morphology by decreasing expression of podocin and increasing expression of desmin. Blockade of intracellular ROS or inhibition of caspase‐1 prevented activation of the NLRP 3 inflammasome, thereby restoring podocyte morphology. Taken together, the results suggest that IL ‐17A induces podocyte injury by activating the NLRP 3 inflammasome and IL ‐1β secretion and contributes to disruption of the kidney's filtration system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号