首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basophils are circulating granulocytes, best known as effector cells in allergic reactions. Recent studies in mice suggest that they might also participate in the suppression of chronic inflammation. The aim of this study was to assess the ability of purified human basophils to modulate monocyte responses upon IL‐33 and IgE triggering. Activation of human basophils with IL‐33 induced the production of IL‐4 and the release of histamine, and enhanced their IgE‐mediated activation. In addition, basophils triggered with IL‐33 and anti‐IgE significantly suppressed the LPS‐induced production of the proinflammatory cytokine TNF‐α and the upregulation of the costimulatory molecule CD80 by monocytes. These effects were mainly explained by the release of histamine, as they could be inhibited by the histamine receptor 2 antagonist ranitidine, with a smaller contribution of IL‐4. In contrast, basophil‐derived IL‐4 and histamine had opposing effects on the expression of the inhibitory Fc γ receptor IIb and the production of IL‐10 by monocytes. Our data show that basophils can influence monocyte activation and suggest a previously unrecognized role for human basophils in the modulation of monocyte‐mediated immune responses, through the balanced secretion of histamine and IL‐4.  相似文献   

2.
3.
We studied the factors that regulate IL‐23 receptor expression and IL‐17 production in human tuberculosis infection. Mycobacterium tuberculosis (M. tb)‐stimulated CD4+ T cells from tuberculosis patients secreted less IL‐17 than did CD4+ T cells from healthy tuberculin reactors (PPD+). M. tb‐cultured monocytes from tuberculosis patients and PPD+ donors expressed equal amounts of IL‐23p19 mRNA and protein, suggesting that reduced IL‐23 production is not responsible for decreased IL‐17 production by tuberculosis patients. Freshly isolated and M. tb‐stimulated CD4+ T cells from tuberculosis patients had reduced IL‐23 receptor and phosphorylated STAT3 (pSTAT3) expression, compared with cells from PPD+ donors. STAT3 siRNA reduced IL‐23 receptor expression and IL‐17 production by CD4+ T cells from PPD+ donors. Tuberculosis patients had increased numbers of PD‐1+ T cells compared with healthy PPD+ individuals. Anti‐PD‐1 antibody enhanced pSTAT3 and IL‐23R expression and IL‐17 production by M. tb‐cultured CD4+ T cells of tuberculosis patients. Anti‐tuberculosis therapy decreased PD‐1 expression, increased IL‐17 and IFN‐γ production and pSTAT3 and IL‐23R expression. These findings demonstrate that increased PD‐1 expression and decreased pSTAT3 expression reduce IL‐23 receptor expression and IL‐17 production by CD4+ T cells of tuberculosis patients.  相似文献   

4.
Interleukin‐23 (IL‐23) is a heterodimeric cytokine belonging to the IL‐6/IL‐12 family that plays a key role in several of autoimmune and inflammatory disorders. This family contains the 34 type I cytokine receptor chains and 27 ligands, which share structural and functional similarities, but on the other hand they display distinct roles in shaping Th cells responses. IL‐12 family cytokines have not only proinflammatory effects but they also promote inflammatory responses. IL‐23 is composed of the p40 subunit in common with IL‐12, and with a unique p19 subunit. IL‐23 binding to an IL‐23 receptor expressed on dendritic cells, macrophages and monocytes triggers the activation of Jak2 and Tyk2, which in turn phosphorylates STAT1, STAT3, STAT4 and STAT5 as well as induce formation of STAT3‐STAT4 heterodimers. IL‐23 is one of the essential factors required for the survival and/or expansion of Th17 cells, which produce IL‐17, IL‐17F, IL‐6 and TNF‐α. Th17 cells stimulated by the IL‐23 promote osteoclastogenesis through production of IL‐17, which induce receptor activator of NF‐kappa B ligand on mesenchymal cells. The IL‐23‐IL‐17 axis includes Th17 cells and plays a key role in the development of autoimmune arthritis.  相似文献   

5.
6.
7.
IL‐22 induces STAT3 phosphorylation and mediates psoriasis‐related gene expression. However, the signaling mechanism leading from pSTAT3 to the expression of these genes remains unclear. We focused on Bcl‐3, which is induced by STAT3 activation and mediates gene expression. In cultured human epidermal keratinocytes, IL‐22 increased Bcl‐3, which was translocated to the nucleus with p50 via STAT3 activation. The increases in CXCL8, S100As and human β‐defensin 2 mRNA expression caused by IL‐22 were abolished by siRNA against Bcl‐3. Although CCL20 expression was also augmented by IL‐22, the knockdown of Bcl‐3 increased its level. Moreover, the combination of IL‐22 and IL‐17A enhanced Bcl‐3 production, IL‐22‐induced gene expression, and the expression of other psoriasis‐related genes, including those encoding IL‐17C, IL‐19, and IL‐36γ. The expression of these genes (except for CCL20) was also suppressed by the knockdown of Bcl‐3. Bcl‐3 overexpression induced CXCL8 and HBD2 expression but not S100As expression. We also compared Bcl‐3 expression between psoriatic skin lesions and normal skin. Immunostaining revealed strong signals for Bcl‐3 and p50 in the nucleus of epidermal keratinocytes from psoriatic skin. The IL‐22‐STAT3‐Bcl‐3 pathway may be important in the pathogenesis of psoriasis.  相似文献   

8.
Basophils, a rare leukocyte population in peripheral circulation, are conventionally identified as CD45intCD49b+FcεRI+ cells. Here, we show that basophils from blood and several organs of naïve wild‐type mice express CD41, the α subunit of αIIbβ3 integrin. CD41 expression on basophils is upregulated after in vivo IL‐3 treatment and during infection with Nippostrongylus brasiliensis (Nb). Moreover, CD41 can be used as a reliable marker for basophils, circumventing technical difficulties associated with FcεRI for basophil identification in a Nb infection model. In vitro anti‐IgE cross‐linking and IL‐3 basophil stimulation showed that CD41 upregulation positively correlates with augmented surface expression of CD200R and increased production of IL‐4/IL‐13, indicating that CD41 is a basophil activation marker. Furthermore, we found that infection with Plasmodium yoelii 17X (Py17x) induced a profound basophilia and using Mcpt8DTR reporter mice as a basophil‐specific depletion model, we verified that CD41 can be used as a marker to track basophils in the steady state and during infection. During malarial infection, CD41 expression on basophils is negatively regulated by IFN‐γ and positively correlates with increased basophil IL‐4 production. In conclusion, we provide evidence that CD41 can be used as both an identification and activation marker for basophils during homeostasis and immune challenge.  相似文献   

9.
The Th17/IL‐17 pathway is implicated in the pathogenesis of periodontitis (PD), however the mechanisms are not fully understood. We investigated the mechanism by which the periodontal pathogens Porphyromonas gingivalis (Pg) and Aggregatibacter actinomycetemcomitans (Aa) promote a Th17/IL‐17 response in vitro, and studied IL‐17+ CD4+ T‐cell frequencies in gingival tissue and peripheral blood from patients with PD versus periodontally healthy controls. Addition of Pg or Aa to monocyte/CD4+ T‐cell co‐cultures promoted a Th17/IL‐17 response in vitro in a dose‐ and time‐dependent manner. Pg or Aa stimulation of monocytes resulted in increased CD40, CD54 and HLA‐DR expression, and enhanced TNF‐α, IL‐1β, IL‐6 and IL‐23 production. Mechanistically, IL‐17 production in Pg‐stimulated co‐cultures was partially dependent on IL‐1β, IL‐23 and TLR2/TLR4 signalling. Increased frequencies of IL‐17+ cells were observed in gingival tissue from patients with PD compared to healthy subjects. No differences were observed in IL‐17+ CD4+ T‐cell frequencies in peripheral blood. In vitro, Pg induced significantly higher IL‐17 production in anti‐CD3 mAb‐stimulated monocyte/CD4+ T‐cell co‐cultures from patients with PD compared to healthy controls. Our data suggest that periodontal pathogens can activate monocytes, resulting in increased IL‐17 production by human CD4+ T cells, a process that appears enhanced in patients with PD.  相似文献   

10.
CXCL4 regulates multiple facets of the immune response and is highly upregulated in various Th17‐associated rheumatic diseases. However, whether CXCL4 plays a direct role in the induction of IL‐17 production by human CD4+ T cells is currently unclear. Here, we demonstrated that CXCL4 induced human CD4+ T cells to secrete IL‐17 that co‐expressed IFN‐γ and IL‐22, and differentiated naïve CD4+ T cells to become Th17‐cytokine producing cells. In a co‐culture system of human CD4+ T cells with monocytes or myeloid dendritic cells, CXCL4 induced IL‐17 production upon triggering by superantigen. Moreover, when monocyte‐derived dendritic cells were differentiated in the presence of CXCL4, they orchestrated increased levels of IL‐17, IFN‐γ, and proliferation by CD4+ T cells. Furthermore, the CXCL4 levels in synovial fluid from psoriatic arthritis patients strongly correlated with IL‐17 and IL‐22 levels. A similar response to CXCL4 of enhanced IL‐17 production by CD4+ T cells was also observed in patients with psoriatic arthritis. Altogether, we demonstrate that CXCL4 boosts pro‐inflammatory cytokine production especially IL‐17 by human CD4+ T cells, either by acting directly or indirectly via myeloid antigen presenting cells, implicating a role for CXCL4 in PsA pathology.  相似文献   

11.
12.
Mucosal‐associated invariant T (MAIT) cells are characterized by an invariant TCRVα7.2 chain recognizing microbial vitamin B metabolites presented by the MHC‐Ib molecule MR1. They are mainly detectable in the CD8+ and CD8?CD4? “double negative” T‐cell compartments of mammals and exhibit both Th1‐ and Th17‐associated features. As MAIT cells show a tissue‐homing phenotype and operate at mucosal surfaces with myriads of pathogenic encounters, we wondered how IL‐15, a multifaceted cytokine being part of the intestinal mucosal barrier, impacts on their functions. We demonstrate that in the absence of TCR cross‐linking, human MAIT cells secrete IFN‐γ, increase perforin expression and switch on granzyme B production in response to IL‐15. As this mechanism was dependent on the presence of CD14+ cells and sensitive to IL‐18 blockade, we identified IL‐15 induced IL‐18 production by monocytes as an inflammatory, STAT5‐dependent feedback mechanism predominantly activating the MAIT‐cell population. IL‐15 equally affects TCR‐mediated MAIT‐cell functions since it dramatically amplifies bacteria‐induced IFN‐γ secretion, granzyme production, and cytolytic activity at early time points, an effect being most pronounced under suboptimal TCR stimulation conditions. Our data reveal a new quality of IL‐15 as player in an inflammatory cytokine network impacting on multiple MAIT‐cell functions.  相似文献   

13.
Basophils are known for their role in allergic inflammation, which makes them suitable targets in allergy diagnostics such as the basophil activation test (BAT) and the microfluidic immunoaffinity basophil activation test (miBAT). Beside their role in allergy, basophils have an immune modulatory role in both innate immunity and adaptive immunity. To accomplish this mission, basophils depend on the capability to migrate from blood to extravascular tissues, which includes interactions with endothelial cells, extracellular matrix and soluble mediators. Their receptor repertoire is well known, but less is known how these receptor–ligand interactions impact the degranulation process and the responsiveness to subsequent activation. As the consequences of these interactions are crucial to fully appreciate the role of basophils in immune modulation and to enable optimization of the miBAT, we explored how basophil activation status is regulated by cytokines and cross‐linking of adhesion molecules. The expression of adhesion molecules and activation markers on basophils from healthy blood donors was analysed by flow cytometry. Cross‐linking of CD203c, CD62L, CD11b and CD49d induced a significant upregulation of CD63 and CD203c. To mimic in vivo conditions, valid also for miBAT, CD62L and CD49d were cross‐linked followed by IgE‐dependent activation (anti‐IgE), which caused a reduced CD63 expression compared with anti‐IgE activation only. IL‐3 and IL‐33 priming caused increased CD63 expression after IgE‐independent activation (fMLP). Together, our data suggest that mechanisms operational both in the microfluidic chip and in vivo during basophil adhesion may impact basophil anaphylactic and piecemeal degranulation procedures and hence their immune regulatory function.  相似文献   

14.
15.
IL‐10‐producing B cells have a regulatory effect in various mouse models for immune‐mediated disorders via secretion of IL‐10, a potent immunoregulatory cytokine. However, currently, the signaling pathways that regulate IL‐10 production in B cells are not well understood. Here, we show that TLR signaling, but not BCR activation or CD40 ligation, induces potent production of IL‐10 in human B cells. We demonstrate that the activation of STAT3 and ERK is required for TLR‐induced IL‐10 production by B cells, since inhibition of STAT3 or ERK activation abrogates TLR‐induced IL‐10 production. We also uncover a novel function of the TLR‐MyD88‐STAT3 pathway in B cells, namely controlling IL‐10 production, in addition to the known role for this pathway in antibody production. Furthermore, IFN‐α, a member of the type I IFN family, differentially modulates TLR7/8‐ and TLR9‐activated STAT3 and ERK in B cells, which provides an explanation for our findings that IFN‐α enhances TLR7/8‐induced, but not TLR9‐induced IL‐10 production. These results yield insights into the mechanisms by which TLR signaling regulates IL‐10 production in B cells and how type I IFN modulates TLR‐mediated IL‐10 production by B cells, therefore providing potential targets to modulate the function of IL‐10‐producing B cells.  相似文献   

16.
17.
Interleukin (IL)‐36α, IL‐36β and IL‐36γ are expressed highly in skin and are involved in the pathogenesis of psoriasis, while the antagonists IL‐36Ra or IL‐38, another potential IL‐36 inhibitor, limit uncontrolled inflammation. The expression and role of IL‐36 cytokines in rheumatoid arthritis (RA) and Crohn's disease (CD) is currently debated. Here, we observed that during imiquimod‐induced mouse skin inflammation and in human psoriasis, expression of IL‐36α, γ and IL‐36Ra, but not IL‐36β and IL‐38 mRNA, was induced and correlated with IL‐1β and T helper type 17 (Th17) cytokines (IL‐17A, IL‐22, IL‐23, CCL20). In mice with collagen‐induced arthritis and in the synovium of patients with RA, IL‐36α, β, γ, IL‐36Ra and IL‐38 were all elevated and correlated with IL‐1β, CCL3, CCL4 and macrophage colony‐stimulating factor (M‐CSF), but not with Th17 cytokines. In the colon of mice with dextran sulphate sodium‐induced colitis and in patients with CD, only IL‐36α, γ and IL‐38 were induced at relatively low levels and correlated with IL‐1β and IL‐17A. We suggest that only a minor subgroup of patients with RA (17–29%) or CD (25%) had an elevated IL‐36 agonists/antagonists ratio, versus 93% of patients with psoriasis. By immunohistochemistry, IL‐36 cytokines were produced by various cell types in skin, synovium and colonic mucosa such as keratinocytes, CD68+ macrophages, dendritic/Langerhans cells and CD79α+ plasma cells. In primary cultures of monocytes or inflammatory macrophages (M1), IL‐36β and IL‐36Ra were produced constitutively, but IL‐36α, γ and IL‐38 were produced after lipopolysaccharide stimulation. These distinct expression profiles may help to explain why only subgroups of RA and CD patients have a potentially elevated IL‐36 agonists/antagonists ratio.  相似文献   

18.
Treg cells are critical for the prevention of autoimmune diseases and are thus prime candidates for cell‐based clinical therapy. However, human Treg cells are “plastic”, and are able to produce IL‐17 under inflammatory conditions. Here, we identify and characterize the human Treg subpopulation that can be induced to produce IL‐17 and identify its mechanisms. We confirm that a subpopulation of human Treg cells produces IL‐17 in vitro when activated in the presence of IL‐1β, but not IL‐6. “IL‐17 potential” is restricted to population III (CD4+CD25hiCD127loCD45RA?) Treg cells expressing the natural killer cell marker CD161. We show that these cells are functionally as suppressive and have similar phenotypic/molecular characteristics to other subpopulations of Treg cells and retain their suppressive function following IL‐17 induction. Importantly, we find that IL‐17 production is STAT3 dependent, with Treg cells from patients with STAT3 mutations unable to make IL‐17. Finally, we show that CD161+ population III Treg cells accumulate in inflamed joints of patients with inflammatory arthritis and are the predominant IL‐17‐producing Treg‐cell population at these sites. As IL‐17 production from this Treg‐cell subpopulation is not accompanied by a loss of regulatory function, in the context of cell therapy, exclusion of these cells from the cell product may not be necessary.  相似文献   

19.
Maintenance of T cells is determined by their survival capacity, which is regulated by Bcl‐2 proteins. Cytokines signalling through the common gamma chains such as IL‐2, IL‐7 and IL‐15 are important for T‐cell survival but how these cytokines determine the expression of Bcl‐2‐family proteins is not clear. We report signalling events of cytokines that regulate expression of two key Bcl‐2 proteins, pro‐apoptotic Bim and anti‐apoptotic Mcl‐1, in resting C57BL/6 mouse T cells. IL‐2, IL‐7 and IL‐15 inhibited apoptosis but paradoxically induced the expression of Bim, countered by concomitant induction of Mcl‐1. Bim induction by IL‐15 was found at the mRNA and protein levels and depended on both JAK/STAT and PI3K signals. A new STAT5‐binding site was identified in the Bim promoter, which was occupied by STAT5 upon IL‐15 stimulation. Although it also depended on JAK/STAT‐ and PI3K signalling, Mcl‐1 regulation was independent of Mcl‐1 mRNA levels and of regulation of protein stability, suggesting translational regulation. Concurrent CD3 signals inhibited some of the IL‐7 effect but not the IL‐15 effect on Bcl‐2 proteins. The data suggest that cytokines induce Bim and prime T cells for apoptosis, but also inhibit apoptosis by stabilising Mcl‐1. Later downregulation of short‐lived Mcl‐1 may induce efficient, Bim‐dependent apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号