首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The spectrins are a family of cytoskeletal-membrane proteins that have generated much interest in the past decade. In the present study, we utilized immunohistochemical, morphological, and electrophoretic techniques to assess the possible function(s) of spectrin in mammalian cardiac tissue during development. Antibodies generated against alpha-actinin and desmin were also employed to identify myofibrils and intermediate filaments in relation to changes in the distribution of spectrin. Spectrin is localized along the sarcolemma of pre-myofibrillar hamster cardiac myocytes (day 8, postcoitum) and remains associated with the cell membrane throughout development. The staining pattern is somewhat diffuse at first, but eventually the cell margin becomes clearly defined by day 13 postcoitum. A second, more profound change in the distribution of spectrin occurs during the newborn stage, when spectrin begins to appear in the sarcoplasm. It appears as regularly speced invaginations that are diffuse at first, eventually attaining a position around the Z-bands of adult muscle. The change in the distribution of spectrin coincides temporally with the appearance of T-tubules, which are sarcolmmal invaginations that reside at the Z-bands of adult heart. Thus, spectrin may act as a guidance mechanism for the proper postioning of T-tubules around the Z-discs of mammalian cardiac tissue. Although spectrin does not appear to interact directly with early myofibrils it may assist in the proper alignment of T-tubules and, in doing so, act to stabilize the entire contractile apparatus by enveloping it and attaching it to the sarcolemma.  相似文献   

2.
p0071 is a member of the armadillo gene family that is expressed in a wide variety of mammalian tissues and cell types with a prominent cell–cell contact association in epithelial cells. Here, we report the expression and localization patterns of p0071 in differentiating human skeletal muscle cells and in normal and diseased human skeletal muscle tissues. Northern blots revealed expression of p0071 mRNA in adult skeletal muscle tissue. RT-PCR analysis and Western blotting experiments identified two differentially spliced isoforms of p0071. The balance between these isoforms shifted during in vitro differentiation of isolated muscle cells from predominant expression of the short variant to a preponderance of the larger variant from day 6 onwards. Immunolocalization studies in mature skeletal muscle tissue revealed that p0071 is a constituent of myofibrils with a distinct localization at the level of sarcomeric N2-lines. During myofibrillogenesis, p0071 was not detected in non-striated nascent myofibrils, but became apparent shortly after the development of compact Z-discs in early myotubes. Furthermore, we studied the expression of p0071 in a wide variety of neuromuscular disorders by indirect immunofluorescence. Here, the myofibrillar staining of p0071 was preserved in all the disease entities included in our study. Our results provide the first evidence that a member of the armadillo multigene family is a constituent of the contractile apparatus in human skeletal muscle. The localization of p0071 at the level of I-bands and the timepoint of its integration into developing myofibrils suggest a possible role in the organization of thin filaments.  相似文献   

3.
Summary The expression and intracellular distribution patterns of muscle-specific proteins were studied during rabbit embryo development (7–13 dpc) using monoclonal antibodies against titin, myosin, tropomyosin and actin, as well as the intermediate filament proteins desmin, keratin and vimentin. From our panel, titin appeared to be the first muscle-specific protein to be exclusively expressed in the embryonic rabbit heart. Upon differentiation (myocyte and myotube formation), titin reorganizes from dot-like aggregates into a cross-striated pattern (in 9- to 30-somite embryos) via a transiently filamentous distribution. When the expression and organization of the other muscle proteins was studied in relation to titin, it became apparent that tropomyosin followed upon titin with respect to its exclusive expression in the heart anlagen and its organization into a striated pattern. Myosin and desmin were organized into cross-striated patterns after titin and tropomyosin, but this arrangement had not reached its final form in 13-dpc embryos. Actin, keratin and vimentin were distributed in cytoplasmic filaments in the embryonic stages we investigated. Since the first pulsations are already detected in 3-somite embryos, we conclude that the organization of titin, tropomyosin, myosin and desmin into a striated pattern does not seem to be essential for the initiation of muscle cell contraction in the heart anlagen. Furthermore, this study shows that, in comparison with studies on mouse, chick and rat, the sequence of expression of muscle-specific and intermediate filament proteins during cardiomyogenesis is species-dependent, and that their expression and organization varies in time in different regions of the developing heart.Abbreviations IFP intermediate filament proteins - PBS phosphate-buffered saline - FITC fluorescein isothiocyanate - TRITC tetramethylrhodamine isothiocyanate - TxRd texas red - dpc days post conception  相似文献   

4.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 ± 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 ± 1.4 nm, and intermediate filaments with mean diameters of 9.3 ± 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/μm2 at 6 days to 43 intermediate filaments/μm2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

5.
The efficient functioning of striated muscle is dependent upon the proper alignment and coordinated activities of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, the exact molecular mechanisms dictating their cooperation and contributions during muscle differentiation and maintenance remain unknown. Recently, the muscle specific RING finger (MURF) family members have established themselves as excellent candidates for linking myofibril components (including the giant, multi-functional protein, titin/connectin), with microtubules, intermediate filaments, and nuclear factors. MURF-1, the only family member expressed throughout development, has been implicated in several studies as an ubiquitin ligase that is upregulated in response to multiple stimuli during muscle atrophy. Cell culture studies suggest that MURF-1 specifically has a role in maintaining titin M-line integrity and yeast two-hybrid studies point toward its participation in muscle stress response pathways and gene expression. MURF-2 is developmentally down-regulated and is assembled at the M-line region of the sarcomere and with microtubules. Functionally, its expression is critical for maintenance of the sarcomeric M-line region, specific populations of stable microtubules, desmin and vimentin intermediate filaments, as well as for myoblast fusion and differentiation. A recent study also links MURF-2 to a titin kinase-based protein complex that is reportedly activated upon mechanical signaling. Finally, MURF-3 is developmentally upregulated, associates with microtubules, the sarcomeric M-line (this report) and Z-line, and is required for microtubule stability and myogenesis. Here, we focus on the biochemical and functional properties of this intriguing family of muscle proteins, and discuss how they may tie together titin-mediated myofibril signaling pathways (perhaps involving the titin kinase domain), biomechanical signaling, the muscle stress response, and gene expression.  相似文献   

6.
Summary The cocarcinogenic phorbol ester 13-tetradecanoyl-O-phorbol acetate selectively and reversibly inhibits the ongoing differentiation programme of chick muscle cells in culture. 13-tetradecanoyl-O-phorbol acetate promptly blocks spontaneous contractions in mature myotubes and induces them to retract, forming giant myosacs and concurrently stress fibre-like structures are assembled. Using indirect immunofluorescence to localise desmin, the muscle specific intermediate filament protein, it was shown that its distribution is longitudinally oriented in mature myotubes. In myosacs, desmin has a reticular pattern although not as linearly oriented as in control myotubes. Using gel electrophoresis of control and 13-tetradecanoyl-O-phorbol acetate treated cell extracts, three major protein bands were observed with molecular weight of 43, 50 and 55 kDa. They migrate as actin, desmin and vimentin, respectively. The 50 kDa and 55 kDa proteins were expressed more in 13-tetradecanoyl-O-phorbol acetate-treated cells. The 50 kDa band was confirmed as desmin by immunoblotting using anti-chicken desmin antibody. Two-dimensional gel electrophoresis analysis showed the appearance of more acidic isoforms of the 50 and 55 kDa proteins 13-tetradecanoyl-O-phorbol in acetate-treated cells. The 43 kDa protein was seen as three distinct isoforms in control cells and as only two isoforms in 13-tetradecanoyl-O-phorbol acetate-treated cells.  相似文献   

7.
8.
BACKGROUND: Myofibrillar myopathies, often referred to as desmin-related myopathies, are a heterogeneous group of inherited or sporadic distal-onset skeletal myopathies associated with cardiomyopathy. Among the myofibrillar proteins that characteristically accumulate within the muscle fibers of affected patients, the one found most consistently is desmin, a muscle-specific intermediate-filament protein responsible for the structural integrity of the myofibrils. Skeletal and cardiac myopathy develops in mice that lack desmin, suggesting that mutations in the desmin gene may be pathogenic. METHODS: We examined 22 patients from 8 families with dominantly inherited myofibrillar or desmin-related myopathy and 2 patients with sporadic disease and analyzed the desmin gene for mutations, using complementary DNA (cDNA) amplified from muscle-biopsy specimens and genomic DNA extracted from blood lymphocytes. Restriction-enzyme analysis was used to confirm the mutations. Expression vectors containing normal or mutant desmin cDNA were introduced into cultured cells to determine whether the mutant desmin formed intermediate filaments. RESULTS: Six missense mutations in the coding region of the desmin gene that cause the substitution of an amino acid were identified in 11 patients (10 members of 4 families and 1 patient with sporadic disease); a splicing defect that resulted in the deletion of exon 3 was identified in the other patient with sporadic disease. Mutations were clustered in the carboxy-terminal part of the rod domain, which is critical for filament assembly. In transfected cells, the mutant desmin was unable to form a filamentous network. Seven of the 12 patients with mutations in the desmin gene had cardiomyopathy. CONCLUSIONS: Mutations in the desmin gene affecting intermediate filaments cause a distinct myopathy that is often associated with cardiomyopathy and is termed "desmin myopathy." The mutant desmin interferes with the normal assembly of intermediate filaments, resulting in fragility of the myofibrils and severe dysfunction of skeletal and cardiac muscles.  相似文献   

9.
From the beginning of cardiac myofibrillogenesis in the chick embryo, developing myofibrils at the bottom of the inner myocardial cell layer facing the cardiac jelly are already aligned circumferentially in the direction of the heart tube. To elucidate the mechanism of this alignment, we investigated the temporal and spatial expression of fibronectin and its relationship to actin filaments before and during looping (4- to 13-somite stages) by using a confocal scanning laser microscope. Serial optical tomograms were obtained from whole-mounted heart tubes stained with fluorescein-conjugated antibody against cellular fibronectin and rhodamine-conjugated phalloidin. Before looping (4- to 7-somite stages), particulate and speckled fibronectin formed loose networks. At the onset of looping (8- to 9-somite stages), fine fibrils of fibronectin appeared. They became dense and were arranged circumferentially in the direction of the heart tube. They were aligned parallel with the thick actin bundles that appeared as an initial stage of developing myofibrils. During looping, (10- to 13-somite stages), fibronectin fibrils were fragmented and showed a speckled pattern, while the number of circumferentially aligned mature striated myofibrils increased. These observations suggest that the temporal arrangement of fibronectin fibrils at the beginning of looping plays a role in the circumferential alignment of developing myofibrils.  相似文献   

10.
Recent studies suggest that peptide growth factors play a functional role in cardiac muscle. To test whether embryonic cardiac muscle is a target for regulation by basic fibroblast growth factor and platelet-derived growth factor, we analyzed the effects of these peptides on the expression of the intermediate filaments desmin and vimentin at the subcellular level during development. Sodium dodecyl sulfate-gel electrophoresis, immunoblotting and fluorescence-activated cell sorting analysis were used to study the effect of basic fibroblast growth factor and platelet-derived growth factor on cultures of chick cardiomyocytes during development. Cytoplasmic and cytoskeletal concentrations of desmin and vimentin were dependent on the stage of embryonic development and on the type of growth factor added to the culture. The most significant finding was the increase in desmin expression in the cytoplasmic and cytoskeletal compartments after treatment with basic fibroblast growth factor (10 ng/ml) of chick heart cells at Hamburger and Hamilton stage 19. In more mature stages, basic fibroblast growth factor did not modify the levels of desmin expression. However, this factor led to a progressive deceleration in the rate of increase in vimentin expression. Platelet-derived growth factor increased vimentin expression in all stages studied, the greatest increases appearing in early stages of heart development. Our findings support the hypothesis that basic fibroblast growth factor plays a role in cardiomyocyte differentiation during the early stages of development, whereas platelet-derived growth factor has a dedifferentiating effect.  相似文献   

11.
Intermediate filaments in Sertoli cells have a well-defined pattern of distribution. They form a basally situated perinuclear network from which filaments extend peripherally to adhesion plaques at the plasma membrane and to sites of codistribution with other major elements of the cytoskeleton, particularly with microtubules. Although the general pattern of intermediate filament distribution is known, the molecular components involved with linking the filaments to organelles and attachment plaques in these cells have not been identified. One candidate for such a linking element is plectin. In this study we test for the presence of, and determine the distribution of, plectin in Sertoli cells of the rat testis. Fixed frozen sections and fixed epithelial fragments of rat testis were probed for plectin and vimentin using antibodies. Tissue was evaluated using standard fluorescence microscopy and confocal microscopy. Plectin in Sertoli cells was concentrated in a narrow zone surrounding the nucleus, and at focal sites, presumably desmosome-like plaques, at interfaces with adjacent cells. Plectin was also concentrated at sites where intermediate filament bundles project into specialized actin-filament containing plaques at sites of attachment to elongate spermatids. Plectin in Sertoli cells is concentrated at the nuclear surface and in junction plaques associated with the plasma membrane. The pattern of distribution is consistent with plectin being involved with linking intermediate filaments centrally (basally) to the nucleus and peripherally to intercellular attachment sites.  相似文献   

12.
Desmin, the main intermediate filament (IF) protein in skeletal and heart muscle cells, is of great importance as a part of the cytoskeleton. The IFs surround and interlink myofibrils, and connect the peripheral myofibrils with the sarcolemma. In myotendinous junctions and neuromuscular junctions of skeletal muscle fibres, desmin is enriched. In the heart, desmin is increased at intercalated discs, the attachment between cardiomyocytes, and it is the main component in Purkinje fibres of the conduction system. Desmin is the first muscle‐specific protein to appear during myogenesis. Nevertheless, lack of desmin, as shown from experiments with desmin knockout (K/O) mice, does not influence myogenesis or myofibrillogenesis. However, the desmin knock‐out mice postnatally develop a cardiomyopathy and a muscle dystrophy in highly used skeletal muscles. In other skeletal muscles the organization of myofibrils is remarkably unaffected. Thus, the main consequence of the lack of desmin is that the muscle fibres become more susceptible to damage. The loss of membrane integrity leads to a dystrophic process, with degeneration and fibrosis. In the heart cardiac failure develops, whereas in affected skeletal muscles regenerative attempts are seen. In humans, accumulations of desmin have been a hallmark for presumptive desmin myopathies. Recent investigations have shown that some families with such a myopathy have a defect in the gene coding for αB‐crystallin, whereas others have mutations in the desmin gene. Typical features of these patients are cardiac affections and muscle weakness. Thus, mutations in the desmin gene is pathogenic for a distinct type of muscle disorder.  相似文献   

13.
Desmin-related myopathies in mice and man.   总被引:23,自引:0,他引:23  
Desmin, the main intermediate filament (IF) protein in skeletal and heart muscle cells, is of great importance as a part of the cytoskeleton. The IFs surround and interlink myofibrils, and connect the peripheral myofibrils with the sarcolemma. In myotendinous junctions and neuromuscular junctions of skeletal muscle fibres, desmin is enriched. In the heart, desmin is increased at intercalated discs, the attachment between cardiomyocytes, and it is the main component in Purkinje fibres of the conduction system. Desmin is the first muscle-specific protein to appear during myogenesis. Nevertheless, lack of desmin, as shown from experiments with desmin knockout (K/O) mice, does not influence myogenesis or myofibrillogenesis. However, the desmin knock-out mice postnatally develop a cardiomyopathy and a muscle dystrophy in highly used skeletal muscles. In other skeletal muscles the organization of myofibrils is remarkably unaffected. Thus, the main consequence of the lack of desmin is that the muscle fibres become more susceptible to damage. The loss of membrane integrity leads to a dystrophic process, with degeneration and fibrosis. In the heart cardiac failure develops, whereas in affected skeletal muscles regenerative attempts are seen. In humans, accumulations of desmin have been a hallmark for presumptive desmin myopathies. Recent investigations have shown that some families with such a myopathy have a defect in the gene coding for alphaB-crystallin, whereas others have mutations in the desmin gene. Typical features of these patients are cardiac affections and muscle weakness. Thus, mutations in the desmin gene is pathogenic for a distinct type of muscle disorder.  相似文献   

14.
De novo cardiac myofibril assembly has been difficult to study due to the lack of available cell culture models that clearly and accurately reflect heart muscle development in vivo. However, within precardiac chick embryo explants, premyocardial cells differentiate and commence beating in a temporal pattern that corresponds closely with myocyte differentiation in the embryo. Immunofluorescence staining of explants followed by confocal microscopy revealed that distinct stages of cardiac myofibril assembly, ranging from the earliest detection of sarcomeric proteins to the late appearance of mature myofibrils, were consistently recognized in precardiac cultures. Assembly events involved in the early formation of sarcomeres were clearly visualized and accurately reflected observations described by others during chick heart muscle development. Specifically, the early colocalization of alpha-actinin and titin dots was observed near the cell periphery representing I-Z-I-like complex formation. Myosin-containing thick filaments assembled independently of actin-containing thin filaments and appeared centered within sarcomeres when titin was also linearly aligned at or near cell borders. An N-terminal epitope of titin was detected earlier than a C-terminal epitope; however, both epitopes were observed to alternate near the cell periphery concomitant with the earliest formation of myofibrils. Although vascular actin was detected within cells during early assembly stages, cardiac actin predominated as the major actin isoform in mature thin filaments. Well-aligned thin filaments were also observed in the absence of organized staining for tropomodulin at thin filament pointed ends, suggesting that tropomodulin is not required to define thin filament lengths. Based on these findings, we conclude that the use of the avian precardiac explant system accurately allows for direct investigation of the mechanisms regulating de novo cardiac myofibrillogenesis.  相似文献   

15.
The origin of significant differences between the apparent affinities of heart mitochondrial respiration for exogenous ADP in isolated mitochondria in vitro and in permeabilized cardiomyocytes or skinned fibres in situ is critically analysed. All experimental data demonstrate the importance of structural factors of intracellular arrangement of mitochondria into functional complexes with myofibrils and sarcoplasmic reticulum in oxidative muscle cells and the control of outer mitochondrial membrane permeability. It has been shown that the high apparent K(m) for exogenous ADP (250-350 mM) in permeabilized cells and in ghost cells (without myosin) and fibres (diameter 15-20 mm) is independent of intrinsic MgATPase activity. However, the K(m) may be decreased significantly by a selective proteolytic treatment, which also destroys the regular arrangement of mitochondria between sarcomeres and increases the accessibility of endogenous ADP to the exogenous pyruvate kinase-phosphoenolpyruvate system. The confocal microscopy was used to study the changes in intracellular distribution of mitochondria and localization of cytoskeletal proteins, such as desmin, tubulin and plectin in permeabilized cardiac cells during short proteolytic treatment. The results show the rapid collapse of microtubular and plectin networks but not of desmin localization under these conditions. These results point to the participation of cytoskeletal proteins in the intracellular organization and control of mitochondrial function in the cells in vivo, where mitochondria are incorporated into functional complexes with sarcomeres and sarcoplasmic reticulum.  相似文献   

16.
Cytokeratin expression in smooth muscle and smooth muscle tumours   总被引:9,自引:0,他引:9  
The expression of cytokeratin intermediate filaments by a tumour has been accepted as evidence of an epithelial origin. Although there have been anecdotal reports of cytokeratin expression within tissues and neoplasms of non-epithelial origin, particularly muscle, there have been no comprehensive studies of its frequency and distribution. In order to investigate this we have studied 51 cases of normal smooth muscle and benign and malignant smooth muscle tumours using a panel of monoclonal antibodies against a range of intermediate filaments (cytokeratins, desmin and vimentin). Cytokeratin expression was noted overall in 50% of normal, benign and malignant smooth muscle tissues. Such expression tended to have a focal or patchy distribution. No case expressed cytokeratins in the absence of both desmin and vimentin. The implication of these findings for diagnostic immunocytochemistry is that intermediate filaments alone are not completely reliable markers of tumour histogenesis and should be used as part of a larger panel of monoclonal antibodies.  相似文献   

17.
Summary Unusual histological and ultrastructural changes in cardiac muscle cells have been found in 3 brothers with progressive myocardial deficiency. Histologically, this cardiomyopathy was characterized by massive storage of PAS-negative proteinaceous material in most cardiac muscle cells. The electron microscope showed that this material consisted of sinuous filaments, 7–10 nm in diameter, similar to the intermediate filaments normally present in cardiac muscle cells. Filament storage coincided with the disintegration of neighbouring myofibrils, with particular change in Z bands giving rise to rod-like bodies and more complex structures formed by the association of Z band material and sarcoplasmic reticulum (SR) tubules. Filament storage and myofibrillar disintegration always occurred in areas where the SR developed and involuted extensively. Relatively high glycogen accumulation also occurred, in close relation to the SR changes. Discrete SR proliferation, glycogen overload and filament deposits were observed in a few skeletal fibres.These observations suggest that disturbance in the metabolism of desmin (protein subunit of intermediate filaments and a fundamental component of Z bands) might be involved in this type of cardiomyopathy. The influence of a chronic defect in calcium regulation might also be envisaged in view of the marked SR abnormalities.  相似文献   

18.
The intermediate filament proteins nestin, vimentin, and desmin show a specific temporal expression pattern during the development of myofibers from myogenic precursor cells. Nestin and vimentin are actively expressed during early developmental stages to be later down-regulated, vimentin completely and nestin to minimal levels, whereas desmin expression begins later and is maintained in mature myofibers, in which desmin participates in maintaining structural integrity. In this study we have analyzed the expression levels and distribution pattern of nestin in intact and denervated muscle in rat and in human. Nestin immunoreactivity was specifically and focally localized in the sarcoplasm underneath neuromuscular junctions (NMJs) and in the vicinity of the myotendinous junctions (MTJs), ie, in regions associated with acetylcholine receptors (AChRs). This association prompted us to analyze nestin in neurogenically and myogenically denervated muscle. Immunoblot analysis disclosed a marked overall increase of accumulated nestin protein. Similar to the extrajunctional redistribution of AChRs in denervated myofibers, nestin immunoreactivity extended widely beyond the NMJ region. Re-innervation caused complete reversion of these changes. Our study demonstrates that the expression levels and distribution pattern of nestin are regulated by innervation, ie, signal transduction into myofibers.  相似文献   

19.
To investigate the in vitro development of myofibrils in skeletal muscle cells derived from adult human muscle biopsies, immunohistochemical analysis was performed using monoclonal antibodies against desmin, titin, and nebulin. Diffuse desmin reactivity was detected 48 h after plating in about 60% of all mononucleated cells. This supports the use of desmin as a marker for undifferentiated rhabdomyosarcomas in man. Titin was visible from day 4 onwards, while nebulin was not found in mononucleated cells. After 1 week polynucleated myotubes appeared, and grew up to 30 days. Desmin was distributed diffusely throughout the cytoplasm until day 21, when the pattern became patchy. Titin began to be organized in a predominantly longitudinal orientation at day 15, while nebulin, which appeared for the first time in fusing myoblasts on the fifth to the seventh day, was almost immediately organized in a dotted longitudinal pattern, which became a Z line connected striation in matured myotubes.Abbreviations FCS fetal calf serum - mAb monoclonal antibody - TBS Tris-buffered saline Correspondence to: T. Behr  相似文献   

20.
In order to investigate whether rhabdomyosarcoma (RMS) can be related to equivalent stages of skeletal muscle development, muscle tissue of 21 human foetuses and 112 primary RMSs were characterized immunohistochemically using antibodies directed against vimentin, desmin, muscle-specific actin (HHF35), sarcomeric actin (sr-actin), smooth muscle actin (sm-actin), and troponin-T. During fetal skeletal muscle development, all myotubes/fibres of the first and second generations expressed desmin, HHF35, and sr-actin. Vimentin was almost exclusively present in immature primary and secondary myotubes/fibres. Troponin-T was expressed in immature myotubes/fibres of the first and second generations as well as mature fibres of the second generation. Sm-actin was never expressed. Vimentin was expressed in 96 per cent of primary and 98 per cent of relapsed RMS; HHF35 in 96 and 98 per cent, respectively; desmin in 95 and 100 per cent; troponin-T in 82 and 75 per cent; sr-actin in 71 and 86 per cent; and sm-actin in 13 and 17 per cent. The proportion of RMS cells reacting with vimentin, HHF35, and desmin was consistently higher than those expressing sr-actin and troponin-T. Neither the shape nor size of neoplastic RMS cells nor the histopathological types were related to the expression pattern of the investigated markers. RMS with aberrant expression of two or more markers predicted a worse prognosis than RMS in which at most one marker was aberrantly expressed (25 per cent and 54 per cent 10-year survival, P=0·01). These results demonstrate that HHF35, desmin, sr-actin, and troponin-T have the potential to confirm the commitment of the tumours to the myogenic pathway which supports the diagnosis of RMS. However, it was impossible to relate RMS to equivalent stages of skeletal muscle development. Aberrant marker expression by RMS cells correlated significantly with patients' survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号