首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oh SH  Park IK  Kim JM  Lee JH 《Biomaterials》2007,28(9):1664-1671
Polycaprolactone (PCL) cylindrical scaffolds with gradually increasing pore size along the longitudinal direction were fabricated by a novel centrifugation method to investigate pore size effect on cell and tissue interactions. The scaffold was fabricated by the centrifugation of a cylindrical mold containing fibril-like PCL and the following fibril bonding by heat treatment. The scaffold showed gradually increasing pore size (from approximately 88 to approximately 405 microm) and porosity (from approximately 80% to approximately 94%) along the cylindrical axis by applying the centrifugal speed, 3000 rpm. The scaffold sections were examined for their in vitro cell interactions using different kinds of cells (chondrocytes, osteoblasts, and fibroblasts) and in vivo tissue interactions using a rabbit model (skull bone defects) in terms of scaffold pore sizes. It was observed that different kinds of cells and bone tissue were shown to have different pore size ranges in the scaffold for effective cell growth and tissue regeneration. The scaffold section with 380-405 microm pore size showed better cell growth for chondrocytes and osteoblasts, while the scaffold section with 186-200 microm pore size was better for fibroblasts growth. Also the scaffold section with 290-310 microm pore size showed faster new bone formation than those of other pore sizes. The pore size gradient scaffolds fabricated by the centrifugation method can be a good tool for the systematic studies of the interactions between cells or tissues and scaffolds with different pore size.  相似文献   

2.
Electrospun polymer/apatite composite scaffolds are promising candidates as functional bone substitutes because of their ability to allow pre-osteoblast attachment, proliferation, and differentiation. However these structures usually lack an adequate pore size to permit sufficient cell migration and colonization of the scaffold. To overcome this limitation, we developed an apatite-coated electrospun PLLA scaffold with varying pore size and porosity by utilizing a three-step water-soluble PEO fiber inclusion, dissolution, and mineralization process. The temporal and spatial dynamics of cell migration into the scaffolds were quantified to determine the effects of enhanced pore size and porosity on cell infiltration. MC3T3-E1 pre-osteoblast migration into the scaffolds was found to be a function of both initial PEO content and time. Scaffolds with greater initial PEO content (50% and 75% PEO) had drastically accelerated cell infiltration in addition to enhanced cell distribution throughout the scaffold when compared to scaffolds with lower PEO content (0% and 25% PEO). Furthermore, scaffolds with an apatite substrate significantly upregulated MC3T3-E1 alkaline phosphatase activity, osteocalcin content, and cell-mediated mineralization as compared to PLLA alone. These findings suggest that such a scaffold enhances pre-osteoblast infiltration, colonization, and maturation in vitro and may lead to overall improved bone formation when implanted in vivo.  相似文献   

3.
Optimising bioactive glass scaffolds for bone tissue engineering   总被引:13,自引:0,他引:13  
A 3D scaffold has been developed that has the potential to fulfil the criteria for an ideal scaffold for bone tissue engineering. Sol-gel derived bioactive glasses of the 70S30C (70 mol% SiO2, 30 mol% CaO) composition have been foamed to produce 3D bioactive scaffolds with hierarchical interconnected pore morphologies similar to trabecular bone. The scaffolds consist of a hierarchical pore network with macropores in excess of 500 microm connected by pore windows with diameters in excess of 100 microm, which is thought to be the minimum pore diameter required for tissue ingrowth and vasularisation in the human body. The scaffolds also have textural porosity in the mesopore range (10-20 nm). The scaffolds were sintered at 600, 700, 800 and 1000 degrees C. As sintering temperature was increased to 800 degrees C the compressive strength increased from 0.34 to 2.26 MPa due to a thickening of the pore walls and a reduction in the textural porosity. The compressive strength is in the range of that of trabecular bone (2-12 MPa). Importantly, the modal interconnected pore diameter (98 microm) was still suitable for tissue engineering applications and bioactivity is maintained. Bioactive glass foam scaffolds sintered at 800 degrees C for 2 h fulfill the criteria for an ideal scaffold for tissue engineering applications.  相似文献   

4.
There is a clinical need for synthetic scaffolds that promote bone regeneration. A common problem encountered when using scaffolds in tissue engineering is the rapid formation of tissue on the outer edge of the scaffold whilst the tissue in the centre becomes necrotic. To address this, the scaffold design should improve nutrient and cell transfer to the scaffold centre. In this study, hydroxyapatite scaffolds with random, open porosity (average pore size of 282+/-11microm, average interconnecting window size of 72+/-4microm) were manufactured using a modified slip-casting methodology with a single aligned channel inserted into the centre. By varying the aligned channel diameter, a series of scaffolds with channel diameters ranging from 170 to 421microm were produced. These scaffolds were seeded with human osteosarcoma (HOS TE85) cells and cultured for 8 days. Analysis of cell penetration into the aligned channels revealed that cell coverage increased with increasing channel diameter; from 22+/-3% in the 170microm diameter channel to 38+/-6% coverage in the 421microm channel. Cell penetration into the middle section of the 421microm diameter channel (average cell area coverage 121x10(3)+/-32x10(3)microm(2)) was significantly greater than that observed within the 170microm channel (average cell area coverage 26x10(3)+/-6x10(3)microm(2)). In addition, the data presented demonstrates that the minimum channel (or pore) diameter required for cell penetration into such scaffolds is approximately 80microm. These results will direct the development of scaffolds with aligned macroarchitecture for tissue engineering bone.  相似文献   

5.
Porosity of 3D biomaterial scaffolds and osteogenesis   总被引:67,自引:0,他引:67  
Karageorgiou V  Kaplan D 《Biomaterials》2005,26(27):5474-5491
Porosity and pore size of biomaterial scaffolds play a critical role in bone formation in vitro and in vivo. This review explores the state of knowledge regarding the relationship between porosity and pore size of biomaterials used for bone regeneration. The effect of these morphological features on osteogenesis in vitro and in vivo, as well as relationships to mechanical properties of the scaffolds, are addressed. In vitro, lower porosity stimulates osteogenesis by suppressing cell proliferation and forcing cell aggregation. In contrast, in vivo, higher porosity and pore size result in greater bone ingrowth, a conclusion that is supported by the absence of reports that show enhanced osteogenic outcomes for scaffolds with low void volumes. However, this trend results in diminished mechanical properties, thereby setting an upper functional limit for pore size and porosity. Thus, a balance must be reached depending on the repair, rate of remodeling and rate of degradation of the scaffold material. Based on early studies, the minimum requirement for pore size is considered to be approximately 100 microm due to cell size, migration requirements and transport. However, pore sizes >300 microm are recommended, due to enhanced new bone formation and the formation of capillaries. Because of vascularization, pore size has been shown to affect the progression of osteogenesis. Small pores favored hypoxic conditions and induced osteochondral formation before osteogenesis, while large pores, that are well-vascularized, lead to direct osteogenesis (without preceding cartilage formation). Gradients in pore sizes are recommended for future studies focused on the formation of multiple tissues and tissue interfaces. New fabrication techniques, such as solid-free form fabrication, can potentially be used to generate scaffolds with morphological and mechanical properties more selectively designed to meet the specificity of bone-repair needs.  相似文献   

6.
In scaffold based bone tissue engineering, both the pore size and the mechanical properties of the scaffold are of great importance. However, an increase in pore size is generally accompanied by a decrease in mechanical properties. In order to achieve both suitable mechanical properties and porosity, a multilayer scaffold is designed to mimic the structure of cancellous bone and cortical bone. A porous nano-hydroxyapatite-chitosan composite scaffold with a multilayer structure is fabricated and encased in a smooth compact chitosan membrane layer to prevent fibrous tissue ingrowth. The exterior tube is shown to have a small pore size (15-40 microm in diameter) for the enhancement of mechanical properties, while the core of the multilayer scaffold has a large pore size (predominantly 70-150 microm in diameter) for nutrition supply and bone formation. Compared with the uniform porous scaffold, the multilayer scaffold with the same size shows an enhanced mechanical strength and larger pore size in the center. More cells are shown to grow into the center of the multilayer scaffold in vitro than into the uniform porous scaffold under the same seeding condition. Finally, the scaffolds are implanted into a rabbit fibula defect to evaluate the osteoconductivity of the scaffold and the efficacy of the scaffold as a barrier to fibrous tissue ingrowth. At 12 weeks post operation, affluent blood vessels and bone formation are found in the center of the scaffold and little fibrous tissue is noted in the defect site.  相似文献   

7.
We have successfully synthesized hydroxyapatite fibers via a homogenous precipitation method. Using these hydroxyapatite fibers, we have produced the apatite fiber scaffolds (AFS) with well-controlled pore sizes (porosity above 95%). The AFS is relatively simple to synthesize, and its porosity and pore size are controllable. The usefulness of AFS as a scaffold for bone regeneration was evaluated by (1) seeding and culturing cells in the AFS in vitro, (2) implanting the AFS seeded with cells inside the subcutaneous tissue of mice. The AFS had biocompatibility to support cell adhesion, proliferation, and differentiation. Ectopic bone formation could be formed in the AFS at 12 weeks after implantation into the subcutaneous tissue. Because of its high interpore connection, pore diameters, and porosity, it was believed that AFS was an effective scaffold that provided a three-dimensional cell culture environment. In both in vitro and in vivo environments, the more porous AFS was more advantageous in cell proliferation, cell adhesion, proliferating capacity, robust cell differentiation, ultimately inducing bone ingrowth inside the scaffolds.  相似文献   

8.
There is a clinical need for synthetic scaffolds that will promote bone regeneration. Important factors include obtaining an optimal porosity and size of interconnecting windows whilst maintaining scaffold mechanical strength, enabling complete penetration of cells and nutrients throughout the scaffold, preventing the formation of necrotic tissue in the centre of the scaffold. To address this we investigated varying slip deflocculation in order to control the resulting porosity, pore size and interconnecting window size whilst maintaining mechanical strength. Hydroxyapatite (HA) porous ceramics were prepared using a modified slip casting process. Rheological measurements of the HA slips were used to identify deflocculation conditions which resulted in changes in the cell and window sizes of the resulting ceramics. Sintered ceramics were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Pore and window size distribution was determined by SEM. XRD analysis confirmed that the crystal structure remained HA after the sintering process. SEM showed that HA porous ceramics presented a highly interconnected porous network with average pore sizes ranging from 391+/-39 to 495+/-25 microm. The average window size varied from 73+/-5 to 135+/-7 microm. Pore diameters obtained were controllable in the range 200-500 microm. Window sizes were in the range 30-250 microm. The use of dispersant concentration allows pore and window size to be modified whilst maintaining control over porosity demonstrated by a porosity of 85% for seven different dispersant concentrations. The advantage of this approach allows the correlation between the rheological conditions of the slip and the resultant sintered ceramic properties. In particular, optimising the ceramic strength by controlling the agglomeration during the casting process.  相似文献   

9.
PLLA, PLA-PEG and PLGA porous scaffolds with pore size ranging from 100 to 250 microm and porosity over 85% were fabricated by a solution-casting/salt-leaching method. The porous structure and porosity of the scaffold were mainly dependent on volume fraction and size of the porogens of NaCl particles. The effects of the polymeric materials on the cell culture behavior and bone formation in vitro in their scaffolds were studied. In vitro cell culture in the scaffolds of the three polymers demonstrated that mesenchymal stem cells (MSCs) had a good adhesion and spread. The composite matrixes cultured for several days possessed preliminary functions of tissue-engineering bone, with signs of the calcium knur formation and the expression of osteocalcin and collagen I in mRNA, especially that of PLA-PEG and PLGA. These cell-loaded porous scaffolds showed effective repair of mandibular defect of rabbits in vivo. Contrastive experiments demonstrated that the MSCs/PLGA scaffold owned better ability facilitating for the MSCs proliferation, differentiation and defect repair. These composite scaffolds can be a potential effective tool for treating mandibular and other bone defects.  相似文献   

10.
This study analyzed the in vivo performance of composite degradable bone repair products fabricated using the TheriForm process, a solid freeform fabrication (SFF) technique, in a rabbit calvarial defect model at 8 weeks. Scaffolds were composed of polylactic-co-glycolic acid (PLGA) polymer with 20% w/w beta-tricalcium phosphate (beta-TCP) ceramic with engineered macroscopic channels, a controlled porosity gradient, and a controlled pore size for promotion of new bone ingrowth. Scaffolds with engineered macroscopic channels and a porosity gradient had higher percentages of new bone area compared to scaffolds without engineered channels. These scaffolds also had higher percentages of new bone area compared to unfilled control defects, suggesting that scaffold material and design combinations could be tailored to facilitate filling of bony defects. This proof-of-concept study demonstrated that channel size, porosity, and pore size can be controlled and used to influence new bone formation and calvarial defect healing.  相似文献   

11.
This paper describes the first attempt in fabrication of three-dimensional macroporous composites of chitosan and natural coralline material with pore sizes of 300-400 microm, exceeding the upper pore size limit of 250 microm obtained with freeze-dried chitosan-based scaffolds. Natural coral particulates of less than 20 microm, which is mainly composed of calcium carbonate (CaCO3), was simultaneously used as reinforcing phase and gas-forming agent to obtain a structure with large pores and improved mechanical and biological properties. The reaction between the coralline material and the acidic chitosan polymer solvent, which produced carbon dioxide, was rapidly stopped by the subsequent thermally induced phase separation technique, leaving coralline particulates in the polymeric structure. Scaffolds containing five different proportions of coralline material (0, 25, 50, 75, and 100 wt%) were investigated. The coralline-chitosan weight ratio was studied for its effects on the physical properties of the scaffolds. The relation between scaffold microarchitecture and mechanical properties was assessed with scanning electron microscope (SEM), along with micro-CT imaging and compression testing. The scaffolds were used in bone marrow cell culturing experiments to assess the effect of composition on cell behavior through cell-material interaction and morphological observation by SEM. Higher coralline concentration increased the pore wall thickness and favored large pore formation. Varying the coralline particulate to chitosan polymer ratio from 0 to 75 wt% increased the average pore size from 80 microm to 400 microm while the porosity decreased from 91% to 78%. The compressive modulus was improved proportionally with the coralline content, and the 75 wt% composites had a significantly higher modulus than other chitosan-based scaffold groups. More cells were observed on scaffolds with higher coralline content. The cell culture experiments indicated that the scaffolds containing coralline material might have a high cell affinity, since it allowed fast cell attachment and spreading.  相似文献   

12.
Photo-patterning of porous hydrogels for tissue engineering   总被引:4,自引:0,他引:4  
Bryant SJ  Cuy JL  Hauch KD  Ratner BD 《Biomaterials》2007,28(19):2978-2986
Since pore size and geometry strongly impact cell behavior and in vivo reaction, the ability to create scaffolds with a wide range of pore geometries that can be tailored to suit a particular cell type addresses a key need in tissue engineering. In this contribution, we describe a novel and simple technique to design porous, degradable poly(2-hydroxyethyl methacrylate) hydrogel scaffolds with well-defined architectures using a unique photolithography process and optimized polymer chemistry. A sphere-template was used to produce a highly uniform, monodisperse porous structure. To create a patterned and porous hydrogel scaffold, a photomask and initiating light were employed. Open, vertical channels ranging in size from 360+/-25 to 730+/-70 microm were patterned into approximately 700 microm thick hydrogels with pore diameters of 62+/-8 or 147+/-15 microm. Collagen type I was immobilized onto the scaffolds to facilitate cell adhesion. To assess the potential of these novel scaffolds for tissue engineering, a skeletal myoblast cell line (C2C12) was seeded onto scaffolds with 147 microm pores and 730 microm diameter channels, and analyzed by histology and digital volumetric imaging. Cell elongation, cell spreading and fibrillar formation were observed on these novel scaffolds. In summary, 3D architectures can be patterned into porous hydrogels in one step to create a wide range of tissue engineering scaffolds that may be tailored for specific applications.  相似文献   

13.
Tan H  Wu J  Lao L  Gao C 《Acta biomaterialia》2009,5(1):328-337
Poly(lactide-co-glycotide) (PLGA) microspheres integrated into gelatin/chitosan/hyaluronan scaffolds were fabricated by freeze-drying and crosslinking with 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. The effects of the microspheres on porosity, density, compressive modulus, phosphate-buffered saline uptake ratio and weight loss of the scaffolds were evaluated. Generally, a scaffold with a higher PLGA content had a lower porosity and weight loss, and a medium uptake ratio, but a larger apparent density and compressive modulus. When the PLGA content was lower than 50%, the PLGA-integrated scaffolds had a similar pore size (approximately 200microm) as that of the control, and as much as 90% of their porosity could be preserved. In vitro chondrocyte culture in the 50% PLGA-integrated scaffold demonstrated that the cells could proliferate and secrete extracellular matrix at the same level as in the control gelatin/chitosan/hyaluronan scaffold.  相似文献   

14.
Three-dimensional macroporous calcium phosphate bioceramics embedded with porous chitosan sponges were synthesized to produce composite scaffolds with high mechanical strength and a large surface/volume ratio for load-bearing bone repairing and substitutes. The macroporous calcium phosphate bioceramics with pore diameters of 300 microm to 600 microm were developed using a porogen burnout technique, and the chitosan sponges were formed inside the pores of the bioceramics by first introducing chiosan solution into the pores followed by a freeze-drying process. Our scanning electron microscopy results showed that the pore size of chitosan sponges formed inside the macroporous structure of bioceramics was approximately 100 microm, a structure favorable for bone tissue in-growth. The compressive modulus and yield stress of the composite scaffolds were both greatly improved in comparison with that of HA/beta-TCP scaffolds. The simulated body fluid (SBF) and cell culture experiments were conducted to assess the bioactivity and biocompatibility of the scaffolds. In the SBF tests, a layer of randomly oriented needle-like apatite crystals formed on the scaffold surface after sample immersion in SBF, which suggested that the composite material has good bioactivity. The cell culture experiments showed that MG63 osteoblast cells attached to the composite scaffolds, proliferated on the scaffold surface, and migrated onto the pore walls, indicating good cell biocompatibility of the scaffold. The cell differentiation on the composite scaffolds was evaluated by alkaline phosphatase (ALP) assay. Compared with the control in tissue culture dishes, the cells had almost the same ALP activity on the composite scaffolds during the first 11 days of culture.  相似文献   

15.
The increasing demand for bone grafts, combined with their limited availability and potential risks, has led to much new research in bone tissue engineering. Current strategies of bone tissue engineering commonly use cell-seeded scaffolds and flow perfusion bioreactors to stimulate the cells to produce bone tissue suitable for implantation into the patient's body. The aim of this study was to quantify and compare the wall shear stresses in two bone tissue engineering scaffold types (collagen-glycosaminoglycan (CG) and calcium phosphate) exposed to fluid flow in a perfusion bioreactor. Based on micro-computed tomography images, three-dimensional numerical computational fluid dynamics (CFD) models of the two scaffold types were developed to calculate the wall shear stresses within the scaffolds. For a given flow rate (normalized according to the cross-sectional area of the scaffolds), shear stress was 2.8 times as high in the CG as in the calcium-phosphate scaffold. This is due to the differences in scaffold geometry, particularly the pore size (CG pore size approximately 96 microm, calcium phosphate pore size approximately 350 microm). The numerically obtained results were compared with those from an analytical method that researchers use widely experimentalists to determine perfusion flow rates in bioreactors. Our CFD simulations revealed that the cells in both scaffold types were exposed to a wide range of wall shear stresses throughout the scaffolds and that the analytical method predicted shear stresses 12% to 21% greater than those predicted using the CFD method. This study demonstrated that the wall shear stresses in calcium phosphate scaffolds (745.2 mPa) are approximately 40 times as high as in CG scaffolds (19.4 mPa) when flow rates are applied that have been experimentally used to stimulate the release of prostaglandin E(2). These findings indicate the importance of using accurate computational models to estimate shear stress and determine experimental conditions in perfusion bioreactors for tissue engineering.  相似文献   

16.
Precise control over scaffold material, porosity, and internal pore architecture is essential for tissue engineering. By coupling solid free form (SFF) manufacturing with conventional sponge scaffold fabrication procedures, we have developed methods for casting scaffolds that contain designed and controlled locally porous and globally porous internal architectures. These methods are compatible with numerous bioresorbable and non-resorbable polymers, ceramics, and biologic materials. Phase separation, emulsion-solvent diffusion, and porogen leaching were used to create poly(L)lactide (PLA) scaffolds containing both computationally designed global pores (500, 600, or 800 microm wide channels) and solvent fashioned local pores (50-100 microm wide voids or 5-10 microm length plates). Globally porous PLA and polyglycolide/PLA discrete composites were made using melt processing. Biphasic scaffolds with mechanically interdigitated PLA and sintered hydroxyapatite regions were fabricated with 500 and 600 microm wide global pores. PLA scaffolds with complex internal architectures that mimicked human trabecular bone were produced. Our indirect fabrication using casting in SFF molds provided enhanced control over scaffold shape, material, porosity and pore architecture, including size, geometry, orientation, branching, and interconnectivity. These scaffolds that contain concurrent local and global pores, discrete material regions, and biomimetic internal architectures may prove valuable for multi-tissue and structural tissue interface engineering.  相似文献   

17.
Tight control of pore architecture in porous scaffolds for bone repair is critical for a fully elucidated tissue response. Solid freeform fabrication (SFF) enables construction of scaffolds with tightly controlled pore architecture. Four types of porous scaffolds were constructed using SFF and evaluated in an 8-mm rabbit trephine defect at 8 and 16 weeks (n = 6): a lactide/glycolide (50:50) copolymer scaffold with 20% w/w tri-calcium phosphate and random porous architecture (Group 1); another identical design made from poly(desaminotyrosyl-tyrosine ethyl ester carbonate) [poly(DTE carbonate)], a tyrosine-derived pseudo-polyamino acid (Group 2); and two poly(DTE carbonate) scaffolds containing 500 microm pores separated by 500-microm thick walls, one type with solid walls (Group 3), and one type with microporous walls (Group 4). A commercially available coralline scaffold (Interpore) with a 486-microm average pore size and empty defects were used as controls. There was no significant difference in the overall amount of bone ingrowth in any of the devices, as found by radiographic analysis, but patterns of bone formation matched the morphology of the scaffold. These results suggest that controlled scaffold architecture can be superimposed on biomaterial composition to design and construct scaffolds with improved fill time.  相似文献   

18.
Novel three-dimensional scaffolds consisting of nano- and microsized hydroxyapatite (HA)/poly(epsilon-caprolactone) (PCL) composite were fabricated using a modified rapid-prototyping (RP) technique for bone tissue engineering applications. The size of the nano-HA ranged from 20 to 90 nm, whereas that of the micro-HA ranged from 20 to 80 microm. The scaffold macropores were well interconnected, with a porosity of 72-73% and a pore size of 500 microm. The compressive modulus of the nano-HA/PCL and micro-HA/PCL scaffolds was 3.187 +/- 0.06 and 1.345 +/- 0.05 MPa, respectively. The higher modulus of the nano-HA/PCL composite (n-HPC) was to be likely caused by a dispersion strengthening effect. The attachment and proliferation of MG-63 cells on n-HPC were better than that on the micro-HA/PCL composite (m-HPC) scaffold. The n-HPC was more hydrophilic than the m-HPC because of the greater surface area of HA exposed to the scaffold surface. This may give rise to better cell attachment and proliferation. Bioactive n-HA/PCL composite scaffold prepared using a modified RP technique has a potential application in bone tissue engineering.  相似文献   

19.
The treatment of large cranial defects may be greatly improved by the development of precisely formed bone tissue engineering scaffolds. Such scaffolds could be constructed by using UV laser stereolithography to photocrosslink a linear, biodegradable polymer into a three-dimensional implant. We have previously presented a method to photocrosslink the biodegradable polyester, poly(propylene fumarate) (PPF). To ensure the safety and effectiveness of this technique, the soft and hard tissue response to photocrosslinked PPF scaffolds of different pore morphologies was investigated. Four classes of photocrosslinked PPF scaffolds, constructed with differing porosities (57-75%) and pore sizes (300-500 or 600-800 microm), were implanted both subcutaneously and in 6.3-mm-diameter cranial defects in a rabbit model. The rabbits were sacrificed at 2 and 8 weeks, and the implants were analyzed by light microscopy, histological scoring analysis, and histomorphometric analysis. Results showed the PPF scaffolds elicit a mild tissue response in both soft and hard tissues. Inflammatory cells, vascularization, and connective tissue were observed at 2 weeks; a decrease in inflammatory cell density and a more organized connective tissue were observed at 8 weeks. Scaffold porosity and scaffold pore size were not found to significantly affect the observed tissue response. Evidence of scaffold surface degradation was noted both by histology and histomorphometric analysis. Bone ingrowth in PPF scaffolds implanted into cranial defects was <3% of the defect area. The results indicate that photocrosslinked PPF scaffolds are biocompatible in both soft and hard tissues and thus may be an attractive platform for bone tissue engineering.  相似文献   

20.
The relative osteoconductivity and the change in the mechanical properties of hydroxyapatite (HA) scaffolds with multi-scale porosity were compared to scaffolds with a single pore size. Non-microporous (NMP) scaffolds contained only macroporosity (250-350 microm) and microporous (MP) scaffolds contained both macroporosity and microporosity (2-8 microm). Recombinant human bone morphogenetic protein-2 (rhBMP-2) was incorporated into all scaffolds via gelatin microspheres prior to implantation into the latissimus dorsi muscle of Yorkshire pigs. After 8 weeks, only the MP scaffolds contained bone. The result demonstrates the efficacy of the MP scaffolds as drug carriers. Implanted and as-fabricated scaffolds were compared using histology, microcomputed tomography, scanning electron microscopy, and compression testing. Implanted scaffolds exhibited a stress-strain response similar to that of cancellous bone with strengths between those of cancellous and cortical bone. The strength and stiffness of implanted NMP scaffolds decreased by 15% and 46%, respectively. Implanted MP scaffolds lost 30% of their strength and 31% of their stiffness. Bone arrested crack propagation effectively in MP scaffolds. The change in mechanical behavior is discussed and the study demonstrates the importance of scaffold microporosity on bone ingrowth and on the mechanical behavior of HA implant materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号