首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A circadian rhythm of hippocampal theta activity in the mouse   总被引:1,自引:0,他引:1  
Hippocampal theta activity dominates the cortical EEG of the mouse during certain behaviors. We have therefore been able to study the circadian distribution of hippocampal theta activity by means of chronic EEG implantation and computerized EEG state scoring. Observations in six mice indicate consistent and significant circadian patterns of theta-dominated EEG, both during wakefulness (theta-dominated wake, or TDW) and during sleep (REM sleep). The probability of REM rises gradually to a maximum during the sleep period and then falls abruptly at activity onset and then falls gradually. The complementary circadian patterns of REM and TDW suggest that they may be two episodes of each coincide remarkably, as do their circadian distributions. The probability of TDW rises to a very high level at activity onset and then falls gradually. The complementary circadian patterns of REM and TDW suggest that they may be two halves of a single circadian rhythm of theta probability. This concept would be relevant in interpreting the abnormally phase-advanced pattern of REM sleep observed in human depressives.  相似文献   

3.
A statistical analysis of the baseline activity of neurons, recorded intracellularly in the hippocampus of awake, nonimmobilized rabbits in three states, control and during the systemic administration of eserine and scopolamine, was carried out. Neurons of the hippocampus were additionally tested in a similar manner following the chronic basal undercutting of the septum, removing stem influences. The cholinergic substances regulate the number of neurons of the hippocampus having theta modulation and the degree of its stability, but do not influence its frequency. When the cholinergic theta rhythm is activated, regularization of the activity takes place with the suppression of delta modulation and of complex spikes; its blockade is accompanied by the opposite changes. Both substances stably alter the level of the baseline frequency of discharges of the majority of neurons, although the total average frequency remains constant. Regression analysis shows the predominance of a decrease in the activity in highfrequency (> 25 spikes/sec) and an increase in the lowf-requency (< 25 spikes/sec) neurons during the effect of both substances. The constancy of the total average frequency and the unidirectionality of the shifts in the level of discharges of the neurons during the intensification (eserine) and blockade (scopolamine) of the cholinergic component of the theta rhythm points to the fact that the cholinergic septal input directly influences mainly the structure but not the level of the activity of the hippocampal neurons.Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 42, No. 5, pp. 944–954, September–October, 1992.  相似文献   

4.
 The electrophysiological properties of neurons of the medial septal nucleus and the nucleus of the diagnonal band of Broca (MS/DB) were studied using intracellular methods in urethane-anesthetized rats. Three types of rhythmically bursting neurons were identified in vivo on the basis of their action potential shapes and durations, afterhyperpolarizations (AHPs), membrane characteristics, firing rates and sensitivities to the action of muscarinic antagonist: (1) Cells with short-duration action potentials and no AHPs (2 of 34 rhythmic cells, 6%) had high firing rates and extremely reliable bursts with 6–16 spikes per theta cycle, which were highly resistant to scopolamine action. (2) Cells with short-duration action potentials and short-duration AHPs (8 of 34 rhythmic cells, 24%) also had high firing rates and reliable bursts with 4–13 spikes per theta cycle, phase-locked to the negative peak of the dentate theta wave. Hyperpolarizing current injection revealed a brief membrane time constant, time-dependent membrane rectification and a burst of firing at the break. Depolarizing current steps produced high-frequency repetitive trains of action potentials without spike frequency adaptation. The action potential and membrane and characteristics of this cell type are consistent with those described for GABAergic septal neurons. Many of these neurons retained their theta-bursting pattern in the presence of muscarinic antagonist. (3) Cells with long-duration action potentials and long-duration AHPs (24 of 34 rhythmic cells, 70%) had low firing rates, and usually only 1–3 spikes per theta cycle, locked mainly to the positive peak of the dentate theta rhythm. Hyperpolarizing current injection revealed a long membrane time constant and a break potential; a depolarizing pulse caused a train of action potentials with pronounced spike frequency adaptation. The action potential and membrane properties of this cell type are consistent with those reported for cholinergic septal neurons. The theta-related rhythmicity of this cell type was abolished by muscarinic antagonists. The phasic inhibition of ”cholinergic” MS/DB neurons by ”GABAergic” MS/DB neurons, followed by a rebound of their firing, is proposed as a mechanism contributing to recruitment of the whole MS/DB neuronal population into the synchronized rhythmic bursting pattern of activity that underlies the occurrence of the hippocampal theta rhythm. Received: 5 February 1996 / Accepted: 6 November 1996  相似文献   

5.
Summary Recordings were made of spontaneous hippocampal theta activity in free-moving rats, before and after a variety of lesions. Three recording sites were used to monitor activity in the dorsal hippocampus, the ventral hippocampus, or close to the site of the hippocampal flexure. Electrolytic lesions were made in the medial septal area or the dorso-lateral septal area; surgical transections were made of the fimbria or dorso-medial area of the fornix. Following lesions restricted to the medial septal area, theta was abolished throughout the hippocampus; after lesions restricted to the dorso-lateral septal area theta was retained. Fimbria lesions abolished theta in the ventral, but not the dorsal hippocampus; dorso-medial fornix lesions abolished it in the dorsal, but not the ventral, hippocampus. In some subjects the hippocampal formation was subsequently stained for cholinesterase: cholinesterase staining loss was generally associated with theta loss, but this was not clear at the flexure recording site. It was confirmed that theta is dependent upon the integrity of the medial septal area. It was concluded that damage to hippocampal afferents from the septum does abolish theta, while damaging the feedback efferents does not.  相似文献   

6.
Summary On the basis of spontaneous firing patterns and relations to the hippocampal theta rhythm, three cell types were identified within the medial septal nucleus and vertical limb of the nucleus of the diagonal band of Broca (MSN-NDB). In addition to the well known rhythmically bursting cells that fired in bursts on each cycle of the hippocampal theta rhythm, two other cell types are distinguished. Clock cells fired at high rates with a very regular, periodic firing pattern that was unrelated to the theta rhythm. Irregular cells fired at much lower rates, especially during theta rhythm, and had a pseudo-random firing pattern. The firing of irregular cells was often significantly phase-locked to the hippocampal theta rhythm. Crude estimates of the relative proportions of these cell types suggest that the rhythmically bursting cells comprise about 75% of the cells of the MSN-NDB. These three cell types bear a remarkable resemblance, in firing patterns and relative proportions, to the three principal cell types of the medial septal nuclei described in the freely moving rat (Ranck 1976). Measurements of the preferred phases of firing of 128 rhythmically bursting septal neurons (including 22 atropine-resistant and 11 atropine-sensitive cells) indicate that there is no single preferred phase of firing for the population. Rather the distribution of phases over the theta cycle is statistically flat. Variations in recording locations cannot account for this distribution since large differences in preferred phase were found for pairs of cells at the same location. Similarly, plotting only the group of cells identified as projection cells by antidromic activation from the fimbria/fornix, failed to reveal a peak in the distribution. In contrast to the rhythmically bursting cells, the distribution of preferred firing phases for the irregular cells with a significant phase-locking to the theta rhythm did have a clear peak. The peak occurred near the dentate theta rhythm positivity, consistent with the hypothesis that they are driven by feedback from CA1 complex-spike cells.  相似文献   

7.
Summary The firing of lateral septal neurons was examined in relation to the hippocampal theta rhythm in urethane anesthetized rats. In general, the firing rates of these cells were low during both theta and non-theta EEG states. There was no significant change in firing rate between the two states (theta: 8.5±9.9 spks/sec; non-theta: 6.0±5.3). Sixty-four of 68 cells fired simple spikes and 4 cells were found to fire bursts of action potentials (complex-spikes). Approximately 30% (21/65) of the cells showed a significant phase relation to the hippocampal theta rhythm. The preferred phases of firing of these 21 cells were broadly distributed. The possibility that the phase-locked firing of LSN cells is due to the phase-locked firing of hippocampal projection cells is discussed.  相似文献   

8.
The serotonin (5-HT)-containing median raphe nucleus has been shown to be critically involved in the control of desynchronized (non theta) states of the hippocampal electroencephalogram (EEG). We examined the activity of 181 cells of the median raphe nucleus in the urethane-anesthetized rat and found that approximately 80% (145/181) of them showed changes in activity associated with changes in the hippocampal EEG. These cells were subdivided into theta-on (68%) and theta-off (32%) based on increased or decreased rates of activity with theta, respectively. They were further classified as slow-firing (~1 Hz), moderate-firing (5-11 Hz), or fast-firing (>12 Hz) theta-on or theta-off cells. The slow-firing cells as well as a subset of moderate-firing theta-off cells displayed characteristics of "classic" serotonin-containing raphe neurons. All fast-firing neurons were theta-on cells and showed either tonic or phasic (rhythmical) increases in activity with theta. We propose that: (1) the slow-firing cells (on and off) as well as a subset of moderate-firing theta-off cells are serotonergic neurons; (2) the phasic and tonic fast-firing theta-on cells are GABAergic cells; and (3) these populations of cells mutually interact in the modulation of the hippocampal EEG. An activation of local serotonergic and GABAergic theta-on cells would inhibit 5-HT slow- or moderate-firing theta-off projection cells to release or generate theta, whereas the suppression of serotonergic- or GABAergic theta-on cells would disinhibit 5-HT theta-off cells, resulting in a blockade of theta or a desynchronization of the hippocampal EEG. A role for the median raphe nucleus in memory-associated functions of the hippocampus is discussed.  相似文献   

9.
The hippocampus has a major role in memory for spatial location. Theta is a rhythmic hippocampal EEG oscillation that occurs at approximately 8 Hz during voluntary movement and that may have some role in encoding spatial information. We investigated whether, as part of this process, theta might be influenced by self-movement signals provided by the vestibular system. The effects of bilateral peripheral vestibular lesions, made > or = 60 days prior to recording, were assessed in freely moving rats. Power spectral analysis revealed that theta in the lesioned animals had a lower power and frequency compared with that recorded in the control animals. When the electroencephalography (EEG) was compared in epochs matched for speed of movement and acceleration, theta was less rhythmic in the lesioned group, indicating that the effect was not a result of between-group differences in this behavior. Blood measurements of corticosterone were also similar in the two groups indicating that the results could not be attributed to changes in stress levels. Despite the changes in theta EEG, individual neurons in the CA1 region of lesioned animals continued to fire with a periodicity of approximately 8 Hz. The positive correlation between cell firing rate and movement velocity that is observed in CA1 neurons of normal animals was also maintained in cells recorded from lesion group animals. These findings indicate that although vestibular signals may contribute to theta rhythm generation, velocity-related firing in hippocampal neurons is dependent on nonvestibular signals such as sensory flow, proprioception, or motor efference copy.  相似文献   

10.
《Physiology & behavior》1967,5(2):227-231
Some workers have suggested that hippocampal theta rhythm reflects activity of the neural reward system, while others have thought it to be primarily a correlate of voluntary movement. In order to examine these views, rats were trained to remain immobile while receiving rewarding intracranial stimulation; in this way the effects of the rewarding stimulation on hippocampal electrical activity were separated from the effects of movement (exploratory locomotion) that usually accompanies such stimulation. Rewarding intracranial stimulation was found to be neither necessary nor sufficient for the appearance of theta rhythm. Theta rhythm was present when rats performed large continous movements and absent when they remained immobile or performed small interrupted movements. Thus, theta rhythm is not an intrinsic correlate of rewarding stimulation but is closely associated with mechanisms that produce movement.  相似文献   

11.
12.
The activity of hippocampal complex-spike cells (presumed pyramidal cells) and theta cells (presumed interneurons) was examined during transitions from non-theta electroencephalogram (EEG) states to theta EEG states in freely moving and sleeping rats. Theta cell firing rates were significantly depressed in a 1-s period centered on the EEG transition relative to the surrounding 1-s periods (normalized rates±SEM): 1.05±0.02 for the non-theta period, 0.59±0.03 for the transition period, and 1.36±0.04 for the theta period (n = 26 cells). Conversely, complex-spike cell firing was significantly increased during the transition period: 0.51±0.11 for the non-theta period, 2.24±0.19 for the transition period, and 0.24±0.04 for the theta period (n = 27 cells). This diametrically altered activity indicates that theta cells must be actively inhibited during the transition. The increased activity in complex-spike cells during the transition may be simply a release from inhibitory control by interneurons. The pattern of theta cell inhibition together with increased complex-spike cell activity appears to be a general property of transitions into the theta EEG state, irrespective of behavior. It is suggested that increased activity in septal afferents (GABAergic cell activity greater than cholinergic cell activity) initially inhibits hippocampal interneurons. The inhibition is not sustained because of an activity-dependent decrease in the potency of the septointerneuronal inhibition, leaving the rhythmic excitatory (cholinergic) septointerneuronal inputs, together with principal cell inputs, to increase interneuron firing rates.  相似文献   

13.
The effects of brainstem microinjections of carbachol on the hippocampal theta rhythm were examined in urethane anesthetized rats. The two most effective theta-eliciting sites with carbachol were the nucleus pontis oralis (RPO) and the acetylcholine-containing pedunculopontine tegmental nucleus (PPT) of the dorsolateral pontine tegmentum. RPO injections generated theta at mean latencies of 38.5±70.8 s and for mean durations of 12.9±5.1 min. Five of seven RPO injections gave rise to theta virtually instantaneously, i.e., before the completion of the injection. PPT injections generated theta at mean latencies of 1.7±1.1 min and for mean durations of 11.9±6.0 min. Injections rostral or caudal to RPO in the caudal midbrain reticular formation (RF) or the caudal pontine RF (nucleus pontis caudalis) generated theta at considerably longer latencies (generally greater than 5 min) or were without effect. Medullary RF injections essentially failed to alter the hippocampal EEG. The finding that theta was produced at very short latencies at RPO suggests that RPO, the putative brainstem source for the generation of theta, is modulated by a cholinergic input. The further demonstration that theta was also very effectively elicited with PPT injections suggests this acetylcholine-containing nucleus of the dorsolateral pons may be a primary source of cholinergic input to RPO in the generation of theta. The hippocampal theta rhythm is a major event of REM sleep. The present results are consistent with earlier work showing that each of the other major events of REM sleep, as well as the REM state, are cholinergically activated at the level of the pontine tegmentum.  相似文献   

14.
The effect of drugs on hippocampal theta rhythm induced by high frequency stimulation of the midbrain reticular formation was investigated in free-moving rats. The linearity of the relationship between the frequency of theta produced and the intensity of the stimulating current was unchanged by injections of sodium amylobarbitone; however, the frequency itself was reduced. Cholinergic blockade or depletion of noradrenaline, dopamine or serotonin levels in brain did not produce such a reduction in frequency, nor did they change the linearity of the function.These results contrast with the nonlinear effects which have been found with sodium amylobarbitone when septal stimulation is used to evoke theta rhythm; and with the fact that such nonlinear effects can be reproduced by depletion of forebrain noradrenaline levels. Sodium amylobarbitone appears, therefore, to affect control of hippocampal theta rhythm by actions on two systems, only one of which is dependent on noradrenaline. The duplication of behavioural effects of the drug by lesions of the dorsal ascending noradrenergic bundle may imply that the frequency at which theta occurs is less important for the control of such behaviours than other aspects of this electrical activity.  相似文献   

15.
16.
Summary Intracellular recordings were made from hippocampal pyramidal cells identified by their depths and their responses to commissural stimulation. Recordings were made during spontaneous bouts of hippocampal theta rhythm in urethane anesthetized rats. Membrane potentials (V m) of pyramidal cells varied with the phase of the theta rhythm, that is, there was an intracellular theta rhythm. The changes in V m averaged about 2 mV peak to peak. Averaged intracellular theta waves showed that CA1 pyramids were most depolarized at the time of the positive peak of the extracellular theta rhythm recorded in (and superficial to) the CA1 pyramidal cell layer (CA1 theta). Peak depolarizations for CA3/4 pyramids were more broadly distributed, but occurred mainly in the interval just before the positive peak to just before the negative peak of the CA1 theta. Input impedance minima that were measurable at frequencies as high as 100 Hz occurred at about the same phases of the extracellular theta rhythm as the peak depolarizations (positive-going zero crossing to negative-going zero crossing of the CA1 theta). Such impedance changes imply conductance changes on the soma. The magnitude and localization of the conductance changes suggests that somatic IPSPs make major contributions to the intracellular theta rhythm. The phase relation between the intracellular and extracellular theta rhythms could be reversed by long duration current pulses that depolarized the cells slightly. This implies that either the intracellular theta-related IPSPs are depolarizing potential changes, or that they occur simultaneously with EPSPs. The phase of the intracellular theta rhythm was generally unaffected by long duration hyperpolarizing current pulses. Chloride leakage that reversed the evoked IPSPs usually had no effect on the phase of the intracellular theta rhythm, although in one case it appeared to cause its amplitude to increase.  相似文献   

17.
18.
Hippocampal theta activity is the result of the concerted activity of a group of nuclei located in the brain stem and the caudal diencephalic area, which are together referred to as the synchronizing ascending system. Serotonin is recognized as the only neurotransmitter able to desynchronize the hippocampal electroencephalographic. A theory has been developed in which serotonin, acting on medial septal neurons, modulates cholinergic/GABAergic inputs to the hippocampus and, thus, the cognitive processing mediated by this area. However, few studies have addressed the relationship between serotonin modulation of theta activity and cognition. In this review, we present a summary and analysis of the data relating serotonin and its theta activity modulation with cognition, and we also discuss the few works relating serotonin, theta activity and cognition as well as the theories regarding the serotonin regulation of memory processes organized by the hippocampus. We propose that serotonin depletion induces impairment of the relays coding the frequency of hippocampal theta activity, whereas depletion of the relays in which frequency is not coded induces improvements in spatial learning that are related to increased expression of high-frequency theta activity.  相似文献   

19.
The pedunculopontine tegmental nucleus (PPN) belongs to the brainstem system which synchronizes hippocampal activity. Theta relevant intra-PPN circuitry involves its cholinergic, GABA-ergic and glutamatergic neurons and Substance P as neuromodulator. Evidence that PPN opioid elements also modulate the hippocampal theta is provided here. In urethane-anesthetized rats a unilateral microinjection of morphine (MF) (1.5 and 5 microg) increased the maximal peak power of tail pinch-induced theta. The higher dose also increased the corresponding frequency. When the theta was evoked by intra-PPN injection of carbachol (10 microg), the addition of MF (5 microg) prolonged theta latency and shortened the duration of the theta. These effects of MF were blocked by naloxone (5 microg). The results obtained suggest that the PPN opioid system can enhance or suppress the hippocampal theta depending on the actual level of PPN activation.  相似文献   

20.
The effects of local application of phencyclidine (PCP) upon hippocampal CA1 neurons were investigated in urethane-anesthetized rats. Hippocampal neurons were classified on the basis of extracellularly recorded action potential duration as either complex-spike or theta cells prior to PCP administration. PCP depressed spontaneous firing of 46 of 48 complex-spike cells, but excited 12 of 13 theta neurons. This result demonstrates that hippocampal complex-spike and theta neurons may be differentiated of theta neurons were greatly attenuated or absent in rats pretreated with DSP4, a neurotoxin which selectively destroys noradrenergic pathways. This latter finding lends additional support to the hypothesis that the effects of locally applied PCP are mediated via noradrenergic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号