首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
S Inoue  S Itagaki    F Amano 《Infection and immunity》1995,63(5):1876-1886
Listeria monocytogenes is a facultative intracellular pathogen and survives within phagocytic cells by escaping from phagosomes into the cytoplasm. It has been reported that, in vivo, L. monocytogenes is effectively eliminated through cell-mediated immunity, especially by macrophages which have been immunologically activated by cytokines such as gamma interferon (IFN-gamma). However, this killing mechanism for L. monocytogenes and the role of macrophage activation in this bacterial killing are unclear. We demonstrated the listericidal effect of oxidative radicals induced by lipopolysaccharide (LPS) and IFN-gamma, using a macrophage-like cell line, J774.1, and a mutant cell line, LPS1916. LPS1916 cells do not exhibit normal generation of O2- and H2O2 after treatment with 0.1 microgram of LPS per ml, although J774.1 cells generate 100 times the normal level of oxidative radicals with the same LPS treatment. The growth of L. monocytogenes was strongly inhibited in J774.1 cells pretreated with 0.1 microgram of LPS per ml or the combination of 0.1 microgram of LPS per ml and 10 U of IFN-gamma per ml. On the other hand, in LPS1916 cells, the growth of L. monocytogenes was not inhibited by treatment with LPS only, although LPS1916 cells pretreated with the combination of LPS and IFN-gamma showed moderate inhibition of listerial growth. This killing was not influenced by treatment with NG-monomethyl-L-arginine, which is a strong inhibitor of nitrite oxide generation. Interestingly, J774.1 cells treated with LPS did not show enhanced intraphagosomal killing of a nonhemolytic strain of avirulent L. monocytogenes that lacks the ability to escape from phagosomes, and this killing was not influenced by treatment with NG-monomethyl-L-arginine either. These results suggest that the reactive oxygen radicals are more important than nitric oxide in the mechanism underlying the intracellular killing of virulent L. monocytogenes and that there seem to be different killing mechanisms for virulent and avirulent strains of L. monocytogenes in activated-macrophage cell lines.  相似文献   

2.
Listeria monocytogenes is a facultative intracellular pathogen of a great variety of cells. Among them, macrophages constitute the major effector cells of listerial immunity during the course of an infection. Although the molecular bases of L. monocytogenes attachment and entry to phagocytes are not completely understood, it has been demonstrated that C3b significantly increases L. monocytogenes uptake by macrophages via complement receptor type 3. The first component of complement, C1q, is present in organic fluids at a relatively high concentration, and C1q receptor sites in macrophages are also abundant. In the present report, results of studies on the role of C1q in the internalization and infectivity of L. monocytogenes by macrophages are presented. L. monocytogenes uptake is enhanced by prior treatment of bacteria with normal sera. Heated serum or C1q-deficient serum abrogates this enhancement. Purified C1q specifically restored uptake. This effect was blocked by the addition of F(ab')2 anti-C1q antibody but not by an irrelevant matched antibody. Direct binding of C1q to L. monocytogenes was specific, saturable, and dose dependent with both fluorescent and radiolabeled C1q. N-Acetyl-D-alanyl-L-isoglutamine, diaminopimelic acid, and L-rhamnose caused a significant dose-dependent inhibition of C1q binding to bacteria, suggesting that these molecules, at least, are involved in the attachment of C1q to L. monocytogenes cell wall. When C1q binding structures on macrophage-like cells were blocked with saturating concentrations of C1q, the uptake of C1q-opsonized bacteria was less than in untreated cells. These experiments demonstrate that, in addition to other reported mechanisms, L. monocytogenes binds C1q, which mediates enhanced uptake by macrophages through C1q binding structures.  相似文献   

3.
Murine peritoneal macrophages activated with interferon-gamma (IFN-gamma) produce large quantities of nitric oxide and are efficient in the killing of certain intracellular pathogens. To examine the role of this mechanism in the killing of Mycobacterium avium by murine and human macrophages, we infected mouse peritoneal macrophages and human monocyte-derived macrophages with M. avium and Listeria monocytogenes and stimulated the cells with recombinant tumour necrosis factor (TNF), granulocyte-macrophage colony-stimulating factor (GM-CSF) or IFN-gamma, in the presence or absence of N-monomethyl-L-arginine (NMA) or arginase. Neither competitive inhibition with NMA nor depletion of arginine by arginase had any effect on the inhibition of growth/intracellular killing of M. avium by activated human and murine macrophages. In contrast, activation of murine but not human macrophages infected with L. monocytogenes by IFN-gamma was significantly inhibited by the addition of NMA/arginase. Furthermore, murine macrophages produced large concentrations of nitric oxide following stimulation with recombinant cytokines, although no significant increase of nitric oxide production was observed with human monocyte-derived macrophages.  相似文献   

4.
W R Schwan  A Demuth  M Kuhn    W Goebel 《Infection and immunity》1994,62(11):4795-4803
Listeria monocytogenes is a facultative intracellular organism that is capable of replicating within macrophage and macrophage-like cells. The species secretes a phosphatidylinositol-specific phospholipase C (PI-PLC) encoded by the plcA gene. A plcA gene from L. monocytogenes was cloned downstream of a gram-positive promoter in the plasmid pWS2-2. To determine what effect plcA would have on intracellular survival when introduced into Listeria innocua, a species that does not growth intracellularly or contain plcA, transformation with the recombinant pWS2-2 plasmid was performed. Phospholipase C activity in Listeria innocua/pWS2-2 was confirmed on a brain heart infusion-phosphatidylinositol agar plate, whereas wild-type L. innocua did not produce PI-PLC activity. Intracellular growth of L. innocua/pWS2-2 was subsequently measured in the macrophage-like cell line J774 by Giemsa staining and viable count determinations at specific time points following infection. The J774 cells infected with wild-type L. innocua showed a falling viable count through 8 h postinfection. Although J774 cells infected with L. innocua/pWS2-2 also initially displayed reduced viable counts, the viable count rose after 6 h postinfection and increased further at 8 h postinfection before a subsequent decline again at 16 h postinfection. Giemsa staining revealed fewer than 6 bacteria in individual macrophage cells at 2 h postinfection, and yet approximately 15% of the J774 cells had 6 to 12 bacteria localized to one area of the macrophage cell after 6 h; moreover, electron micrographs showed that the L. innocua/pWS2-2 cells were replicating inside the phagosome of the host cell. Furthermore, Thoria Sol labeling demonstrated that lysosomes had fused with these phagosomes, and acridine orange staining revealed that the compartments were acidified. These results demonstrate that L. innocua cells transformed with the plasmid-borne plcA gene, and expressing functional PI-PLC, are able to grow intracellularly in what appear to be phagolysosomes, although between 3 and 6 h is needed for this to manifest itself. Intracellular growth specifically in L. innocua may be a secondary function associated with the plcA gene product. The addition of this one gene, plcA, to a species of Listeria that in the wild-type state does not replicate intracellularly apparently can now allow some of the bacteria to transiently multiply inside the phagosomes of host macrophage cells.  相似文献   

5.
Rhodococcus equi is a facultative intracellular bacterium of macrophages which can infect immunocompromised humans and young horses. In the present study, we examine the mechanism of host defense against R. equi by using a murine model. We show that bacterial killing is dependent upon the presence of gamma interferon (IFN-gamma), which activates macrophages to produce reactive nitrogen and oxygen intermediates. These two radicals combine to form peroxynitrite (ONOO(-)), which kills R. equi. Mice deficient in the production of either the high-output nitric oxide pathway (iNOS(-/-)) or the oxidative burst (gp91(phox-/-)) are more susceptible to lethal R. equi infection and display higher bacterial burdens in their livers, spleens, and lungs than wild-type mice. These in vivo observations, which implicate both nitric oxide (NO) and superoxide (O(2)(-)) in bacterial killing, were reexamined in cell-free radical-generating assays. In these assays, R. equi remains fully viable following prolonged exposure to high concentrations of either nitric oxide or superoxide, indicating that neither compound is sufficient to mediate bacterial killing. In contrast, brief exposure of bacteria to ONOO(-) efficiently kills virulent R. equi. The intracellular killing of bacteria in vitro by activated macrophages correlated with the production of ONOO(-) in situ. Inhibition of nitric oxide production by activated macrophages by using N(G)-monomethyl-L-arginine blocks their production of ONOO(-) and weakens their ability to control rhodococcal replication. These studies indicate that peroxynitrite mediates the intracellular killing of R. equi by IFN-gamma-activated macrophages.  相似文献   

6.
The role of macrophage activation in the killing of L. monocytogenes is unclear. Some studies suggest that activation for enhanced production of reactive oxygen and nitrogen intermediates may not be of central importance. Recent data have indicated an important role for interferon-gamma (IFN-gamma) induced retention of L. monocytogenes in endosomes. Data from the present study indicate that proteose peptone-elicited macrophages from DBA2/J, CD-1, and C3H/HeN mice are listericidal. Activation of these cells in vitro for 20 h by IFN-gamma (20 or 500 U/ml) increased H2O2 or nitrite production, but did not increase the number of L. monocytogenes killed during a subsequent 6-h or 7-h culture. Incubation of macrophages with IFN-gamma plus lipopolysaccharide (LPS) caused greater activation and increased the number of Listeria killed during a 6-h or 7-h culture. However, this seems primarily attributable to enhanced phagocytosis. Proteose peptone-elicited macrophages were significantly more effective than resident macrophages in preventing the escape of L. monocytogenes from endosomes into the cytoplasm. This capability was not significantly enhanced by IFN-gamma in vitro, but was enhanced by IFN-gamma plus LPS. This correlates well with the effects of these activation stimuli on killing of L. monocytogenes by proteose peptone-elicited macrophages. These results indicate that enhanced retention of L. monocytogenes in endosomes is induced by proteose peptone elicitation and that further macrophage activation in vitro by IFN-gamma does not improve listericidal activity.  相似文献   

7.
Penetration and replication of Listeria monocytogenes within intestinal epithelial cells were studied by infecting the human enterocyte-like cell line Caco-2. Entry was due to directed phagocytosis, as suggested by the inhibiting effect of cytochalasin D on bacterial entry and by electron microscopy showing bacteria inside membrane-limiting vacuoles at the early stage of infection. Only bacteria from pathogenic species (L. monocytogenes and Listeria ivanovii) were able to induce their own phagocytosis by Caco-2 cells, as opposed to Listeria seeligeri, Listeria welshimeri, and Listeria innocua. L. monocytogenes multiplied readily within Caco-2 cells, with an apparent generation time of about 90 min. Listeriolysin O was found to be a major factor promoting intracellular growth of L. monocytogenes. After being internalized at the same rate as that of its hemolytic revertant strain, a nonhemolytic mutant from L. monocytogenes failed to replicate significantly within Caco-2 cells. Electron microscopic study demonstrated that bacteria from the nonhemolytic mutant remained inside phagosomes during cellular infection, whereas hemolytic bacteria from L. monocytogenes were released free within the cytoplasm. This indicates that disruption of vacuole membranes by listeriolysin O-producing strains of L. monocytogenes might be a key mechanism allowing bacteria to escape from phagosomes and to multiply unrestricted within cell cytoplasm.  相似文献   

8.
The intracellular survival of the ubiquitous pathogen Listeria monocytogenes was studied in primary cultures of bone marrow-derived mouse macrophages. Bacteria were able to grow rapidly in these cells, with an apparent multiplication rate of about 40 min. Electron microscopy demonstrated that intracellular bacterial replication was the consequence of simultaneous intracellular killing and replication of bacteria in the same cells. Within the first hour following phagocytosis, most bacteria were destroyed in the phagosomal compartment to which they were confined. This was due to early transfer of hydrolytic enzymes to phagosomes, undoubtedly via phagosome-lysosome (P-L) fusion, as demonstrated by a quantitative analysis after staining for a lysosomal marker, acid phosphatase. One hour after infection, about 14% of the bacteria were free in the cytoplasm, in which they multiplied and induced actin polymerization and spreading to adjacent macrophages, as in epithelial cells. By using the 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine staining procedure, direct evidence is presented that all phagosomes were acidified immediately after phagocytosis, thus indicating that intraphagosomal bacteria were exposed to an acidic environment that might favor vacuolar lysis by listeriolysin O. Intracellular growth in macrophages, therefore, appears to be the result of a competition between the expression of the hydrolytic activity of these cells following P-L fusion and the capacity of L. monocytogenes to escape from the acidified phagosomal compartment before P-L fusion has occurred. The finding that concomitant intracellular killing and survival of L. monocytogenes occurs in the same macrophages might explain the high immunogenicity observed in vivo with live bacteria, as opposed to killed bacteria.  相似文献   

9.
Histoplasma capsulatum, a facultative intracellular parasite of macrophages, grows within mononuclear cells of the P388D1 and IC-21 cell lines with a generation time comparable to that with which it grows in normal resident peritoneal macrophages (10 +/- 2 h). Recombinant murine gamma interferon (rMuIFN-gamma) activates P388D1 cells to express la antigens but not to inhibit the intracellular growth of H. capsulatum, alone or in combination with lipopolysaccharide. IC-21 cells also could not be activated to fungistasis with rMuIFN-gamma. Explanted resident peritoneal macrophages of the C57BL/6 (from which the IC-21 cell line derives), C3H/HeJ, DBA/2 (from which the P388D1 cell line derives), A/J, and SJL/J strains of mice were all stimulated by rMuIFN-gamma to inhibit the fungus.  相似文献   

10.
Listeria monocytogenes, a gram-positive facultative intracellular bacterium, was shown to be capable of infecting and proliferating in murine embryo fibroblasts. During exponential proliferation, the doubling time of the bacterium was determined to be 2.5 h intracellularly, compared with 25 min extracellularly. Progressive intracellular growth of listeriae ultimately resulted in the destruction of initially infected cells and the spread of infection to neighboring cells. Listeria infection induced fibroblasts to synthesize considerable quantities of an acid-stable interferon that proved to be antigenically indistinguishable from both polyinosinic-polycytidylic acid-induced and virus-induced interferon.  相似文献   

11.
Immune interferon, available at high specific activity through recombinant DNA technology, is known to activate macrophages to intra- and extracellular cytotoxicity. We now report that murine recombinant IFN-gamma activates macrophages to cytotoxicity also when applied in vivo. Furthermore, recombinant IFN-gamma can protect mice in vivo against the intracellular bacterial pathogen Listeria monocytogenes in a local as well as in a systemic infection model. The role of T lymphocyte-produced lymphokines in acquired resistance to facultative intracellular pathogens and their possible involvement in novel immunotherapy are discussed.  相似文献   

12.
Chakraborty T 《Immunobiology》1999,201(2):155-163
Bacterial pathogens have developed many subtle mechanisms to overcome and exploit cellular processes within the infected eukaryotic host cell. Listeria monocytogenes, a facultative intracellular non-spore forming gram-positive pathogen, uses a number of strategies to ursurp and harness host cell processes to invade, proliferate, move intracellularly and effect cell-to-cell spread during the course of infection. In this review progress in elucidating mechanisms by which the bacteria recruit and use components of the host actin-based cytoskeleton to generate intracellular motility is presented. Analysis of this fascinating property is giving us unexpected glimpses into the molecular mechanisms of complex cellular functions, here in particular, of actin-based cellular motility. Apart from an understanding of the fundamental biology of living processes these studies provide us with novel strategies to combat and halt infections by intracellular bacteria.  相似文献   

13.
The macrophage cell line, IC-21, was found to be incapable of producing the oxygen products associated with the respiratory burst. However, IC-21 cells were activated by lymphokine (LK) to kill intracellular (Leishmania donovani amastigotes) and extracellular (Schistosoma mansoni larvae) parasites, as well as tumor cells. In each case, the cytotoxicity exhibited by activated IC-21 cells and activated peritoneal macrophages was indistinguishable. However, nonactivated IC-21 cells were unable to kill L. donovani log-growth phase promastigotes, while nonactivated peritoneal macrophages destroyed greater than 90% of the initial infection. These results indicate that amastigotes and schistosome larvae are susceptible to killing by nonoxidative cytotoxic mechanism induced by lymphokine activation but, on the other hand, support the concept that the killing of log-growth phase promastigotes by nonactivated cells is dependent upon the respiratory burst. We propose that the IC-21 cell line may be a useful model for studying nonoxidative killing functions of activated macrophages.  相似文献   

14.
Listeria monocytogenes, a gram-positive motile bacterium which can cause severe bacterial infection in humans, is considered to be pathogenic by virtue of its ability to resist intracellular killing. Since the mechanism of intracellular survival is poorly understood, we assessed the sensitivity of L. monocytogenes to several potent antibacterial products. Phorbol myristate acetate (PMA)-stimulated polymorphonuclear cells (PMNs) produced extracellular antibacterial products which were inhibited completely by catalase, suggesting a role for oxidative agents in this process. L. monocytogenes in logarithmic (log) growth phase resisted PMA-stimulated PMN extracellular products significantly more than L. monocytogenes in stationary (stat) growth phase or Escherichia coli (three strains) in either phase of growth. The role of oxidative agents was studied further by using xanthine oxidase-xanthine, glucose oxidase-glucose, and myeloperoxidase enzyme systems to generate hydroxyl radical (.OH), hydrogen peroxide (H2O2), and hypochlorous acid (OCl-), respectively. L. monocytogenes in log phase resisted the antibacterial products of these enzyme systems under conditions which produced superoxide (O2-) and H2O2 at concentrations similar to those produced extracellularly by PMA-stimulated PMNs, while stat-growth-phase L. monocytogenes and E. coli in either phase of growth were susceptible. Antibacterial activity could be blocked or inhibited by exogenous catalase (for all oxygen radical-generating systems), mannitol, or desferoxamine (for xanthine oxidase-xanthine) and alanine (for myeloperoxidase), suggesting that .OH and OCl- were responsible for this activity. Log-phase L. monocytogenes had 2.5-fold higher bacteria-associated catalase activity, as compared with stat-phase L. monocytogenes. These experiments, therefore, suggest that log-phase L. monocytogenes resists oxidative antibacterial agents by producing sufficient catalase to inactivate these products. This may contribute to the ability of L. monocytogenes to survive intracellularly.  相似文献   

15.
Listeria monocytogenes is able to escape from the phagolysosome and grow within the host cell cytoplasm. By 3 h after initiation of infection, actin filaments begin to concentrate at one end of the bacterium. Polarization of F-actin is associated with intracellular bacterial movement, long projections of actin filaments forming directly behind the moving bacteria. New actin monomers are added to the region of the projection in proximity to the bacterium. The rate of new actin filament growth correlates closely with the speed of bacterial migration. This actin structure is anchored within the cytoplasm, serving as a fixed platform for directional expansion of the actin filament network. The actin projection progressively lengthens as the bacterium migrates. Cytochalasin blocks both elongation of the projection and bacterial movement but does not result in complete depolymerization of the bacterially induced actin structure, residual actin and alpha-actinin persisting in proximity to one end of the bacterium. Bacteria initially migrate within the cortical cytoplasm but later move to the peripheral membrane, where they form filopodiumlike structures which pivot and undulate in the extracellular medium. In the filopodia, bacteria are occasionally seen to abruptly change direction, turn 180 degrees, and move back into the medullary region of the host cell. All filopodium movement ceases once the bacterium containing the F-actin projection returns to the cortical cytoplasm. These results indicate that host cell actin polymerization is necessary for intracellular migration of listeriae and suggest that directional actin assembly may in fact generate the propulsive force for bacterial and filopodial movement.  相似文献   

16.
The food-borne pathogen Listeria monocytogenes is known to colonize the lumen of the gallbladder in infected mice and to grow rapidly in this environment (J. Hardy et al., Science 303:851-853, 2004). However, relatively little is known about the mechanisms utilized by the pathogen to survive and grow in this location. We utilized gallbladder bile (GB bile) isolated directly from porcine gallbladders as an ex vivo model of gallbladder growth. We demonstrate that GB bile is generally nontoxic for bacteria and can readily support growth of a variety of bacterial species including L. monocytogenes, Lactococcus lactis, Salmonella enterica serovar Typhimurium, and Escherichia coli. Significantly, L. monocytogenes grew at the same rate as the nonpathogenic species Listeria innocua, indicating that the pathogen does not possess specialized mechanisms that enable growth in this environment. However, when we reduced the pH of GB bile to pH 5.5 in order to mimic the release of bile within the small intestine, the toxicity of GB bile increased significantly and specific resistance mechanisms (Sigma B, BSH, and BilE) were essential for survival of the pathogen under these conditions. In order to identify genetic loci that are necessary for growth of L. monocytogenes in the gallbladder, a mariner transposon bank was created and screened for mutants unable to replicate in GB bile. This led to the identification of mutants in six loci, including genes encoding enzymes involved in purine metabolism, amino acid biosynthesis, and biotin uptake. Although GB bile does not represent a significant impediment to bacterial growth, specific metabolic processes are required by L. monocytogenes in order to grow in this environment.  相似文献   

17.
18.
The entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line was studied as a function of cell polarization and differentiation. L. monocytogenes entered through the entire surface of nonpolarized cells and, predominantly, through the basolateral surface of polarized cells based on the following observations: (i) sites of L. monocytogenes invasion paralleled the distribution of the transferrin receptor, a well-known basolateral marker of polarization; (ii) numbers of internalized bacteria decreased dramatically when Caco-2 monolayers cultured beyond confluency were used (about 0.1% of the inoculated bacteria versus 1 to 2% with nonconfluent monolayers); and (iii) L. monocytogenes entry into postconfluent monolayers was greatly enhanced by treating cells with Ca(2)+ -free medium, a procedure that disrupts intercellular junctions and thus exposes the basolateral surface to bacteria. Ethylene glycol-bis (beta-aminoethyl ether)-N, N, N',N' -tetraacetic acid (EGTA) had contradictory effects on L. monocytogenes entry as this reagent opened intercellular junctions but inhibited binding and internalization of bacteria. Finally, the role of the inlAB locus in L. monocytogenes entry was confirmed because and inlAB mutant was 50- to 100-fold less invasive than the parental strain regardless of the monolayer's age. However, the inlAB mutant was still able to enter cells and to induce intracellular actin polymerization. Entry of inlAB bacteria into Caco-2 cells was not inhibited by EGTA.  相似文献   

19.
Zou A  Atencio I  Huang WM  Horn M  Ramachandra M 《Virology》2004,326(2):240-249
Recent studies have shown enhanced antitumor efficacy with adenoviruses that either lack E1B-19K or overexpress E3-11.6K (also known as adenoviral death protein). E1B-19K is a well-characterized anti-apoptotic protein, and viruses with E1B-19K deletions show increased cytopathicity. However, the mechanism of cell killing by E3-11.6K, which plays an important role in killing infected cells and virion release, is not well characterized. To understand the mechanism of cell killing following E3-11.6K overexpression, we constructed a recombinant adenovirus, Ad-ME, by introducing viral major late promoter upstream of the E3-11.6K sequence. Similar to the E1B-19K-deleted virus, E1B/19K-, Ad-ME induced cell death to a greater extent than the wild-type virus. Cell shrinkage, membrane blebbing, activation of caspases 3 and 9, cleavage of poly(ADP-ribose)polymerase (PARP), DNA degradation, and ratio of ADP to ATP in Ad-ME-infected cells indicated that apoptosis contributes to cell death following E3-11.6K overexpression. However, the levels of activation of caspases 3 and 9 were lower in cells infected with Ad-ME compared to those infected with E1B/19K-. Furthermore, cell killing by Ad-ME was not effectively inhibited by Z-VAD-FMK, a general caspase inhibitor. Taken together, our results suggest both caspase-dependent and caspase-independent mechanisms of cell killing due to overexpression of E3-11.6K.  相似文献   

20.
Infection with cag+ but not cag-negative Helicobacter pylori leads to the formation of large homotypic aggregates of macrophage-like cells. Intracellular adhesion molecule 1 is up-regulated and recruited to the cell surface of infected cells and mediates the aggregation via lymphocyte function-associated molecule 1. This signaling may regulate cell-cell interactions and inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号