首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antifungal antibiotic clotrimazole (CLT) shows therapeutic effects on cancer, sickle cell disease, malaria, etc. by inhibiting membrane intermediate-conductance Ca2+ -activated K+ channels (IKCa). However, it is unclear whether this drug would affect human cardiac K+ currents. The present study was therefore designed to investigate the effects of CLT on transient outward K+ current (Ito1), and ultra-rapid delayed rectifier K+ current (IKur) in isolated human atrial myocytes, and cloned hERG channel current (IhERG) and recombinant human cardiac KCNQ1/KCNE1 channel current (IKs) expressed in HEK 293 cells. It was found that CLT inhibited Ito1 with an IC50 of 29.5 microM, accelerated Ito1 inactivation, and decreased recovery of Ito1 from inactivation. In addition, CLT inhibited human atrial I(Kur) in a concentration-dependent manner (IC50 = 7.6 microM). CLT substantially suppressed IhERG (IC50 = 3.6 microM), and negatively shifted the activation conductance of IhERG. Moreover, CLT inhibited IKs (IC50 = 15.1 microM), and positively shifted the activation conductance of the current. These results indicate that the antifungal antibiotic CLT substantially inhibits human cardiac repolarization K+ currents including Ito1, IKur, IhERG, and IKs. However, caution is recommended when correlating the observed in vitro effects on cardiac ion currents to the clinical relevance.  相似文献   

2.
Steroids are known to exert direct and indirect effects on cardiovascular functions, and women have been found to be more susceptible to QT prolongation than men. Although many clinical studies have been performed, the effects of steroids on cardiac repolarization are not yet fully understood. We examined the effects of 17-beta-estradiol (estradiol) on the major cardiac currents that are correlated to clinical observations of arrhythmias. Effects on the two major currents responsible for repolarization of the cardiac action potential (mediated by the human ether-à-gogo related gene (HERG) product), and by the potassium channel Q1 (KCNQ1) co-expressed with the potassium channel accessory subunit E1 (KCNE1) were examined, as well as effects on the sodium inward current (mediated by the sodium channel 5A (SCN5A) and generating the rapid upstroke of the action potential). A concentration-dependent effect of estradiol on the KCNQ1/KCNE1-mediated potassium current was observed. The half-maximal inhibition concentration (IC(50)) of estradiol on the KCNQ1/KCNE1 ion channel was calculated to 1.13+/-0.23 microM. The HERG-mediated potassium and the SCN5A-mediated sodium currents, however, were only slightly reduced by estradiol at concentrations of up to 30 microM. This suggests that alterations of the cardiac action potentials by steroids may be mediated by interaction with the KCNQ1/KCNE1 ion channel.  相似文献   

3.
Berberine prolongs the duration of cardiac action potentials without affecting resting membrane potential or action potential amplitude. Controversy exists regarding whether berberine exerts this action by preferential block of different components of the delayed rectifying potassium current, I(Kr) and I(Ks). Here we have studied the effects of berberine on hERG (I(Kr)) and KCNQ1/KCNE1 (I(Ks)) channels expressed in HEK-293 cells and Xenopus oocytes. In HEK-293 cells, the IC50 for berberine was 3.1 +/- 0.5 microM on hERG compared with 11 +/- 4% decreases on KCNQ1/KCNE1 channels by 100 microM berberine. Likewise in oocytes, hERG channels were more sensitive to block by berberine (IC50 = 80 +/- 5 microM) compared with KCNQ1/KCNE1 channels (approximately 20% block at 300 microM). hERG block was markedly increased by membrane depolarization. Mutation to Ala of Y652 or F656 located on the S6 domain, or V625 located at the base of the pore helix of hERG decreased sensitivity to block by berberine. An inactivation-deficient mutant hERG channel (G628C/S631C) was also blocked by berberine. Together these findings indicate that berberine preferentially blocks the open state of hERG channels by interacting with specific residues that were previously reported to be important for binding of more potent antagonists.  相似文献   

4.
1. We investigated the effects of bepridil on the two components of the delayed rectifier K(+) current, i.e., the rapidly activating (I(Kr)) and the slowly activating (I(Ks)) currents using tight-seal whole-cell patch-clamp techniques in guinea-pig ventricular myocytes, under blockade of L-type Ca(2+) current with nitrendipine (5 microM) or D600 (1 microM). 2. Bepridil decreased I(Ks) under blockade of I(Kr) with E4031 (5 microM), in a concentration-dependent manner. The concentration-dependent inhibition of I(Ks) by bepridil was fitted by a curve, assuming one-to-one interactions between the channel and the drug molecule. The concentration of half-maximal inhibition (IC(50)) was found to be 6.2 microM. 3. The effect of bepridil on I(Kr) was assessed using an envelope-of-tails test. In the control condition, a ratio of the tail current to the time-dependent current measured during depolarization was large (>1) at shorter pulses (<200 ms), and it decreased to a steady state value of approximately 0.4 with increases in the pulse duration. Bepridil at a concentration of 2 microM did not decrease this ratio at shorter pulses. 4. In a short-pulse (duration=50 ms) experiment that largely activates I(Kr), the drug was found to block I(Kr) in a cooperative manner (Hill coefficient=3.03) and the IC(50) was 13.2 microM. 5. These results suggest that bepridil at a clinical therapeutic concentration ( approximately 2 microM) selectively blocks I(Ks) but does not inhibit I(Kr). This may relate to the characteristic frequency-dependent effects of bepridil on the action potential duration (APD), e.g., the non-reverse use-dependent prolongation of APD.  相似文献   

5.
Indirect effects of drugs on ion channel expression levels on plasma membrane are focused as the cause of QT prolongation, and we explored the chronic effects of QT-prolonging drugs on the slow component of the delayed-rectifier potassium current (IKs). Chinese Hamster Ovary cells expressing IKs channels were constructed by transfecting KCNQ1/KCNE1 genes, and the IKs values were measured using IonWorks Quattro in the population patch-clamp mode. After 24 hours of treatment with IKs blockers (HMR1556, L-768673, or chromanol 293B) or human Ether-à-go-go related gene channel trafficking inhibitors (amiodarone,17-AAG, brefeldin A, pentamidine, thioridazine, or probucol), brefeldin A, pentamidine, and probucol decreased IKs. Probucol, which is a cholesterol-lowering drug and clinically reported to cause QT prolongation, potently inhibited the IKs in a concentration-dependent manner, with a half maximal inhibitory concentration of 149.1 nM. A reduction in the IKs by 1 μM of probucol was observed beginning 2 hours after treatment, and the current was reduced by about 80% at 24 hours. The activation and deactivation time constants of residual IKs currents became faster compared with that in the vehicle-treatment group. Acute application of probucol did not directly inhibit IKs channels at concentrations of up to 10 μM. Western blotting analysis indicated the reduction of multimeric complex of KCNQ1 proteins by probucol treatment but not monomeric form. These results suggest that chronic probucol treatment may contribute to QT prolongation in humans by decreasing the functional IKs channel complexes.  相似文献   

6.
OBJECTIVE: Atrial-selective drug therapy represents a novel therapeutic approach for atrial fibrillation management. The aim of the present study was to investigate the mechanism of hKv1.5 channel inhibition by the atrial-selective compound AVE1231. METHODS: Ionic currents were recorded from CHO cells transfected with KCNA5 cDNA with whole-cell patch-clamp technique. The effect of AVE1231 on human atrial cell action potentials was explored with a computer model. RESULTS: KCNA5 expression resulted in typical K currents that activated and inactivated voltage dependently. Ascending concentrations of AVE1231 (0.1-100 microM) led to concentration- and voltage-dependent current inhibition (IC50 at +40 mV: 2.0 +/- 0.5 microM, Hill coefficient 0.69 +/- 0.12). Acceleration of hKv1.5 current inactivation occurred with increasing AVE1231 concentrations, indicating channel inhibition in the open state (eg, taufast at +40 mV: 318 +/- 92 milliseconds under control; 14 +/- 1 milliseconds with 3 microM, P < 0.05). Using 1/taufast as an approximation of the time course of drug-channel interaction, association rate (K+1) and dissociation rate (K-1) constants were 8.18 x 10 M/s and 45.95 seconds, respectively (KD = 5.62 microM). The onset of current inhibition occurred more rapidly with higher concentrations along with a prominent tail current crossover phenomenon after AVE1231 application. Drug inhibition remained effective through a range of stimulation frequencies. Computer modeling suggested more pronounced prolongation of action potential duration under conditions of atrial remodeling. CONCLUSION: AVE1231 is an inhibitor of hKv1.5 currents with predominant action on channels in their open state; thus, it may be suitable for the treatment of AF.  相似文献   

7.
1 Tricyclic antidepressants (TCAs) are associated with cardiovascular side effects including prolongation of the QT interval of the ECG. In this report we studied the effects of two TCAs (imipramine and amitriptyline) on ionic current mediated by cloned HERG potassium channels. 2 Voltage clamp measurements of HERG currents were made from CHO cells transiently transfected with HERG cDNA. HERG-encoded potassium channels were inhibited in a reversible manner by both imipramine and amitriptyline. HERG tail currents (IHERG) following test pulses to +20 mV were inhibited by imipramine with an IC50 of 3.4+/-0.4 microM (mean+/-s.e.mean) and a Hill coefficient of 1.17+/-0.03 (n = 5). 3 microM amitriptyline inhibited IHERG by 34+/-6% (n = 3). The inhibition showed only weak voltage dependence. 3 Using an 'envelope of tails' comprised of pulses to +20 mV of varying durations, the tau of activation was found to be 155+/-30 ms for control and 132+/-26 ms for 3 microM imipramine (n = 5). Once maximal channel activation was achieved after 320 ms (as demonstrated by maximal tail currents), further prolongation of depolarization did not increase imipramine-mediated HERG channel inhibition. 4 Taking current measurements every second during a 10 s depolarizing pulse from -80 mV to 0 mV, block was observed during the first pulse in the presence of imipramine and the level of IHERG block was similar throughout the pulse (n=5). 5 A three pulse protocol (two depolarizing pulses to +20 mV separated by 20 ms at -80 mV) revealed that imipramine did not significantly alter the kinetics of IHERG inactivation. The tau of inactivation was 8+/-2 ms and 5.6+/-0.4 ms (n = 5) in the absence and presence of 3 microM imipramine, respectively, and currents inactivated to a similar extent. 6 Our data are consistent with TCAs causing components of block of the HERG channel in both the closed and open states. Any component of open channel block occurs rapidly upon depolarization. Inhibition of IHERG by the prototype TCAs imipramine and amitriptyline may suggest a mechanism for QT prolongation associated with risks of arrhythmia and sudden death that accompany high concentrations of TCAs following overdose.  相似文献   

8.
The slowly activating delayed rectifier potassium current (IKs) contributes prominently to ventricular repolarization of the cardiac action potential. Development of a selective IKs blocker is important for the elucidation of the physiologic and pathophysiologic relevance of IKs and the development of antiarrhythmic strategies. HMR 1556 [(3R,4S)-(+)-N-[3-hydroxy-2,2-dimethyl-6-(4,4,4-trifluorobutoxy) chroman-4-yl]-N-methylmethanesulfonamide] is a new chromanol derivative developed as a selective IKs blocker. Chromanol 293B, the most specific IKs blocker currently available, also inhibits the transient outward current (Ito). HMR 1556 was examined for its effects on IKs compared with rapidly activating delayed rectifier (IKr), inward rectifier (IK1), Ito, and L-type calcium (ICa.L) currents in canine left ventricular myocytes. HMR 1556 (0.5-500 nM ) inhibited IKs in a concentration-dependent manner (IC50 of 10.5 nM, compared with chromanol 293B's IC50 of 1.8microM). Inhibition of Ito was observed only at relatively high concentrations (IC50 of 33.9 microM comparable to chromanol 293B's IC of 38 microM). High concentrations of HMR 1556 also inhibited ICa.L (IC of 27.5 microM) and IKr (IC50 of 12.6 microM) while IK1 was unaffected. Our results indicate that HMR 1556 is superior to chromanol 293B in its potency and specificity for inhibition of IKs, making it a valuable experimental tool and a potential therapeutic agent.  相似文献   

9.
Retigabine [N-(2-amino-4-[fluorobenzylamino]-phenyl) carbamic acid; D-23129] is a novel anticonvulsant, unrelated to currently available antiepileptic agents, with activity in a broad range of seizure models. In the present study, we sought to determine whether retigabine could enhance current through M-like currents in PC12 cells and KCNQ2/Q3 K(+) channels expressed in Chinese hamster ovary cells (CHO-KCNQ2/Q3). In differentiated PC12 cells, retigabine enhanced a linopirdine-sensitive current. The effect of retigabine was associated with a slowing of M-like tail current deactivation in these cells. Retigabine (0.1 to 10 microM) induced a potassium current and hyperpolarized CHO cells expressing KCNQ2/Q3 cells but not in wild-type cells. Retigabine-induced currents in CHO-KCNQ2/Q3 cells were inhibited by 60.6 +/- 11% (n = 4) by the KCNQ2/Q3 blocker, linopirdine (10 microM), and 82.7 +/- 5.4% (n = 4) by BaCl(2) (10 mM). The mechanism by which retigabine enhanced KCNQ2/Q3 currents involved large, drug-induced, leftward shifts in the voltage dependence of channel activation (-33.1 +/- 2.6 mV, n = 4, by 10 microM retigabine). Retigabine shifted the voltage dependence of channel activation with an EC(50) value of 1.6 +/- 0.3 microM (slope factor was 1.2 +/- 0.1, n = 4 to 5 cells per concentration). Retigabine (0.1 to 10 microM) also slowed the rate of channel deactivation, predominantly by increasing the contribution of a slowly deactivating tail current component. Our findings identify KCNQ2/Q3 channels as a molecular target for retigabine and suggest that activation of KCNQ2/Q3 channels may be responsible for at least some of the anticonvulsant activity of this agent.  相似文献   

10.
1. By use of patch-clamp techniques, the effects of SD-3212, a novel antiarrhythmic drug, on the calcium current (Ica), the sodium current (INa) and the muscarinic acetylcholine-receptor-operated potassium current (IK.ACh) were examined and compared with those of bepridil in guinea-pig single atrial cells. 2. SD-3212 inhibited ICa and INa in a concentration-dependent manner. The IC50 values of SD-3212 for inhibition of ICa and INa were 1.29 microM and 3.92 microM, respectively. The steady state inactivation curves of ICa and INa were shifted in the hyperpolarizing direction in the presence of 1 microM SD-3212. Similar inhibition of ICa and INa was also observed with bepridil. The IC50 values of bepridil for depression of ICa and INa were 1.55 microM and 4.43 microM, respectively. 3. The muscarinic acetylcholine-receptor-operated potassium current (IK.ACh) was activated by the extracellular application of 1 microM carbachol in the GTP-loaded cells or by the intracellular loading of GTP gamma S, a nonhydrolysable GTP analogue. SD-3212 potently inhibited the carbachol- and GTP gamma S-induced IK.ACh and the IC50 values were 0.38 microM and 0.20 microM, respectively. These IC50 values were very close and about 10 times lower than those for inhibiting ICa and INa. Bepridil also suppressed the carbachol- and GTP gamma S-induced IK.ACh with the IC50 values of 0.69 microM and 0.84 microM, respectively. 4. In guinea-pig atrial cells stimulated at 0.2 Hz, carbachol at a concentration of 1 microM markedly shortened action potential duration. Both SD-3212 (0.1-1 microM) and bepridil (1-10 microM) reversed the action potential shortening in a concentration-dependent manner. The antagonizing effect of SD-3212 on the carbachol-induced action potential shortening was more potent than that of bepridil. 5. These results suggest that SD-3212 inhibits IK.ACh by depressing the function of the potassium channel itself and/or associated GTP-binding proteins. SD-3212 is a unique antiarrhythmic drug, which potently inhibits IK.Ach in addition to its class I and IV effects. SD-3212 and bepridil may be useful for the termination and prevention of vagally-induced atrial flutter and fibrillation.  相似文献   

11.
1. In the present work, the effects of the antiarrhythmic drug, berberine, on action potential and ionic currents of cat ventricular myocytes were studied. 2. Berberine prolonged action potential duration in cat ventricular myocytes without altering other variables of the action potential. 3. The drug at concentrations of 0.3-30 microM blocked only the delayed rectifier (IK) current with an IC50 = 4.1 microM. Berberine produced a tonic block and a phasic block that was increased with the duration of the depolarizing pulse. The blocking effect on IK was use-dependent, but not frequency-dependent. 4. In cardiac preparations two delayed rectifier currents have been found: a rapid (IKr) current and a slow (IKs) current. In the present work it has been found that berberine at the concentrations used, selectively blocked IKr. 5. At concentrations higher than 10 microM it also decreased the transient outward (Ito1) current. The drug did not have effects on the inward rectifier (IK1) or the high threshold calcium current (Ica-L). 6. These results show that berberine is a specific potassium channel blocker. The increase in action potential duration induced by berberine can be explained mainly by its blocking effects on IK.  相似文献   

12.
目的 研究苄普地尔(bepridil)对肥厚心肌细胞延迟整流钾电流(IK)中快激活成份(IKr)和慢激活成份(IKs)及内向整流钾电流(IK1)的作用。方法 全细胞膜片钳技术。结果 在肥厚心肌细胞中,Bepridil 30 μmol·L- 1 对IKrIKs有阻断作用,抑制率分别为20.9% (0 mV)和27.2 % (+50 mV)。“Envelopeoftail”显示bepridil对IKs的阻断作用大于IKr。Bepridil(1 - 100 μmol·L-1 )浓度依赖性的阻断IKsIKr,其IC50 分别为23.8μmol·L-1 和46.7μmol·L-1 。Bepridil 30 μmol·L-1 也能阻断IK1 ,抑制率为15.1% (- 100 mV) ,但不影响其反转电位。结论 Bepridil对甲亢性豚鼠肥厚心肌中IKs,IKrIK1有阻断作用  相似文献   

13.
In order to clarify the mechanisms by which the class Ib antiarrhythmic drug aprindine shows efficacy against atrial fibrillation (AF), we examined the effects of the drug on the repolarizing K+ currents in guinea-pig atrial cells by use of patch-clamp techniques. We also evaluated the effects of aprindine on experimental AF in isolated guinea-pig hearts. Aprindine (3 microM) inhibited the delayed rectifier K+ current (IK) with little influence on the inward rectifier K+ current (IK1) or the Ca2+ current. Electrophysiological analyses including the envelope of tails test revealed that aprindine preferentially inhibits IKr (rapidly activating component) but not IKs (slowly activating component). The muscarinic acetylcholine receptor-operated K+ current (IK.ACh) was activated by the extracellular application of carbachol (1 microM) or by the intracellular loading of GTPgammaS. Aprindine inhibited the carbachol- and GTPgammaS-induced IK.ACh with the IC50 values of 0.4 and 2.5 microM, respectively. In atrial cells stimulated at 0.2 Hz, aprindine (3 microM) per se prolonged the action potential duration (APD) by 50+/-4%. The drug also reversed the carbachol-induced action potential shortening in a concentration-dependent manner. In isolated hearts, perfusion of carbachol (1 microM) shortened monophasic action potential (MAP) and effective refractory period (ERP), and lowered atrial fibrillation threshold. Addition of aprindine (3 microM) inhibited the induction of AF by prolonging MAP and ERP. We conclude the efficacy of aprindine against AF may be at least in part explained by its inhibitory effects on IKr and IK.ACh.  相似文献   

14.
Flunarizine is a highly potent inhibitor of cardiac hERG potassium current   总被引:1,自引:0,他引:1  
Flunarizine has been widely used for the management of a variety of disorders such as peripheral vascular diseases, migraine, and epilepsy. The majority of its beneficial effects have been attributed to its ability to inhibit voltage-gated Ca2+ channels in the low micromolar range, albeit non-selectively, as flunarizine has been shown to inhibit a variety of ion channels. We examined the effects of flunarizine on potassium currents through cardiac channels encoded by the human ether-a-go-go related gene (hERG) stably expressed in CHO cells. In this study, we have characterized the effect of flunarizine on biophysical properties of hERG potassium currents with standard whole-cell voltage-clamp techniques. Notably, flunarizine is a highly potent inhibitor of hERG current with an IC50 value of 5.7 nM. The effect of flunarizine on hERG potassium current is concentration and time dependent, and displays voltage dependence over the voltage range between -40 and 0 mV. At concentrations near or above the IC50, flunarizine causes a negative shift in the voltage dependence of hERG current activation and accelerates tail current deactivation. Flunarizine preferentially blocks the activated state of the channel and displays weak frequency dependence of inhibition. Flunarizine also inhibits KCNQ1/KCNE1 channel current with an IC50 of 0.76 microM.  相似文献   

15.
The effects of nicotine on the ionic currents in guinea pig cardiomyocytes were investigated using a whole-cell voltage-clamp technique. Nicotine (30 microM to 1 mM) inhibited the ionic currents in a concentration-dependent manner. Nicotine at 30 microM did not affect the Ca2+ current (ICa), but at 300 microM inhibited ICa at 10 mV by 29.3 +/- 2.4% (n = 6, P < .01) and at 1 mM almost blocked the ICa (by approximately 90%, n = 5, P < .001). After 5- to 10-min washout, these responses had 50-70% recovery. The fast time constant (tau f) of the inactivation phase for ICa at 10 mV was not affected, but the slow one (tau s) increased from 35.7 +/- 2.8 to 39.5 +/- 2.4 ms (n = 7) at 300 microM nicotine. Nicotine at 100 microM also inhibited the delayed rectifier K+ current (IK) at 60 mV by 42.7 +/- 3.0% (n = 7, P < .01), and at 30 microM inhibited the inwardly rectifying K+ current (IKl) at -110 mV by 43.0 +/- 2.5% (n = 7, P < .01). The responses to nicotine were not significantly modified by atropine, hexamethonium, and nicotine receptor antagonists (d-tubocurarine and benzoquinonium). The IK is composed of two components for rapidly and slowly activated currents (IKr and IKs). Nicotine markedly decreased the tail current of IKr, but had less or no effect on that of IKs. However, the activation and inactivation kinetics (d infinity and f infinity) for ICa and its activation kinetics (P infinity) for IKr and IKs were not modified. These results suggest that nicotine inhibits the ionic currents with relatively higher sensitivity to IKl and IKr, resulting in modulation of the cardiac functions.  相似文献   

16.
Liu B  Zhang X  Wang C  Zhang G  Zhang H 《Neuropharmacology》2008,54(4):629-639
The first-generation antihistamines are widely prescribed medications that relieve allergic reactions and urticaria by blocking the peripheral histamine H(1) receptor. Overdose of these drugs often results in serious neuronal toxic effects, including seizures, convulsions and worsening of epileptic symptoms. The KCNQ/M K(+) channel plays a crucial role in controlling neuron excitability. Here, we demonstrate that mepyramine and diphenhydramine, two structurally related first-generation antihistamines, can act as potent KCNQ/M channel blockers. Extracellular application of these drugs quickly and reversibly reduced KCNQ2/Q3 currents heterologously expressed in HEK293 cells. The current inhibition was concentration and voltage dependent. The estimated IC(50) (12.5 and 48.1 microM, respectively) is within the range of drug concentrations detected in poisoned patients (30-300 microM). Both drugs shifted the I-V curve of KCNQ2/Q3 channel to more depolarized potentials and altered channel gating properties by prolonging activation and shortening deactivation kinetics. Mepyramine also inhibited the individual homomeric KCNQ1-4 and heteromeric KCNQ3/Q5 currents. Moreover, mepyramine inhibited KCNQ2/Q3 current in an outside-out patch excised from HEK293 cells and the inhibitory effect was neither observed when it was applied intracellularly nor affected by blocking phospholipase C (PLC) activity, indicating an extracellular and direct channel blocking mechanism. Finally, in cultured rat superior cervical ganglion (SCG) neurons, mepyramine reduced the M type K(+) current in a concentration-dependent manner and led to marked membrane potential depolarization. It is likely that these effects may be involved in the adverse neuroexcitatory effects observed in patients experiencing an overdose of antihistamines.  相似文献   

17.
18.
AIM: To study the effects of dauricine(Dau) on the rapidly activating component (IKr), the slowly activating component (IKs) of the delayed rectifier potassium current, and the inward rectifier potassium current (IKl) in guinea pig ventricular myocytes. METHODS: Single myocytes were dissociated by enzymatic dissociation method. The currents were recorded with the whole-cell configuration of the patch-clamp technique. RESULTS: (1) Dau 1, 3, 10, 30, and 100 mumol.L-1 blocked IKr and tail current (IKr-tail) in a concentration-dependent manner. The IC50 for block of IKr-tail was 16 (95% confidence limits: 13-22) mumol.L-1. The time constant of IKr-tail deactivation was (140 +/- 38) ms in the control and (130 +/- 26) ms in the presence of Dau 30 mumol.L-1 (n = 6 cells from 3 animals, P > 0.05). (2) Dau 1-100 mumol.L-1 produced concentration-dependent blocks of IKs and tail current (IKs-tail). The IC50 value for block of IKs-tail was 33 (95% confidence limits: 24-46) mumol.L-1. The time constant of IKs-tail deactivation was (92 +/- 18) ms in the control and (84 +/- 16) ms in the presence of Dau 30 mumol.L-1 (n = 8 cells from 4 animals, P > 0.05). (3) Addition of Dau 30 mumol.L-1 induced block of IKs and IKs-tail (n = 7 cells from 3 animals). The degree of block of IKs and IKs-tail depended on test potentials, increasing with more positive depolarizations. (4) Dau 20 mumol.L-1 blocked mainly inward component of IKl and reduced the reversal potential from -72 mV (control) to -78 mV (n = 6 cells from 3 animals). CONCLUSION: (1) Dau inhibited IKs, but not the process of IKs deactivation. (2) Dau blocked IKr, but not the process of deactivation. (3) Dau had a blocking effect on IKl.  相似文献   

19.
目的研究双苯氟嗪对KCNQ1/KCNE1钾通道电流的影响,以探讨其抗心律失常作用的可能机制。方法采用双电极电压钳技术,观察双苯氟嗪对表达于非洲爪蟾卵母细胞上的KCNQ1/KCNE1钾通道电流的影响。结果双苯氟嗪(0.3~30μmol.L-1)浓度依赖性地抑制KCNQ1/KCNE1电流,IC50为(8.9±1.8)μmol.L-1。在-10~90mV范围内双苯氟嗪对KCNQ1/KCNE1电流的抑制作用具有电压依赖性。双苯氟嗪10μmol.L-1使KCNQ1/KCNE1电流的半数激活电压右移3mV,增大激活时间常数,减慢KCNQ1/KCNE1电流的激活;降低慢去活时间常数和快去活时间常数,加速KCNQ1/KCNE1电流的去活。结论双苯氟嗪降低KCNQ1/KCNE1钾通道电流并改变其动力学特征,提示双苯氟嗪抗心律失常的作用可能与其有关。  相似文献   

20.
目的研究豚鼠从幼年到成年的发育过程中心室肌细胞延迟整流钾电流快(IKr)、慢成份(IKs)及动作电位的变化。方法酶解法急性分离新生、幼年及成年3个不同年龄阶段豚鼠心室肌细胞。(1)室温下采用全细胞膜片钳技术首先记录总的延迟整流钾电流IK,再加入选择性IKr阻断剂E-4031区分IKr和IKs,计算各成份尾电流密度;(2)采用打孔膜片钳技术观察动作电位在生长发育过程中的变化。结果(1)从新生、幼年到成年3个阶段的发育过程中,豚鼠心室细胞IKr和IKs的电流密度呈增长趋势,但二者的变化方式不同。IKs呈逐渐递增式发育,表现为幼年组在-30~+50 mV范围内均明显高于新生组,成年组亦明显高于幼年组;而幼年组IKr的电流密度在-10~+50 mV范围内高于新生组,但幼年与成年组无明显差别。(2)在1Hz的刺激频率下,豚鼠心室肌细胞90%复极的动作电位时程APD90随动物年龄的增长明显延长。结论 (1)豚鼠从出生、幼年到成年发育过程中心室肌细胞IKr和IKs电流密度呈不同方式增长;(2)豚鼠心室肌细胞动作电位时程出生至成年逐渐延长,提示内向电流成分在发育过程中发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号