共查询到20条相似文献,搜索用时 15 毫秒
1.
Diego Centonze Paolo Gubellini Giorgio Bernardi Paolo Calabresi 《Brain Research Reviews》1999,31(1):1549
Two different forms of synaptic plasticity have been found at corticostriatal synapses: long-term depression (LTD) and long-term potentiation (LTP). Both these enduring changes in the efficacy of excitatory neurotransmission in the striatum have a major impact on the physiological activity of the basal ganglia and are triggered by the stimulation of complex and independent cascades of intracellular second messenger systems. Striatal LTD and LTP are evoked following the repetitive stimulation of corticostriatal fibers and are dependent on the glutamate ionotropic receptor subtype activated. Recent experimental evidence indicates that two different subtypes of interneurons attend in the correct processing of information flow arising from the cortex and leading to striatal LTD or LTP. Acetylcholine (Ach) and nitric oxide (NO) producing striatal interneurons, in fact, are activated by the cortex during the induction phase of striatal plasticity, and stimulate, in turn, the intracellular changes in projection neurons required for LTD or LTP. Interneurons, therefore, exerts a feed-forward control of the excitability of striatal projection neurons ensuring the coordinate expression of two alternative forms of synaptic plasticity at the same type of excitatory synapse. 相似文献
2.
Aging creates deficits in motor performance related to changes in striatal processing of cortical information. This study describes age-related changes in corticostriatal snaptic plasticity and associated mechanisms, which may contribute to declines in motor behavior. Intracellular recordings revealed an age-related decrease in the expression of paired-pulse, posttetanic, and long-term potentiation (LTP). The age-related difference in LTP was associated with reduced sensitivity to block of N-methyl-D-aspartate (NMDA) receptors in the aged population. These age-related changes could not be explained by increased L-type Ca(2+)channel activity, since block of L-type Ca(2+) channels with nifedipine increased rather than decreased the age-related difference in long-term plasticity. Age-related increases in reactive oxygen species (ROS) modulation were also ruled out, since application of H(2)O(2) produced changes in synaptic function that were opposite to trends seen in aging, and addition of the antioxidant Trolox-C had a larger effect on long-term plasticity in young rats than in older rats. A robust age-related difference in long-term synaptic plasticity was found by studying synaptic plasticity following the blocking of D2 receptors with l-sulpiride, which may involve age-difference in NMDA receptor function. l-sulpiride consistently enabled a slow development of LTP at young (but not aged) corticostriatal synapses. However, No age differences were found in the sensitivity to the addition of the D2 receptor agonist quinpirole. These findings provide evidence for age-induced changes in the release properties of cortical terminals and in the functioning of postsynaptic striatal NMDA receptors, which may contribute to age-related deficits in striatum control of movement. 相似文献
3.
Centonze D Gubellini P Pisani A Bernardi G Calabresi P 《Reviews in the neurosciences》2003,14(3):207-216
Two distinct forms of synaptic plasticity have been described at corticostriatal synapses: long-term depression (LTD) and long-term potentiation (LTP). Both these enduring changes in the efficacy of excitatory neurotransmission in the striatum have a major impact on the physiological activity of the basal ganglia and are triggered by the stimulation of complex and independent cascades of intracellular second messenger systems. Along with the massive glutamatergic inputs originating from the cortex, striatal neurons receive a myriad of other synaptic contacts arising from different sources. In particular, while the nigrostriatal pathway provides this brain area with dopamine (DA), intrinsic circuits are the main source of acetylcholine (ACh) and nitric oxide (NO). The three neurotransmitter systems interact with each other to determine whether corticostriatal LTP or LTD is triggered in response to repetitive synaptic stimulation. Two distinct subtypes of striatal interneurons produce ACh and NO in the striatum. These interneurons are activated by the cortex during the induction phase of striatal plasticity, and stimulate, in turn, the intracellular changes in projection neurons required for LTD or LTP. Interneurons, therefore, exert a feedforward control of the excitability of striatal projection neurons by ensuring the coordinate expression of two alternative forms of synaptic plasticity at the same type of excitatory synapse. The integrative action exerted by striatal projection neurons on the converging information arising from the cortex, nigral DA neurons, and from ACh- and NO-producing interneurons dictates the final output of the striatum to the other structures of the basal ganglia. 相似文献
4.
Knowledge of the effect of dopamine on corticostriatal synaptic plasticity has advanced rapidly over the last 5 years. We consider this new knowledge in relation to three factors proposed earlier to describe the rules for synaptic plasticity in the corticostriatal pathway. These factors are a phasic increase in dopamine release, presynaptic activity and postsynaptic depolarisation. A function is proposed which relates the amount of dopamine release in the striatum to the modulation of corticostriatal synaptic efficacy. It is argued that this function, and the experimental data from which it arises, are compatible with existing models which associate the reward-related firing of dopamine neurons with changes in corticostriatal synaptic efficacy. 相似文献
5.
Raju DV Ahern TH Shah DJ Wright TM Standaert DG Hall RA Smith Y 《The European journal of neuroscience》2008,27(7):1647-1658
Two cardinal features of Parkinson's disease (PD) pathophysiology are a loss of glutamatergic synapses paradoxically accompanied by an increased glutamatergic transmission to the striatum. The exact substrate of this increased glutamatergic drive remains unclear. The striatum receives glutamatergic inputs from the thalamus and the cerebral cortex. Using vesicular glutamate transporters (vGluTs) 1 and 2 as markers of the corticostriatal and thalamostriatal afferents, respectively, we examined changes in the synaptology and relative prevalence of striatal glutamatergic inputs in methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys using electron microscopic immunoperoxidase and confocal immunofluorescence methods. Our findings demonstrate that the prevalence of vGluT1-containing terminals is significantly increased in the striatum of MPTP-treated monkeys (51.9 ± 3.5% to 66.5 ± 3.4% total glutamatergic boutons), without any significant change in the pattern of synaptic connectivity; more than 95% of vGluT1-immunolabeled terminals formed axo-spinous synapses in both conditions. In contrast, the prevalence of vGluT2-immunoreactive terminals did not change after MPTP treatment (21.7 ± 1.3% vs. 21.6 ± 1.2% total glutamatergic boutons). However, a substantial increase in the ratio of axo-spinous to axo-dendritic synapses formed by vGluT2-immunoreactive terminals was found in the pre-caudate and post-putamen striatal regions of MPTP-treated monkeys, suggesting a certain degree of synaptic reorganization of the thalamostriatal system in parkinsonism. About 20% of putative glutamatergic terminals did not show immunoreactivity in striatal tissue immunostained for both vGluT1 and vGluT2, suggesting the expression of another vGluT in these boutons. These findings provide striking evidence that suggests a differential degree of plasticity of the corticostriatal and thalamostriatal system in PD. 相似文献
6.
Microglia are the resident macrophages of the central nervous system.Microglia possess varied morphologies and functions.Under normal physiological conditions,microglia mainly exist in a resting state and constantly monitor their microenvironment and survey neuronal and synaptic activity.Through the C1 q,C3 and CR3"Eat Me"and CD47 and SIRPα"Don't Eat Me"complement pathways,as well as other pathways such as CX3 CR1 signaling,resting microglia regulate synaptic pruning,a process crucial for the promotion of synapse formation and the regulation of neuronal activity and synaptic plasticity.By mediating synaptic pruning,resting microglia play an important role in the regulation of experience-dependent plasticity in the barrel cortex and visual cortex after whisker removal or monocular deprivation,and also in the regulation of learning and memory,including the modulation of memory strength,forgetfulness,and memory quality.As a response to brain injury,infection or neuroinflammation,microglia become activated and increase in number.Activated microglia change to an amoeboid shape,migrate to sites of inflammation and secrete proteins such as cytokines,chemokines and reactive oxygen species.These molecules released by microglia can lead to synaptic plasticity and learning and memory deficits associated with aging,Alzheimer's disease,traumatic brain injury,HIV-associated neurocognitive disorder,and other neurological or mental disorders such as autism,depression and post-traumatic stress disorder.With a focus mainly on recently published literature,here we reviewed the studies investigating the role of resting microglia in synaptic plasticity and learning and memory,as well as how activated microglia modulate disease-related plasticity and learning and memory deficits.By summarizing the function of microglia in these processes,we aim to provide an overview of microglia regulation of synaptic plasticity and learning and memory,and to discuss the possibility of microglia manipulation as a therapeutic to ameliorate cognitive deficits associated with aging,Alzheimer's disease,traumatic brain injury,HIV-associated neurocognitive disorder,and mental disorders. 相似文献
7.
8.
Volado, the gene encoding the Drosophila alphaPS3-integrin, is required for normal short-term memory formation (Grotewiel et al., 1998), supporting a role for integrins in synaptic modulation mechanisms. We show that the Volado protein (VOL) is localized to central and peripheral larval Drosophila synapses. VOL is strongly concentrated in a subpopulation of synaptic boutons in the CNS neuropil and to a variable subset of synaptic boutons at neuromuscular junctions (NMJs). Mutant morphological and functional synaptic phenotypes were analyzed at the NMJ. Volado mutant synaptic arbors are structurally enlarged, suggesting VOL negatively regulates developmental synaptic sprouting and growth. Mutant NMJs exhibit abnormally large evoked synaptic currents and reduced Ca(2+) dependence of transmission. Strikingly, multiple forms of Ca(2+)- and activity-dependent synaptic plasticity are reduced or absent. Conditional Volado expression in mutant larvae largely rescues normal transmission and plasticity. Pharmacologicially disrupting integrin function at normal NMJs phenocopies features of mutant transmission and plasticity within 30-60 min, demonstrating that integrins acutely regulate functional transmission. Our results provide direct evidence that Volado regulates functional synaptic plasticity processes and support recent findings implicating integrins in rapid changes in synaptic efficacy and in memory formation. 相似文献
9.
At most synapses, information about the processes underlying transmitter release evoked by a presynaptic action potential has been gathered indirectly, based on characterization of the postsynaptic response. Traditionally, the two electrophysiological parameters used for this indirect investigation are the amplitude and latency of the response. The amplitude measures amount of transmitter released; the latency (synaptic delay) reflects the kinetics of a sequence of events that culminates in release. The latency distribution of quantal events, or the time course of composite evoked responses, can be used to infer the time course of the elevated release probability following a stimulus. Recent studies have demonstrated that synaptic delay is not invariant, but is modifiable during several forms of short-term synaptic plasticity. This suggests that the step of transmitter secretion can be modulated directly. Several models for short-term synaptic plasticity are evaluated in the context of the observed changes in synaptic delay. 相似文献
10.
There is increasing evidence for disturbances in nicotinic acetylcholine receptor (nAChR) function in Alzheimer's disease (AD). nAChRs are involved in the regulation of many processes, including synaptic plasticity and memory. Levels of nAChRs are altered in the Alzheimer brain and there is evidence that the amyloid betaprotein (Abeta) can directly bind to nAChRs. Nicotinic agonists may also protect cells from Abeta toxicity. Drugs which interact with the nAChR or which inhibit Abeta binding to nAChRs may be of value for the treatment of AD. 相似文献
11.
Estrogens influence morphology of the brain not only in structures linked to reproductive cycle and reproductive behavior but also structure engaged in memory and cognitive functions. Estrogens stimulate synaptogenesis in pyramidal neurons of CA1 field of hippocampus. Increase in the number of spines on apical dendrites in rats occurs in the prostures phase of the cycle as well as exogenous estradiol application in ovariectomized females. The new synapses are enriched in NMDA receptor and it was found that their generation involves activation of NMDA receptors, PKA and CREB. Estradiol-induced synaptogenesis is accompanied by facilitation of LTP induction. Estradiol affects pyramidal cells of CA1 probably by inhibiting GABA-ergic interneurons. It also modulates unspecific activatory systems, which contribute significantly to neuroplasticity. 相似文献
12.
Lithium, a small cation, has been used in the treatment of bipolar disorders since its introduction in the 1950s by John Cade. Extensive research on the mechanism of action of lithium has revealed several possible targets. For some time, the most widely accepted action of lithium was its inhibitory effect on the synthesis of inositol, resulting in depletion of inositol with profound effects on neuronal signal transduction pathways. However, several studies show that some effects of lithium are not mediated through inositol depletion. Recent findings demonstrate that lithium directly inhibits, in a non-competitive fashion, the activity of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase highly expressed in the central nervous system. Interestingly, inhibition of GSK-3β has been shown to regulate neuronal plasticity by inducing axonal remodelling and increasing the levels of synaptic proteins. These findings raise the possibility for developing new therapeutic approaches for the treatment of bipolar disorders. 相似文献
13.
14.
15.
C J Wilson 《The Journal of comparative neurology》1987,263(4):567-580
The neurons of origin of the bilateral corticostriatal projection arising from the medial agranular cortical field in rats were identified by antidromic activation from contralateral neostriatal stimulation. The same cells were tested for antidromic activation from the contralateral neocortex and for orthodromic responses to stimulation of neocortex of the contralateral hemisphere or ipsilateral rostral thalamus. The neurons were then stained by intracellular injection of horseradish peroxidase. The laminar distribution of these neurons was compared to that of cortical cells stained retrogradely after injection of wheat germ agglutinin/HRP in the ipsilateral or contralateral neostriatum. The morphological features of physiologically identified corticostriatal neurons, their laminar organization, and their responses to stimulation were examined and compared with crossed corticocortical and brainstem-projecting cells. Crossed corticostriatal cells of the medial agranular cortical field were medium-sized pyramidal neurons found in the superficial part of layer V and in the deep part of layer III. Their basilar dendritic fields and initial intracortical axon collateral arborizations were coextensive with the layer defined by the distribution of corticostriatal neurons. The apical dendrites were thin and sparsely branched but consistently reached layer I, where they made a small arborization. These morphological features were shared by cortical neurons projecting to contralateral neocortex but not responding antidromically to stimulation of contralateral neostriatum, but they were not shared by brainstem-projecting cortical cells. Orthodromic responses to contralateral cortical stimulation consisted of brief excitatory postsynaptic potentials that were followed by powerful and longer-lasting inhibitory postsynaptic potentials. Corticostriatal cells also exhibited small excitatory postsynaptic potentials in response to thalamic stimulation. Many crossed corticostriatal neurons were also commissural corticocortical neurons. The results of reciprocal collision tests showed that this was due to the existence of two separate axonal branches, one projecting to contralateral neocortex and one to contralateral neostriatum. Intracellular staining of these neurons revealed ipsilateral axonal projections to the neostriatum and cortex. 相似文献
16.
Spine architecture and synaptic plasticity 总被引:9,自引:0,他引:9
Many forms of mental retardation and cognitive disability are associated with abnormalities in dendritic spine morphology. Visualization of spines using live-imaging techniques provides convincing evidence that spine morphology is altered in response to certain forms of LTP-inducing stimulation. Thus, information storage at the cellular level appears to involve changes in spine morphology that support changes in synaptic strength produced by certain patterns of synaptic activity. Because the structure of a spine is determined by its underlying actin cytoskeleton, there has been much effort to identify signaling pathways linking synaptic activity to control of actin polymerization. This review, part of the TINS Synaptic Connectivity series, discusses recent studies that implicate EphB and NMDA receptors in the regulation of actin-binding proteins through modulation of Rho family small GTPases. 相似文献
17.
This study demonstrates that the mechanisms involved in the production of long-term potentiation (LTP) in the hippocampus appear to be independent of those which generate shorter-lasting plasticity, but that both processes are activated concurrently following an LTP-inducing stimulus. Adult male Sprague-Dawley rats were anesthetized using either pentobarbital or secobarbital to record extracellular field potentials from the hippocampal CA1 pyramidal cell layer in response to stimulation of commissural afferents. Plasticity was generated by the delivery of a five-pulse patterned stimulus train, consisting of one priming pulse followed 170 milliseconds later by a burst of four pulses at 200 Hz. While similar LTP was observed in both groups, short-term plasticity was absent in the secobarbital-anesthetized animals. This result suggests that different plasticity mechanisms in the hippocampus are activated in parallel by the triggering stimulus. Synapse 30:112–115, 1998. © 1998 Wiley-Liss, Inc. 相似文献
18.
Dendritic spines, which are the preferred site of excitatory synapses in the mammalian CNS, are actin-rich structures. We hypothesized that dynamic regulation of actin in spines would differentially affects processes that lead to potentiation vs depression of synaptic efficacy. Here, we report that the expression of long-term depression of excitatory synaptic transmission persists in the presence of actin polymerization in rat hippocampal slices. We observe that the reversal of LTD, de-depression, by high-frequency stimulation was completely blocked. Using electron microscopy, dramatic changes in dendritic spine morphology which accompany the sustained, irreversible depression of excitatory synaptic transmission were observed. 相似文献
19.
Marian Tsanov Seralynne D. Vann Jonathan T. Erichsen Nick Wright John P. Aggleton Shane M. O'Mara 《Hippocampus》2011,21(1):1-8
The hippocampus projects to the anterior thalamic nuclei both directly and indirectly via the mammillary bodies, but little is known about the electrophysiological properties of these convergent pathways. Here we demonstrate, for the first time, the presence of long‐term plasticity in anterior thalamic nuclei synapses in response to high‐ and low‐frequency stimulation (LFS) in urethane‐anesthetized rats. We compared the synaptic changes evoked via the direct vs. the indirect hippocampal pathways to the anterior thalamus, and found that long‐term potentiation (LTP) of the thalamic field response is induced predominantly through the direct hippocampal projections. Furthermore, we have estimated that that long‐term depression (LTD) can be induced only after stimulation of the indirect connections carried by the mammillothalamic tract. Interestingly, basal synaptic transmission mediated by the mammillothalamic tract undergoes use‐dependent, BDNF‐mediated potentiation, revealing a distinct form of plasticity specific to the diencephalic region. Our data indicate that the thalamus does not passively relay incoming information, but rather acts as a synaptic network, where the ability to integrate hippocampal and mammillary body inputs is dynamically modified as a result of previous activity in the circuit. The complementary properties of these two parallel pathways upon anterior thalamic activity reveal that they do not have duplicate functions. © 2009 Wiley‐Liss, Inc. 相似文献
20.
The ability of neurons to modulate the strength of their synaptic connections has been shown to depend on the relative timing of pre- and postsynaptic action potentials. This form of synaptic plasticity, called spike-timing-dependent plasticity (STDP), has become an attractive model for learning at the single-cell level. Yet, despite its popularity in experimental and theoretical neuroscience, the influence of dendritic mechanisms in the induction of STDP has been largely overlooked. Several recent studies have investigated how active dendritic properties and synapse location within the dendritic tree influence STDP. These studies suggest the existence of learning rules that depend on firing mode and subcellular input location, adding unanticipated complexity to STDP. Here, we propose a new look at STDP that is focused on processing at the postsynaptic site in the dendrites, rather than on spike-timing at the cell body. 相似文献