首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that both the midbrain periaqueductal gray (PAG) and the superior colliculus receive a significant serotoninergic (5-HT) innervation. In the present study the origins of these 5-HT projections to the rodent PAG and superior colliculus were analyzed by using a combined immunohistochemical-retrograde transport technique. Thirteen brainstem regions were found to contain double-labelled 5-HT-like immunoreactive neurons following HRP injections into the PAG while only four brainstem nuclei contained double-labelled neurons following superior collicular injections. After HRP deposits into the ventral PAG, the largest percentage of double-labelled neurons was identified in nucleus raphe magnus, pars alpha of the nucleus gigantocellularis, and the paragigantocellular nucleus. The dorsal PAG, on the other hand, received the largest percentage of its 5-HT projections from nuclei raphe dorsalis, raphe obscurus, raphe pontis, and raphe medianis. The 5-HT input to the superior colliculus was found to arise exclusively from nuclei raphe dorsalis, raphe medianis, and raphe pontis and from the contralateral periaqueductal gray. Raphe nuclei were found to contribute serotoninergic projections to both the PAG and the superior colliculus while reticular nuclei contributed 5-HT projections only to the PAG. Injections of the fluorescent retrograde tracers true blue and nuclear yellow were then made into the PAG and superior colliculus to ascertain if neurons located in raphe nuclei that projected to both structures provided axon collaterals to both areas. Generally, less than 10% of raphe neurons projecting to the superior colliculus were identified as providing axon collaterals to the PAG. The present results demonstrate major quantitative and qualitative differences in the origin of 5-HT projections to the ventral PAG and superior colliculus. The origin of 5-HT input to the dorsal PAG, on the other hand, showed many similarities to the origin of 5-HT innervation of the superior colliculus. These data also indicate that approximately 35% of raphe neurons provide nonserotoninergic projections to the PAG and superior colliculus.  相似文献   

2.
Electrical stimulation of the midbrain periaqueductal gray region (PAG) suppresses the tooth pulp-evoked jaw-opening reflex (TP-JOR). In the present study the pathways that mediate this suppression were investigated by placing brainstem lesions in lightly anesthetized cats. Parasagittal lesions that interrupted the afferent and efferent connections of the medullary and pontine raphe nuclei attenuated (but did not abolish) suppression of the TP-JOR evoked by PAG stimulation. This result provides further evidence that medial brainstem structures partially mediate the effects of PAG stimulation in the trigeminal system.  相似文献   

3.
目的 探讨舒马曲坦治疗偏头痛的作用机制.方法 应用电刺激大鼠上矢状窦区硬脑膜制作偏头痛动物模型,观察给予舒马曲坦后中脑导水管周围灰质核转录因子-κB(NF-κB)蛋白表达的变化.结果 空白组、假手术组、电刺激组、舒马曲坦组、生理盐水对照组每张切片的NF-κB阳性神经元计数分别为111.7±15.7、112.9±10.7、508.7±30.8、179.5±14.9、497.8±20.6.刺激组与空白组、假手术组及舒马曲坦组比较,差异有统计学意义(F=944.78,P<0.05).结论 电刺激大鼠上矢状窦区硬脑膜后,在中脑导水管周围灰质区出现了NF-κB细胞的激活,舒马曲坦可使其表达降低.  相似文献   

4.
Studies of spontaneous firing (SF) in the midbrain periaqueductal gray (PAG) neurons before and after stimulation of nucleus raphe magnus, locus coeruleus and substantia nigra were performed on the rat anesthetized with Hexenal (200 mg/kg). Three types of neurons different in SF structure were found. Stimulation of indicated structures increased SF rate in 11-14.5% and decreased 31-47% of the studied neurons of the third group. Simultaneous stimulation of two structures did not induce a remarkable increase of SF rate. If one of two simultaneously stimulated structures suppressed SF the ultimate effect was, as a rule, depression of SF. Greatest suppression of SF was observed if stimulation of nucleus raphe magnus was induced. Role of PAG in organization of the brain stem component of antinociceptive mechanism is discussed.  相似文献   

5.
Various studies reported c-Fos expression in the neurons in the trigeminal sensory nuclear complex (TSNC) following experimental tooth movement, which implies pain transmission to the central nervous system. Meanwhile, MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors, was shown to markedly reduce the expression of c-Fos in the trigeminal subnucleus caudalis (Vc) following noxious stimulation but to enhance c-Fos expression markedly in other brain regions, i.e., the neocortex, dorsal raphe and thalamic nuclei. In the present study, we examined the nature of c-Fos expression in the brainstem including the TSNC and midbrain following administration of MK-801 and/or experimental movement of the rat molars. Twelve hours after the beginning of experimental tooth movement, c-Fos was expressed bilaterally in the superficial laminae of Vc (Vc I/II), dorsomedial areas of the trigeminal subnucleus oralis (Vodm) and rostro-dorsomedial areas of the trigeminal subnucleus oralis (Vor) with the ipsilaterally dominant distribution, but hardly in the periaqueductal gray (PAG), dorsal raphe nucleus (DR) and Edinger-Westphal nucleus (EW). Intraperitoneal administration of MK-801 (0.03, 0.3 and 3.0 mg/kg) prior to the onset of experimental tooth movement reduced c-Fos in the TSNC (Vc I/II, Vodm and Vor) but increased it in the nucleus raphe magnus (NRM), ventrolateral PAG (vl PAG), DR and EW. These results highly emphasize that during experimental tooth movement, a blockade of NMDA receptors induces neuronal suppression in the TSNC but increases neuronal activity in the descending antinociceptive system including the NRM, vl PAG, DR and EW.  相似文献   

6.
Migraine is a common neurological condition, causing high disability, but the pathomechanism of the disease is not yet fully understood. Activation of the trigeminovascular system could play a crucial role in the manifestation of the symptoms, but initial step of this activation remains unknown. Functional imaging studies have revealed that certain brainstem areas, referred to as migraine generators, are activated during a migraine attack, including the dorsal raphe, the periaqueductal gray, the locus coeruleus, and the nucleus raphe magnus. However, the studies performed to date have not demonstrated whether this activation is a trigger or a consequence of the migraine attack. With the aim of evaluating the functional relationship between activation of the trigeminal system and migraine generators, we examined the changes in c-Fos immunoreactivity in the above-mentioned nuclei after stimulation of the trigeminal ganglion, an animal model for trigeminovascular activation. The stimulation led to significant increases in the number of c-Fos immunoreactive cells in the nucleus raphe magnus and in the caudal part of the spinal trigeminal nucleus, 2 and 4 h after the stimulation. Activation of the trigeminal system failed to exhibit uniform activation of the brain stem nuclei related to migraine. Our results suggest that the activation of the trigeminal system in the rat by electrical stimulation of the trigeminal ganglion leads to the activation of the descending pain modulatory system, but not to the activation of “migraine generator” nuclei. Therefore, the activity pattern seen in functional studies may reflect a unique feature, exclusively present in migraine.  相似文献   

7.
In order to study the organization of the rostral medulla of the cat and its contribution to pain control mechanisms, we have examined the afferent connections of the midline nucleus raphe magnus (NRM), the laterally located nucleus reticularis magnocellularis (Rmc), and the nucleus reticularis gigantocellularis (Rgc) located dorsal to Rmc. Iontophoretic injections of HRP were made into the three regions; the distribution of retrogradely labeled neurons in brainstem and spinal cord was then mapped. While significant differences characterize the source of afferents to Rgc and NRM/Rmc, there is little to distinguish that between NRM and Rmc. The predominant spinal projection is to Rgc; fewer labeled neurons were recorded after injections into Rmc. In contrast, no significant direct spinal projection to NRM was found. All three regions receive input from widespread areas within the medullary and pontine reticular formation. The most pronounced differences in the distribution of retrogradely labeled neurons were found in the midbrain. The major projection to both NRM and Rmc derives from the periaqueductal gray (PAG) and from the adjacent nucleus cuneiformis. Labeled cells are concentrated in the dorsal and lateral PAG; few are found in the ventrolateral PAG. In contrast, Rgc receives few afferents from the PAG; however, after Rgc injections, many cells were recorded in the deep layers of the contralateral tectum. None of the injection sites produced significant labeling of the catecholamine-rich dorsolateral pontine tegmentum or of the nucleus raphe dorsalis. The demonstration of significant PAG projections to NRM/Rmc provides anatomical evidence for the hypothesis that opiate and stimulation-produced analgesia involves connections from PAG to neurons of NRM and Rmc which, in turn, inhibit spinal nociceptors.  相似文献   

8.
Retrograde tracing and immunocytochemistry were used to examine the axon collateralization of brainstem serotonin (5-HT) and norepinephrine (NE) cells to the periaqueductal gray (PAG) and spinal cord. Tyrosine hydroxylase (TH)-immunofluorescent neurons which collateralize to the PAG and the cervical spinal cord were found in all brainstem catecholamine cell groups previously shown to contain neurons which project to the spinal cord, including the A5 and A7 cell groups, locus coeruleus, subcoeruleus and the C1 cell group. Many TH-immunofluorescent cells which project to the PAG but not to the spinal cord were also found. The region of the nucleus raphe magnus (NRM) also contained many neurons retrogradely labeled from the PAG. These overlapped with the distribution of spinally projecting 5-HT-immunofluorescent cells in the NRM, however, less than 1% of the PAG projecting cells in this region were 5-HT-immunofluorescent. In contrast, many 5-HT-immunofluorescent cells in the more rostral nucleus raphe pontis and nucleus raphe dorsalis were retrogradely labeled from the PAG but not from the spinal cord. Finally, a population of neurons in the NRM and adjacent reticular formation and in the region of several pontomedullary catecholamine cell groups collateralized to the PAG and spinal cord, but were neither 5-HT nor TH-immunofluorescent. Taken together, these findings raise the possibility that the noradrenergic contribution to the spinal antinociceptive effects produced by PAG electrical stimulation results, in part, from antidromic activation of brainstem noradrenergic neurons that have axon collaterals projecting to the PAG and spinal cord. In contrast, the 5-HT contribution to the spinal antinociceptive effects produced by PAG electrical stimulation is more likely to derive, as previously proposed, from orthodromic activation of raphe-spinal serotonergic axons.  相似文献   

9.
M J Chandler  C Qin  Y Yuan  R D Foreman 《Brain research》1999,829(1-2):204-208
Trigeminal, spinal and vagal afferent fibers overlap in C1-C2 segments. We hypothesized that trigeminal input from the superior sagittal sinus (SSS) can excite C1-C2 spinothalamic tract (STT) neurons receiving thoracic visceral or phrenic inputs. Effects of SSS stimulation were evenly divided among cells responding to each nerve stimulus; magnitude of responses to ipsilateral vagal input was greater in neurons excited by SSS input. Somatic fields of 80% of neurons responding to SSS stimulation included face areas innervated by the trigeminal nerve, whereas somatic fields of 89% of neurons unaffected by SSS stimulation were located only on areas innervated by cervical spinal nerves. Results are consistent with the idea that pain referred to trigeminal areas could originate in thoracic organs.  相似文献   

10.
Studies of the pharmacology of trigeminocervical neurons with input from intracranial pain-producing structures have enhanced the understanding of the basic neurobiology of primary headache, such as migraine. Clinical observations of the treatment of migraine with medicines acting at the gamma-aminobutyric acid (GABA) GABAA receptor have lead to studies of their effects on models of trigeminovascular nociception. Extracellular recordings were made from neurons in the trigeminocervical complex activated by supramaximal electrical stimulation of superior sagittal sinus (SSS) in the cat. Intravenous administration of the benzodiazepine receptor agonist midazolam, resulted in a dose-dependent inhibition of superior sagittal sinus evoked trigeminocervical nucleus activity. The inhibition at 50 microg/kg midazolam was 65+/-11% compared to the baseline response (n=11). Intravenous administration of the benzodiazepine receptor antagonist flumazenil, resulted in a dose-dependent recovery of superior sagittal sinus evoked trigeminocervical nucleus activity. At a dose of 50 microg/kg, there was a 64+/-5% recovery (n=6). The data demonstrate a potent, reproducible effect of facilitation of GABA transmission at the GABAA receptor that results in inhibition of trigeminovascular nociceptive transmission. These data are consistent with the useful clinical effects reported with compounds that can augment GABAergic transmission in the central nervous system (CNS).  相似文献   

11.
Trigeminal, spinal and vagal afferent fibers overlap in C1–C2 segments. We hypothesized that trigeminal input from the superior sagittal sinus (SSS) can excite C1–C2 spinothalamic tract (STT) neurons receiving thoracic visceral or phrenic inputs. Effects of SSS stimulation were evenly divided among cells responding to each nerve stimulus; magnitude of responses to ipsilateral vagal input was greater in neurons excited by SSS input. Somatic fields of 80% of neurons responding to SSS stimulation included face areas innervated by the trigeminal nerve, whereas somatic fields of 89% of neurons unaffected by SSS stimulation were located only on areas innervated by cervical spinal nerves. Results are consistent with the idea that pain referred to trigeminal areas could originate in thoracic organs.  相似文献   

12.
Experiments were performed in cats anesthetized with α-chloralose to examine the effects of stimulating in the periaqueductal gray (PAG) and nucleus raphe magnus (NRM) on the responses of spinocervical cells and unidentified ascending projection neurons to non-noxious peripheral stimuli. Peripheral stimuli consisted of low amplitude sinusoidal displacements applied to either the glabrous skin or the hairy skin of the neuron's receptive field. Stimulating in either the periaqueductal gray or nucleus raphe magnus reduced the impulse activity of most neurons in both groups. By applying brainstem stimuli at various phases of the sinusoidal peripheral stimulus, it was demonstrated that the effects of stimulating either the PAG or NRM on the responses of both types of neurons was dependent on the timing of the electrical stimuli relative to the peripheral input. The effects of stimulating in the PAG and NRM on the responses of these cells to non-noxious stimuli were reversibly blocked by naloxone. It was concluded that stimulating in the nucleus raphe magnus and in the periaqueductal gray can produce dramatic modifications in the responses of spinocervical cells and unidentified ascending projection neurons to non-noxious peripheral stimuli, suggesting a role for these descending systems in non-noxious information processing.  相似文献   

13.
The aim of this study was to examine anatomical evidence in cats of whether the nucleus reticularis parvicellularis (Pc) is part of the circuit responsible for the inhibition of brainstem motoneurons during paradoxical sleep. For this purpose, we made iontophoretic injections of the retrograde and anterograde tracer cholera toxin B subunit (CTb) in the Pc. After CTb injections in the Pc, a large number of retrogradely labeled neurons were seen in the central nucleus of the amygdala, the lateral part of the bed nucleus of the stria terminalis, the posterior hypothalamic areas, the mesencephalic reticular formation, the nucleus locus subcoeruleus, the nucleus pontis caudalis, other portions of the Pc, the nucleus reticularis dorsalis, the trigeminal sensory complex, and the nucleus of the solitary tract. We further found that the Pc receives (1) serotoninergic afferents from the raphe dorsalis, magnus, and obscurus nuclei; (2) noradrenergic inputs from the dorsolateral pontine tegmentum; (3) cholinergic afferents from the lateral medullary reticular formation; (4) substance P-like afferents from the central nucleus of the amygdala, bed nucleus of the stria terminalis, periaqueductal gray, and nucleus of the solitary tract; and (5) methionine-enkephalin-like projections from the periaqueductal gray, the nucleus of the solitary tract, the lateral pontine and medullary reticular formation, and the spinal trigeminal nucleus. We further found that the Pc do not receive afferents from brainstem structures responsible for muscle atonia, such as the ventromedial medulla and the dorsomedial pontine tegmentum, and therefore may not be part of the circuit inhibiting the brainstem motoneurons during paradoxical sleep. © 1994 Wiley-Liss, Inc.  相似文献   

14.
目的:通过电刺激大鼠上矢状窦区硬脑膜,观察颈上交感神经节(SCG)摘除术前、后中脑导水管周围灰质(PAG)一氧化氮合酶(NOS)阳性神经元数日的变化,以探讨交感神经系统在血管源性头痛如偏头痛伤害性信息传递巾的作用。方法:以雄性SD大鼠行颈上交感神经节摘除术后再手术暴露其上矢状窦(SSS),电刺激SSS区硬脑膜,应用免疫组织化学染色技术,观察PAG区域NOS表达的变化。结果:NOS免疫反应阳性神经元主要分布在PAG的腹外侧区,双侧对称。SCG摘除组NOS阳性神经元数目较假手术组明显增加。结论:颈交感神经系统通过PAG对痛觉的中枢调整参与了血管源性头痛如偏头痛中伤害性感觉信息的产生、传导及调节过程。  相似文献   

15.
Previous investigations of the distribution of neurons containing both serotonin and GABA in the brainstem raphe nuclei have yielded discrepant results amongst different authors. This study attempted to clarify the distribution as well as the proportions of raphe and other brainstem neurons that contain both neurotransmitters. All the nine serotonergic cell groups known to be present in the brainstem were examined with an indirect immunofluorescence method using antibodies against serotonin and glutamic acid decarboxylase in colchicine-treated rats. Sections were incubated either simultaneously or sequentially for the two immunolabels. Brainstem neurons that were labelled for both markers were generally infrequent. Of all the serotonin cell groups in the brainstem, the nucleus raphe magnus contained the most double-labelled cells (a mean of 3.6% of a total of 625–1155 serotonin-immunoreactive cells counted in this nucleus), followed by the nucleus raphe obscurus (1.5% of a total of 220–550 serotonin-immunoreactive neurons counted). The dorsal, median and pontine raphe nuclei as well as the supralemniscal nucleus (the B9 group) contained very few double-labelled cells, which comprised a mean of 0.1–0.7% of all serotonin-immunoreactive cells in each of these nuclei. No double labelled cells were present in the caudal linear raphe nucleus or the nucleus raphe pallidus, nor in the B4 group. These results suggest that only a very small percentage of serotonergic neurons in the medullary raphe nuclei (raphe magnus and raphe obscurus) also contain GABA, whereas such cells are virtually absent in the midbrain raphe nuclei or in the non-raphe serotonergic cell groups in the brainstem.  相似文献   

16.
Clinical observations, particularly of the premonitory phase of migraine, suggest the involvement of the hypothalamus in the earliest phases of an attack. Stimulation of the superior sagittal sinus (SSS) in humans produces head pain and permits study of the activated trigeminovascular system in experimental settings. The distribution of neurons expressing the protein product (Fos) of the c-fos immediate early gene was examined in the hypothalamus of anaesthetised (alpha-chloralose) cats. Animals were studied after either 2-h stimulation of the SSS or sham stimulation. Fos protein was detected using immunohistochemistry, and positive neurons were plotted onto standardised templates and counted by a blinded observer. In response to electrical stimulation of the superior sagittal sinus, we found significant activation of the supra-optic nucleus (SON) rising from 3 (0-13) (median, 95% confidence interval) to 53 (31-78; P = 0.005) fos-positive cells. In the posterior hypothalamic area (Hp), fos-positive cells rose from 4 (0-14) to 35 (17-45; P = 0.015) Taken together with other physiological studies, the data are consistent with a role for hypothalamic structures in the modulation of trigeminovascular nociceptive afferent information, and thus for a role in headache.  相似文献   

17.
Migraine is an episodic vascular headache with a well-recognized clinical picture but a poorly understood pathogenesis. Stimulation of a pain-sensitive trigeminally innervated intracranial structure, the superior sagittal sinus (SSS), was undertaken to map the higher-order neurons potentially involved in the processing of vascular head pain. The animals were prepared for stimulation by exposure of the sinus and then maintained under α-chloralose anaesthesia for 24 h before SSS stimulation, perfusion and immunohistochemical processing for the detection ofFosprotein. Examination of the medulla and upper cervical cord revealed marked increases inFos-like immunoreactivity in laminae I and IIo of the trigeminal nucleus caudalis and the dorsal horn of the upper cervical spinal cord. In addition,Fos-like immunoreactivity was observed in lamina X of the upper cervical spinal cord, in the commissural and medial nuclei of the solitary tract and in the nucleus retroambigualis. The use of immunohistochemical detection ofFos has allowed visualization of several populations of neurons likely to be involved in the central neural processing of vascular headache syndromes, particularly migraine.  相似文献   

18.
To obtain a comprehensive map of the brainstem and spinal cord areas that project to the mesencephalic central gray small injections of hors-radish peroxidase were made into various regions of the periaqueductal gray in a series of monkeys. Despite the fact that different regions of the central gray were injected in separate animals, the majority of the brainstem areas containing retrogradely filled neurons remained the same. Labeled neurons were observed in the superior colliculus, periaqueductal gray, lateral parabrachial, locus coeruleus, nucleus raphe magnus and pallidus, and a variety of brainstem reticular nuclei. In contrast to labeled brainstem areas, where labeled neurons were present predominantly ipsilateral to the injection site, the spinal trigeminal nucleus pars caudalis and the spinal cord displayed labeled cells chiefly on the side contralateral to the injection. Also in contrast to the labeled brainstem sites, where medial and lateral injection sites produced a similar pattern of labeling, medial injections in the PAG labeled almost exclusively neurons in the deep laminae (V-X) in the spinal trigeminal nucleus pars caudalis and spinal cord while more lateral injections labeled neurons in both the deep (V-X) and superficial (I) laminae. No consistent differences were noted in the location of labeled neurons in either brainstem or spinal sites after dorsal vs. ventral injections or caudal vs. rostral injection sites. The present study has demonstrated that the central gray receives afferent projections from a number of brainstem and spinal areas which are known to be involved in the modulation andor conduction of nociception, while other inputs are probably involved in the regulation of visceral functions. These data support the hypothesis that the mesencephalic periaqueductal gray functions as a visceral, nociceptive, and cognitive integrator.  相似文献   

19.
The motoneurons innervating the orbicularis oculi muscle from a subgroup within the facial nucleus, called the intermediate facial subnucleus. This makes it possible to study afferents to these motoneurons by means of autoradiographical tracing techniques. Many different injections were made in the brainstem and diencephalon and the afferent projections to the intermediate facial subnucleus were studied. The results indicated that these afferents were derived from the following brainstem areas: the dorsal red nucleus and the mesencephalic tegmentum dorsal to it; the olivary pretectal nucleus and/or the nucleus of the optic tract; the dorsolateral pontine tegmentum (parabrachial nuclei and nucleus of K?lliker-Fuse) and principal trigeminal nucleus; the ventrolateral pontine tegmentum at the level of the motor trigeminal nucleus; the caudal medullary medial tegmentum; the lateral tegmentum at the level of the rostral pole of the hypoglossal nucleus and the ventral part of the trigeminal nucleus and the nucleus raphe pallidus and caudal raphe magnus including the adjoining medullary tegmentum. These latter projections probably belong to a general motoneuronal control system. The mesencephalic projections are mainly contralateral, the caudal pontine and upper medullary lateral tegmental projections are mainly ipsilateral and the caudal medullary projections are bilateral. It is suggested that the different afferent pathways subserve different functions of the orbicularis oculi motoneurons. Interneurons in the dorsolateral pontine and lateral medullary tegmentum may serve as relay for cortical and limbic influences on the orbicularis oculi musculature, while interneurons in the ventrolateral pontine and caudal medullary tegmentum may take part in the neuronal organization of the blink reflex.  相似文献   

20.
The distribution of GABAergic and glycinergic premotor neurons projecting to the trigeminal motor nucleus (Vm) was examined in the lower brainstem of the rat by a double labeling method combining retrograde axonal tracing with immunofluorescence histochemistry. After injection of the fluorescent retrograde tracer, tetramethylrhodamine dextran amine (TRDA), into the Vm unilaterally, neurons labeled with TRDA were seen ipsilaterally in the mesencephalic trigeminal nucleus, and bilaterally in the parabrachial region, the supratrigeminal and intertrigeminal regions, the reticular formation just medial to the Vm, the principal sensory and spinal trigeminal nuclei, the pontine and medullary reticular formation, especially the parvicellular part of the medullary reticular formation, the alpha part of the gigantocellular reticular nucleus, and the medullary raphe nuclei. Some of these neurons labeled with TRDA were found to display glutamic acid decarboxylase (the enzyme involved in GABA synthesis)-like or glycine-like immunoreactivity. Such double-labeled neurons were seen mainly in the supratrigeminal region, the reticular region adjacent to the medial border of the Vm, and the dorsal part of the lateral reticular formation of the medulla oblongata; a number of them were further scattered in the intertrigeminal region, the alpha part of the gigantocellular reticular nucleus, the nucleus raphe magnus, the principal sensory trigeminal nucleus, and the interpolar subnucleus of the spinal trigeminal nucleus. These neurons were considered to be inhibitory (GABAergic or glycinergic) neurons sending their axons to motoneurons in the Vm, or to local interneurons within and around the Vm. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号