首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conditions associated prior to and during the transition from prestretch to shortering may have considerable influence on the final performance of muscle. In the present study male subjects of good physical condition performed vertical jumps on the force-platform with and without preliminary counter movement. In the counter movement jump (CMJ) the amplitude of the knee bending, velocity of the prestretch and the force attained at end of prestretch were the primary parameters of interest. In addition the coupling time indicating the transition from the eccentric (prestretch) phase to the concentric phase was recorded from the angular displacement and reaction force curves. In the final calculation the mechanical performance parameters of CMJ were always compared with those of the jumps performed without counter movement. The results indicated in general first that CMJ enhanced the average concentric force and average mechanical power by 423 N (66%) and 1158 W (81%), respectively. This potentiation effect was the higher the higher was the force at end of prestretch (p<0.001). Similarly, the prestretch speed (p<0.001) and short coupling time (p<0.01) were associated with enhanced performance during the concentric phase. The average coupling time was 23 ms. The results are interpreted through changes in the prestretch conditions to modify the acto-myosin cross-bridge formation so that the storage and utilization of elastic energy is associated with high prestretch speed, high eccentric force and short coupling time. The role of the reflex potentiation is also suggested as additional enhancement of the final performance.  相似文献   

2.
Summary The running economy of seventeen athletes was studied during running at a low speed (3.3 m · s–1) on a motor-driven treadmill. The net energetic cost during running expressed in kJ·kg–1·km–1 was on average 4.06. As expected, a positive relationship was found between the energetic cost and the percentage of fast twitch fibres (r=0.60,n=17,p<0.01). In addition, the mechanical efficiency during two different series of jumps performed with and without prestretch was measured in thirteen subjects. The effect of prestretch on muscle economy was represented by the ratio between the efficiency of muscular work performed during prestretch jumps and the corresponding value calculated in no prestretch conditions. This ratio demonstrated a statistically significant relationship with energy expenditure during running (r=–0.66,n=13,P<0.01), suggesting that the elastic behaviour of leg extensor muscles is similar in running and jumping if the speeds of muscular contraction during eccentric and concentric work are of similar magnitudes.  相似文献   

3.
The aim of this study was to determine the power output and work done by different muscle groups at the hip and knee joints during a rising movement, to be able to tell the degree of activation of the muscle groups and the relationship between concentric and eccentric work. Nine healthy male subjects rose from a chair with the seat at knee level. The moments of force about the hip and knee joints were calculated semidynamically. The power output (P) and work in the different muscle groups surrounding the joints was calculated as moment of force times joint angular velocity. Work was calculated as: work = f Pdt. The mean peak concentric power output was for the hip extensors 49.9 W, hip flexors 7.9 W and knee extensor 89.5 W. This power output corresponded to a net concentric work of 20.7 J, 1.0 J and 55.6 J, respectively. There was no concentric power output from the knee flexor muscles. Energy absorption through eccentric muscle action was produced by the hip extensors and hip flexors with a mean peak power output of 4.8 W and 7.4 W, respectively. It was concluded that during rising, the hip and knee muscles mainly worked concentrically and that the greatest power output and work were produced during concentric contraction of the knee and hip extensor muscles. There was however also a demand for eccentric work by the hip extensors as well as both concentric and eccentric work by the hip flexors. The knee flexor muscles were unloaded.  相似文献   

4.
In addition to the utilization of muscle's elastic energy enhancement of performance in exercise involving stretch-shortening cycle might be also due to simultaneous increase of myoelectrical activity. This hypothesis was tested by examining three athletes during jumping exercise on force-platform. Vertical jumps were performed with and without preliminary counter-movement, and the jumps were called counter-movement jump (CMJ) and squatting jump (SJ), respectively. In both conditions several jumps were performed also with extra loads on the shoulders (15–220% of b. wt.). Additional droppingjumps (DJ) were executed from different heights (20–100 cm). During jumping exercise myoelectrical activity of selected muscles from the quadriceps femoris was monitored with surface electrodes. The results obtained were similar to those reported in isolated muscle and as expected, the prestretch in CMJ shifted the force-velocity curve of concentric work to the right. In two cases enhancement of performance was attributed primarily to restitution of elastic energy because myoelectrical activity was similar to that observed in SJ. In one subject increased myoelectrical activity was observed during the concentric phase of CMJ. In DJ condition the EMG activity during eccentric phase was much higher than in SJ. Therefore the high performance in this condition was attributed to both elastic energy and reflex potentiation. In eccentric work of CMJ the average force decreased with the increase of stretching speed. This phenomenon was associated with a light increase of EMG activity. The observed results emphasize that both elastic energy and reflex potentiation may operate effectively during stretch-shortening cycle activity.  相似文献   

5.
Summary A cinematographic recording of the movements of the lower limbs together with simultaneous emg tracings from nine lower limb muscles were obtained from two male track sprinters during three phases of a 100 m sprint run. The extensor muscles of the hip joint were found to be the primary movers by acceleration of the body's center of gravity (C.G.) during the ground phase of the running cycle. The extensors of the knee joint were also important in this, but to a minor extent, while the plantar flexors of the ankle joint showed the least contribution. The biarticular muscles functioned in a way different from the monoarticular muscles in the sense that they perform eccentric work during the flight and recovery phases and concentric work during the whole ground phase (support), whereas the monoarticular muscles are restricted first to eccentric work and then to concentric work during the ground phase. Furthermore, the biarticular muscles show variation (and rate of variation) in muscle length to a larger extent than the monoarticular muscles. Paradoxical muscle actions appear to take place around the knee joint, where the hamstring muscles, m. gastrocnemius, m. vastus laterialis and m. vastus medialis act as synergists by extending the knee joint during the last part of the ground phase.  相似文献   

6.
This investigation addressed the question of whether the muscle activation signal prior to movement onset, as measured by surface EMG, differs if the contraction to be performed is concentric (shortening) or eccentric (lengthening). Specifically, the purpose was to determine if differences in knee extensor muscle EMG prior to voluntary maximum concentric and eccentric contractions and initiated from the same knee joint angle are evident at a time before muscle length changes could be influential. A protocol was designed using isokinetic knee extensions. The EMG of the vastus lateralis, vastus medialis, rectus femoris, and hamstrings muscles and the associated knee extension moment were measured during the isometric phase preceding the onset of dynamometer motion. During this isometric phase the muscles initially contracted under identical conditions, irrespective of whether the contraction was to be concentric or eccentric. The EMG of the eccentric contractions was significantly smaller than that of the concentric contractions. However, the rate of change of knee extension moment generally did not differ between the two conditions. This was found for both the monoarticular and multiarticular knee extensor muscles. The results suggest that initial differences between the EMG of maximum voluntary concentric and eccentric knee extensor contractions are selected a priori and support the contention that the central nervous system distinguishes between maximum eccentric and concentric contractions. The emergence of differences in activation prior to muscle length changes suggests supraspinal influences.  相似文献   

7.
Summary Changes in total mechanical work, its partitioning into different energy states, mechanical power, force-time characteristics, force impulses of body segments and mass center's pathway characteristics during long jump take-off were investigated on four national and six ordinary level athletes. Both cinematographic and force-platform techniques were used. The data showed that the national level jumpers had higher run-up and higher take-off (release) velocities in horizontal and vertical directions. In addition, they were able to utilize efficiently the elastic energy stored in the leg extensor muscles at take-off impact. This was seen in high support leg eccentric and concentric forces, which were produced in short contact times. The ordinary level athletes had greater variability in the investigated attributes, and they reached their maximum length of jumps in many different ways. Cinematically the greatest difference between the subject groups was observed in the timing of the various body segment movements. In better athletes all the body parts (arms, trunk, and legs) had decelerating horizontal impulses, but in all ordinary level athletes the horizontal impulse of the swing leg was accelerating during take-off.  相似文献   

8.
The effect of pre-stretch on mechanical efficiency of human skeletal muscle   总被引:3,自引:0,他引:3  
The mechanical efficiency of positive work was studied in six subjects performing three different types of exercises. On the first occasion the subjects ran on a motor-driven treadmill at 3.33 m s-1; the second and the third exercises consisted of performing rhythmical vertical jumps for 1 min both in rebound (RJ) and no-rebound (NRJ) conditions. The mechanical efficiency calculated in NRJ, which reflects only the conversion of biochemical energy into mechanical work, was found to be lower than the corresponding observation in RJ, 17.2 vs. 27.8% (P less than 0.001), respectively. These differences could not be explained by only the storage and recoil of elastic energy occurring in RJ compared with NRJ. The calculated extra work delivered 'free' was greater than the potential elastic energy which could be stored within the leg extensor muscles (187 vs. 124 J for each jump, P less than 0.05). It is likely that other factors might be responsible for the extra work found in NRJ. It was suggested that the difference in the length of time to perform positive work between a simple shortening contraction and a stretch-shortening muscular activity could be also responsible for the enhanced efficiency observed in RJ. This suggestion was supported by the high relationship (P less than 0.001) found between the time to perform positive work and the mechanical efficiency measured in jumping and estimated during running.  相似文献   

9.
Summary The mechanical efficiencies (ME) of pure positive and pure negative work as well as of stretch-shortening cycle (SSC) exercise were investigated with a special sledge apparatus. The subjects were 20 young females who performed six different types of submaximal exercise: two of pure concentric exercise (positive work), two of pure eccentric exercise (negative work) and two SSC exercises. The work intensities were determined individually, from the recordings of distance obtained during a single maximal concentric exercise. Each exercise involved 60 muscle actions lasting a total of 3 min per testing condition. The MEs of pure positive work with intensities of 30% and 60% maximum (C30 and C60 respectively) were 15.5%, SD 2.6% and 14.3%, SD 1.9%, respectively. In pure negative work, when the dropping heights were 20 cm (E20) and 80 cm (E80), MEs were 28.4%, SD 6.9% and 47.9%, SD 10.1%, respectively. In SSC-exercise, the MEs during the positive phase of the take-off were 31.3%, SD 6.3% (E20/C90) and 35.0%, SD 7.0% (E80/C69). The total MEs in SSC-exercise were 29.1%, SD 4.0% (E20/C90) and 40.1%, SD 5.2% (E80/C60 × 100). In pure negative work, the increased stretching velocity increased the value of ME. In the concentric phase of SSC-exercise, the integrated electromyographic activity (iEMG) of vastus lateralis (VL) and vastus medialis (VM) muscles were lower (P<0.05) than in pure concentric work, when the mechanical work was the same (C60 vs E80/C60). During pure eccentric work, iEMGs were lower in comparison to the eccentric phase of SSC-exercise. The EMG activity of VL, VM and soleus muscles was potentiated in SSC-exercise during the eccentric phase of the take-off, when the dropping height was 80 cm. The results of the present study demonstrate the role of stretch reflexes as an increasing factor of ME in the positive work of SSC-exercise, when prestretch intensity is high enough. When muscle stiffness increases via reflex pathways, it may also increase the elasticity of the muscles and decrease their metabolic demands.  相似文献   

10.
Stretch-shortening cycle refers to the mechanical condition in which store and recoil of elastic energy occur in the skeletal muscle. This leads to a greater work output when compared to a simple shortening contraction. The subjects performed vertical jumps with and without preliminary counter-movement and with small and large knee angular displacement. The results indicated that those subjects who had more fast twitch (FT) fibers benefited more from the stretching phase performed with high speed and short angular displacement. The amounts of elastic energy stored in this phase were 30 and 26 N × kgBW-1, respectively, for FT and slow twitch (ST) type subjects. The recoil of elastic energy was proportional to the amount of energy storage. In large amplitude jumps where transient period between stretch and shortening is long the both types of subjects demonstrated similar amount of storage of elastic energy (17 and 16 N × kgBW-1, respectively). However, the re-use of this elastic energy was greater in ST group (24%) as compared to the FT group (17%). The results can be interpreted through differences in sarcomere cross-bridge life times between fast and slow muscle fibers. The slow type muscle may be able to retain the cross-bridge attachment for a longer period of time and therefore it may utilize elastic energy better in a slow type ballistic motion.  相似文献   

11.
In this investigation we have estimated the afferent contribution to the generation of activity in the knee and ankle extensor muscles during walking in decerebrate cats by loading and unloading extensor muscles, and by unilateral deafferentation of a hind leg. The total contribution of afferent feedback to extensor burst generation was estimated by allowing one hind leg to step into a hole in the treadmill belt on which the animal was walking. In the absence of ground support the level of activity in knee and ankle extensor muscles was reduced to approximately 70% of normal. Activity in the ankle extensors could be restored during the "foot-in-hole" trials by selectively resisting extension at the ankle. Thus feedback from proprioceptors in the ankle extensor muscles probably makes a large contribution to burst generation in these muscles during weight-bearing steps. Similarly, feedback from proprioceptors in knee extensor appears to contribute substantially to the activation of knee extensor muscles because unloading and loading these muscles, by lifting and dropping the hindquarters, strongly reduced and increased, respectively, the level of activity in the knee extensors. This conclusion was supported by the finding that partial deafferentation of one hind leg by transection of the L4-L6 dorsal roots reduced the level of activity in the knee extensors by approximately 50%, but did not noticeably influence the activity in ankle extensor muscles. However, extending the deafferentation to include the L7-S2 dorsal roots decreased the ankle extensor activity. We conclude that afferent feedback contributes to more than one-half of the input to knee and ankle extensor motoneurons during the stance phase of walking in decerebrate cats. The continuous contribution of afferent feedback to the generation of extensor activity could function to automatically adjust the intensity of activity to meet external demands.  相似文献   

12.
Coactivation of knee flexors during knee extension assists in joint stability by exerting an opposing torque to the anterior tibial displacement induced by the quadriceps. This opposing torque is believed to be generated by eccentric muscle actions that stiffen the knee, thereby attenuating strain to joint ligaments, particularly the anterior cruciate ligament (ACL). However, as the lengths of knee muscles vary with changes in joint position, the magnitude of flexor/extensor muscle force coupling may likewise vary, possibly affecting the capacity for active knee stabilization. The purpose of this study was to assess the effect of changes in movement speed and joint position on eccentric/concentric muscle action relationships in the knees of uninjured (UNI) and post-ACL-surgery (INJ) subjects (n?=?14). All subjects were tested for maximum eccentric and concentric torque of the contralateral knee flexors and extensor muscles at four isokinetic speeds (15°–60°?·?s?1) and four joint position intervals (20°–60° of knee flexion). Eccentric flexor torque was normalized to the percentage of concentric flexor torque generated at each joint position interval for each speed tested (flexor E-C ratio). In order to estimate the capacity of the knee flexors to resist active knee extension, the eccentric-flexor/concentric-extensor ratios were also computed for each joint position interval and speed (flexor/extensor E-C ratio). The results revealed that eccentric torque surpassed concentric torque by 3%–144% across movement speeds and joint position intervals. The magnitude of the flexor E-C ratio and flexor/extensor E-C increased significantly with speed in both groups of subjects (P?P??1). The results indicate that joint position and movement speed influence the eccentric/concentric relationships of knee flexors and extensors. The INJ subjects appeared to accommodate to surgery by developing the eccentric function of their ACL and normal knee flexors, particularly at higher speeds and at more extended knee joint positions. This may assist in the dynamic stabilization of the knee at positions where ACL grafts have been reported to be most vulnerable to strain.  相似文献   

13.
AIM: The efficacy of a mechanical, gravity-independent resistance exercise (RE) system to induce strength gains and muscle hypertrophy was validated. Designed for space crew in orbit, this technique offers resistance during coupled concentric and eccentric actions by utilizing the inertia of a rotating flywheel(s), set in motion by the trainee. METHODS: Ten middle-aged (30-53 years) men and women performed four sets of seven maximal, unilateral (left limb) knee extensions two or three times weekly for 5 weeks. Knee extensor force and electromyographic (EMG) activity of the three superficial quadriceps muscles were measured before and after this intervention. In addition, with the use of magnetic resonance imaging (MRI), volume of individual knee extensor and ankle plantar flexor muscles was assessed. RESULTS: Over the 12 training sessions, the average concentric (CON) and eccentric (ECC) force generated during exercise increased by 11% (P < 0.05). Likewise, maximal isometric strength (maximal voluntary contraction, MVC) at 90 and 120 degrees knee angle increased by (P < 0.05) 11 and 12% respectively, after training. Neither individual quadriceps muscle showed a change (P > 0.05) in maximal integrated EMG (iEMG) activity. Quadriceps muscle volume increased by 6.1% (P < 0.05). Although the magnitude of response varied, all individual quadriceps muscles showed increased (P < 0.05) volume after training. As expected, ankle plantar flexor volume of the trained limb was unchanged (P > 0.05). Likewise, MVC, CON and ECC force, iEMG and knee extensor and plantar flexor muscle volume were unaltered (P > 0.05) in the right, non-trained limb. CONCLUSION: The results of this study show that the present RE regimen produces marked muscle hypertrophy and important increases in maximal voluntary strength and appears equally effective as RE paradigms using gravity-dependent weights, in this regard.  相似文献   

14.
The influence of fatigue on the stretch reflex evoked in ankle extensor muscles by hopping was investigated in six healthy men. The men hopped on a force platform, at spontaneous frequency and amplitude, until they were unable to maintain the initial frequency or amplitude of the jumps. This task was done with the knees flexing normally during ground contact or under instructions to straighten the knees. Surface electromyograms (EMG) of soleus (SO), gastrocnemius medialis (GM), and tibialis anterior (TA) muscles were recorded simultaneously with the vertical component of the ground reaction force. Spectrum analysis of the EMG recorded during isometric tests performed immediately before and after the fatiguing hopping task demonstrated the existence of fatigue in SO and GM and often in TA. The stretch reflex was studied during the first and last ten jumps of every hopping series. The long-latency components of the reflex were too variable to be analysed. Whatever the hopping condition, latency and amplitude of the short latency component were not significantly modified by fatigue. Fatigue enhanced the occurrence of this reflex component in SO only. These data suggest that in fatiguing submaximal hopping, the neuromuscular system does not fundamentally change its stiffness regulation before the endurance time has been reached. Accepted: 1 September 2000  相似文献   

15.
Six subjects performed a first series of vertical plantar flexions and a second series of vertical rebounds, both involving muscle triceps surae exclusively. Vertical displacements, vertical forces and ankle angles were recorded during the entire work period of 60 seconds per series. In addition, expired gases were collected during the test and recovery for determination of the energy expenditure. Triceps surae was mechanically modelled with a contractile component and with an elastic component. Mechanical behaviour and work of the different muscle components were determined in both series. The net muscular efficiency calculated from the work performed by the centre of gravity was 17.5 +/- 3.0% (mean +/- SD) in plantar flexions and 29.9 +/- 4.8% in vertical rebounds. The net muscle efficiency calculated from the work performed by the contractile component was 17.4 +/- 2.9% in plantar flexions and 16.1 +/- 1.4% in vertical rebounds. These results suggest that the muscular efficiency differences do not reflect muscle contractile component efficiency but essentially the storage and recoil of elastic energy. This is supported by the relationship (P less than 0.01) found in vertical rebounds between the extra work and the elastic component work. A detailed observation of the mechanical behaviour of muscle mechanical components showed that the strategy to maximize the elastic work depends also on the force-velocity characteristics of the movement and that the eccentric-concentric work of the contractile component does not always correspond respectively to the ankle extension-flexion.  相似文献   

16.
Reliability of leg muscle electromyography in vertical jumping   总被引:1,自引:0,他引:1  
In this study we aimed to determine the reliability of the surface electromyography (EMG) of leg muscles during vertical jumping between two test sessions, held 2 weeks apart. Fifteen females performed three maximal vertical jumps with countermovement. The displacement of the body centre of mass (BCM), duration of propulsion phase (time), range of motion (ROM) and angular velocity of the knee and surface EMG of four leg muscles (rectus femoris, vastus medialis, biceps femoris and gastrocnemius) were recorded during the jumps. All variables were analysed throughout the propulsion and mid-propulsion phases. Intraclass correlation coefficients (ICC) for the rectus femoris, vastus medialis, biceps femoris and gastrocnemius were calculated to be 0.88, 0.70, 0.24 and 0.01, respectively. BCM, ROM and time values all indicated ICC values greater than 0.90, and the mean knee angular velocity was slightly lower, at 0.75. ICCs between displacement of the BCM and integrated EMG (IEMG) of the muscles studied were less than 0.50. The angular velocity of the knee did not correlate well with muscle activity. Factors that may have affected reliability were variations in the position of electrode replacement, skin resistance, cross-talk between muscles and jump mechanics. The results of this study suggest that while kinematic variables are reproducible over successive vertical jumps, the degree of repeatability of an IEMG signal is dependent upon the muscle studied.  相似文献   

17.
This study investigated the effects of the knee joint angle and angular velocity on hamstring muscles’ activation patterns during maximum eccentric knee flexion contractions. Ten healthy young males (23.4 ± 1.3 years) performed eccentric knee flexion at constant velocities of 10, 60, 180, and 300 deg/s in random order. The eccentric knee flexion torque and the surface electromyographic (EMG) activity of the biceps femoris (BF), semitendinosus (ST), and semimembranosus (SM) muscles were measured. The results of torque during 10 deg/s were lower than the faster velocities. No significant change was found in eccentric torque output and the EMG amplitude with change in the faster test velocities, although those values showed a decreasing tendency as the knee approached extension. Furthermore, the EMG amplitude of the BF decreased significantly as the knee approached extension, although the EMG activity of the ST and SM remained constant. These results suggest that the neural inhibitory mechanism might be involved in decreasing in maximal voluntary force and hamstring muscles activation toward the knee extension during high-velocity eccentric movement and therefore subjects have difficulties to maintain high eccentric force level throughout the motion. Moreover, the possible mechanism reducing the BF muscle activation as the knee approaches extension was architectural differences in the hamstring muscles, which might reflect each muscle’s function.  相似文献   

18.
Biomechanical analysis of drop and countermovement jumps   总被引:2,自引:0,他引:2  
Summary For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle joints. In addition, electromyograms were recorded from five muscles in the lower extremity. The results obtained for DJ appeared to depend on jumping style. In a subgroup of subjects making a movement of large amplitude (i. e. bending their hips and knees considerably before pushing off) the push-off phase of DJ closely resembled that of CMJ. In a subgroup of subjects making a movement of small amplitude, however, the duration of the push-off phase was shorter, values for moments and mean power output at the knees and ankles were larger, and the mean EMG activity of m. gastrocnemius was higher in DJ than in CMJ. The findings are attributed to the influences of the rapid pre-stretch of knee extensors and plantar flexors after touch-down in DJ. In both subgroups, larger peak resultant reaction forces were found at the knee and ankle joints, and larger peak forces were calculated for the Achilles tendon in DJ than in CMJ.  相似文献   

19.
The torque–velocity relationship, obtained during in situ conditions in humans, demonstrates a levelling‐off of eccentric torque output at the isometric torque level, at least for knee extensor actions. In contrast, the in vitro force–velocity relationship for animal muscle preparations is characterized by a sharp rise in eccentric force from isometric maximum. A force‐regulating ‘protective’ mechanism has been suggested during maximal voluntary high‐tension eccentric muscle actions. To investigate this phenomenon, maximal voluntary and three different levels of submaximal, electrically induced torques were compared during isometric and low velocity (10, 20 and 30° s–1) isokinetic eccentric and concentric knee extensor actions in 10 healthy, moderately trained subjects. Eccentric torque was higher than isometric during electrically evoked, but not during maximal voluntary muscle actions. In contrast, concentric torque was significantly lower than isometric for both maximal voluntary and submaximal, electrically evoked conditions. Comparisons of normalized torques (isometric value under each condition set to 100%) demonstrated that the maximal voluntary eccentric torque had to be increased by 20%, and the isometric by 10% in order for the maximal voluntary torque–velocity curve to coincide with the electrically stimulated submaximal ones. These results support the notion that a tension‐regulating mechanism is present primarily during eccentric maximal voluntary knee extensor actions.  相似文献   

20.

Purpose

Fatigue-related muscle activity in the superficial quadriceps femoris (QF) muscles has been widely examined; however, there is no information on the activity of the deep vastus intermedius (VI) muscle during fatiguing dynamic knee extensions. The purpose of this study was to investigate neuromuscular activation patterns of the QF synergists, including the VI, during fatiguing dynamic knee extensions at two submaximal loads.

Methods

Nine healthy men performed dynamic knee extensions with loads of 50 and 70 % of one-repetition maximum (1RM) until failure. Muscle activation of the VI, vastus lateralis, vastus medialis (VM) and rectus femoris was recorded using surface electrodes. Root mean square (RMS) amplitude was calculated during the concentric (CON) and eccentric (ECC) phases of each repetition, and normalized to the RMS amplitude during the CON and ECC phases of the 1RM. Each CON and ECC phase was further divided into three subphases according to knee joint angle.

Results

The normalized RMS amplitude of the four individual QF muscles during the CON phase linearly increased with fatigue with contractions at both 50 and 70 % 1RM. The highest RMS amplitude was found in VI at flexed knee joint angles until fatigue. This activation pattern was more prominent at 70 % 1RM than 50 % 1RM. The RMS amplitude of VM at extended knee joint angles was selectively higher at 70 % 1RM than 50 % 1RM.

Conclusions

These results suggest that the contribution of the four individual QF muscles to fatiguing dynamic knee extensions differs according to knee joint angle and intensity of load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号