首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In addition to the utilization of muscle's elastic energy enhancement of performance in exercise involving stretch-shortening cycle might be also due to simultaneous increase of myoelectrical activity. This hypothesis was tested by examining three athletes during jumping exercise on force-platform. Vertical jumps were performed with and without preliminary counter-movement, and the jumps were called counter-movement jump (CMJ) and squatting jump (SJ), respectively. In both conditions several jumps were performed also with extra loads on the shoulders (15–220% of b. wt.). Additional droppingjumps (DJ) were executed from different heights (20–100 cm). During jumping exercise myoelectrical activity of selected muscles from the quadriceps femoris was monitored with surface electrodes. The results obtained were similar to those reported in isolated muscle and as expected, the prestretch in CMJ shifted the force-velocity curve of concentric work to the right. In two cases enhancement of performance was attributed primarily to restitution of elastic energy because myoelectrical activity was similar to that observed in SJ. In one subject increased myoelectrical activity was observed during the concentric phase of CMJ. In DJ condition the EMG activity during eccentric phase was much higher than in SJ. Therefore the high performance in this condition was attributed to both elastic energy and reflex potentiation. In eccentric work of CMJ the average force decreased with the increase of stretching speed. This phenomenon was associated with a light increase of EMG activity. The observed results emphasize that both elastic energy and reflex potentiation may operate effectively during stretch-shortening cycle activity.  相似文献   

2.
The conditions associated prior to and during the transition from prestretch to shortering may have considerable influence on the final performance of muscle. In the present study male subjects of good physical condition performed vertical jumps on the force-platform with and without preliminary counter movement. In the counter movement jump (CMJ) the amplitude of the knee bending, velocity of the prestretch and the force attained at end of prestretch were the primary parameters of interest. In addition the coupling time indicating the transition from the eccentric (prestretch) phase to the concentric phase was recorded from the angular displacement and reaction force curves. In the final calculation the mechanical performance parameters of CMJ were always compared with those of the jumps performed without counter movement. The results indicated in general first that CMJ enhanced the average concentric force and average mechanical power by 423 N (66%) and 1158 W (81%), respectively. This potentiation effect was the higher the higher was the force at end of prestretch (p<0.001). Similarly, the prestretch speed (p<0.001) and short coupling time (p<0.01) were associated with enhanced performance during the concentric phase. The average coupling time was 23 ms. The results are interpreted through changes in the prestretch conditions to modify the acto-myosin cross-bridge formation so that the storage and utilization of elastic energy is associated with high prestretch speed, high eccentric force and short coupling time. The role of the reflex potentiation is also suggested as additional enhancement of the final performance.  相似文献   

3.
Force–velocity and power–velocity curves in a vertical jump involving movements around several joints were derived from vertical ground reaction forces and knee angular velocities. The jumps were performed with weights from 10 to 160 kg added on the shoulders. The obtained curves from a semi–squatting static starting position resembled those reported for isolated muscles or single muscle groups. Vertical jumps were also performed in the conditions where the shortening of the leg extensors was preceded by prestretching of the active muscles either through a preparatory counter–movement or dropping down on the force–platform from the various heights ranging from 20 to 100 cm. Prestretching modified through a range of velocities the force–velocity and power–velocity curves by increasing both the ground reaction forces and the calculated mechanical power. Thus the results are similar to those reported in isolated muscles. In studies with isolated muscle preparation the nervous connections have not been intact and therefore it is suggested that increase in the performance of the skeletal muscles through prestretching, in the conditions of the present study, was attributed to the combined effects of the utilization of stored elastic energy and the reflex potentiation of muscle activation.  相似文献   

4.
The influence of prestretch amplitude on the mechanical efficiency was examined with 5 subjects, who performed 5 different series of vertical jumps, each of which differed with respect to the mechanics of the knee joint action during the prestretch (eccentric) phase of the contact on the floor. Electromyographic activity was recorded from the major extensor muscles during the entire work period of 1 min per series. In addition, expired air was collected during the test and recovery for determination of energy expenditure. Mechanical work was calculated from the vertical displacement of the body during the jumps. The results indicated that high net efficiency of 38.7% was observed in condition where amplitude of knee bending in eccentric phase was small. In large range motion the corresponding net efficiency was 30.1%. In jumps where no prestretching of extensor muscles ocurred the net efficiency was 19.7%. The high efficiency of small amplitude jumps was characterized by low myoelectrical activity of the leg extensor muscles during the positive (concentric) work phase. In addition, the small amplitude jumps had shorter transition time in the stretch-shortening cycle, high average eccentric force and high stretching speed. Therefore the results suggest that the restitution of elastic energy, which was also related to the length change and stiffness of the muscles during stretch, plays an important role in regulating the mechanical efficiency of work.  相似文献   

5.
The present study addressed the question of whether the slow fibres of mammalian skeletal muscle, containing the myosin heavy chain MHCI (type-I fibres), are a functionally homogeneous population. We compared various properties of Ca2+-activated, skinned, type-I fibres from the soleus and semitendinosus muscles of a rabbit. Soleus type-I fibres showed significantly faster kinetics of stretch activation, measured as the time-to-peak of the stretch-induced, delayed force increase, t3, than semitendinosus fibres (1239±438 ms, n=136, vs. 1600±409 ms, n=208 respectively) (means±SD, 22 °C). Similarly, the speed of unloaded shortening at 15 °C was faster in soleus than in semitendinosus fibres [0.79±0.16 fibre lengths (FL) s–1, n=44, vs. 0.65±0.15 FL s–1, n=35 respectively]. The kinetics of stretch activation were more temperature sensitive in semitendinosus than in soleus fibres. Finally, the generation of steady-state isometric force was more sensitive to Ca2+ in semitendinosus than in soleus fibres: [pCa50 (–log [Ca2+] for half-maximal activation) at 22 °C: 6.29±0.15, n=28, vs. 6.19±0.10, n=18 respectively]. These results suggest strongly that there is no functional homogeneity within type-I fibres of different muscles. The observed differences might reflect the existence of more than one functionally different slow myosin heavy chain isoforms or other modifications of contractile proteins.  相似文献   

6.
Summary In contraction of skeletal muscle a delay exists between the onset of electrical activity and measurable tension. This delay in electromechanical coupling has been stated to be between 30 and 100 ms. Thus, in rapid movements it may be possible for electromyographic (EMG) activity to have terminated before force can be detected. This study was designed to determine the dependence of the EMG-tension delay upon selected initial conditions at the time of muscle activation. The rigth forearms of 14 subjects were passively oscillated by a motor-driven dynamometer through flexion-extension cycles of 135 deg at an angular velocity of 0.5 rad/s. Upon presentation of a visual stimulus the subjects maximally contracted the relaxed elbow flexors during flexion, extension, and under isometric conditions. The muscle length at the time of the stimulus was the same in all three conditions. An on-line computer monitoring surface EMG (Biceps and Brachioradialis) and force calculated the electromechanical delay. The mean value for the delay under eccentric condition, 49.5 ms, was significantly different (p<0.05) from the delays during isometric (53.9 ms) and concentric activity (55.5 ms). It is suggested that the time required to stretch the series elastic component (SEC) represents the major portion of the measured delay and that during eccentric muscle activity the SEC is in a more favorable condition for rapid force development.  相似文献   

7.
Function dependent changes in the subcellular distribution of ATP, ADP, creatine phosphate (CrP) and creatine (Cr) in rat fast-twitch gastrocnemius and slow-twitch soleus muscles were studied by fractionation of freeze-clamped and freeze-dried tissue in non-aqueous solvents.During 5 min of isotonic contraction of gastrocnemius muscles the mitochondrial content of total creatine [(CrP+Cr)] decreases by 9.5 nmol/mg total protein whereas there is an increase in extramitochondrial total creatine by 12.3 nmol/mg total protein, indicating a net transfer of 10 nmol total creatine/mg total protein/5 min across the mitochondrial inner membrane.During short-term stimulation (6 s) of gastrocnemius muscles the socalled additionally-bound ADP correlates not only with force (Hebisch et al. 1984) but also with filament overlap. This confirms the previous suggestion that additionally-bound ADP represents actomyosin-ADP-complexes.Following long-term stimulation (10 s), the rate of decay of force is at least two orders of magnitude faster than that of additionally bound ADP. This indicates a decrease of actomyosin-ADP complexes due to formation of myosin-ADP complexes.Short-term stimulation (6 s) of slow-twitch soleus muscles does not lead to any force-dependent change in the content of additionally-bound ADP, similar to the finding in long-term contracting gastrocnemius muscles. Denervation of soleus muscles leads to a decrease in additionally-bound ADP to values comparable to those found in resting fast-twitch gastrocnemius muscles.  相似文献   

8.
Stretch-shortening exercises are characterized by enhancement of performance when compared to the work output performed in shortening conditions. There is evidence that fast subjects are unable to re-use great amounts of elastic energy during stretch-shortening cycles performed with slow stretching speed and large stretching length. In the present study, 14 subjects possessing different fibre types in m. vastus lateralis performed vertical jumps with and without preliminary countermovement and with large angular displacement and slow stretching speed The jumping tests were executed before and immediately after fatigue induced by short intense exercises (60 s of continuous rebound jumping). The results indicated that the percentage of re-use of elastic energy was more pronounced in slow subjects compared to fast ones during the test performed before fatigue (28.3% vs. 22.8%). In contrast fast subjects demonstrated a greater percentage re-use of elastic energy than slow ones after fatigue (32% vs. 22.5%). Similarly, the negative relationship observed before fatigue, between the percentage of re-use of elastic energy and percentage of fast twitch fibres (r = 0.50, n = 14, P less than 0.05), was reversed after fatigue (r = 0.55, n = 14, P less than 0.05). The results can be interpreted through differences in sarcomere cross-bridges life-times between fast and slow twitch muscle fibres. The slow twitch-type muscle fibre may be able to retain the cross-bridge attachment for a longer period of time during no fatigued conditions, and therefore it may utilize elastic energy better in slow type ballistic motion. On the other hand, fast twitch type muscle fibres are more affected by fatigue, which might have induced a remarkable decrease of the cross-bridge attachment detachment cycle. Decrease of the cross-bridge rate cycle might allow fast twitch-type muscle fibres to retain longer the elastic energy stored during the stretching phase and then re-use it during positive phase.  相似文献   

9.
Histochemical muscle fibre composition was studied in biopsies from the four different muscles of the abdominal wall (rectus abdominis, RA, obliquus externus, OE, obliquus internus, OI, and transversus abdominis, Tr) in 13 normal human subjects (9 females and 4 males, age 24–55 years) undergoing gall-bladder surgery. Muscle fibres were classified as Type I, II A, II B or II C on the basis of their myofibrillar ATPases' pH lability. There were large inter-individual variations in fibre composition, whereas, in general, the differences between the different muscles were minor or non-existent. Mean fibre distribution ranges were 55–58% I, 15–23% II A, 21–28% II B, and 0–1% II C fibres. The least fibre diameters were similar for all types and muscles (range of means 50–54 μm) except for Tr in which the Type II fibres were smaller (mean 45 μm). There was a high correlation in the size of Type I vs. II fibres and Type II A vs. II B fibres in all layers. The oxidative potential (NADH-diaphorase staining intensity) appeared high in Type I fibres and low in Type II fibres, irrespective of subgroups. Thus, based on histochemical fibre composition, the different abdominal muscles appear to have a similar functional capacity. However, functional differences between individuals were indicated by the large inter-individual variation in muscle fibre distribution.  相似文献   

10.
Summary Age dependence of the mechanical behavior of leg extensor muscle was investigated using vertical jumps with and without a stretch-shortening cycle on the force-platform. A total 226 subjects (113 females and 113 males) ranging in age from 4–73 years were examined. The results indicated in general that performance in males was better than that in females. This difference was reduced when body weight was taken into consideration. The peak performance of the various parameters, such as average force, height of rise of center of gravity, net impulse, and also the average power output, was reached in both sexes between the ages of 20 and 30 years. For example, the average vertical force in squatting had the following mean values in the various age groups of the male subjects: 114 N (4–6 years), 402 N (13–17), 618 N (18–28), 508 N (29–40), 435 N (41–49), 320 N (54–65), 315 N (71–73 years). When the jumps were performed using the stretch-shortening cycle, the potential of the mechanical performance after prestretching was also sensitive to aging in a similar manner. The results suggest that it is not only the performance of pure concentric contraction that is influenced by the maturation and aging processes but, the that elastic behavior of muscle and reflex potentiation are also affected by the same processes.Supported in part by a grant No. 8318/78/78 from the Ministry of Education, Finland  相似文献   

11.
Leg muscles of adult rats were stimulated chronically at a low-frequency, and the histochemical reactions of various enzymes (succinic dehydrogenase, mitochondrial -glycerophosphate dehydrogenase, phosphorylase, alkali-ATPase and acid-ATPase), capillary density, resistance to fatigue, and contractile properties were studied. Following stimulation, the histochemical properties of muscle fibres in the fast extensor digitorum longus (EDL) and tibialis anterior (TA) muscles became similar to those of the majority of fibres in the slow soleus muscle. In the soleus muscle, the histochemical properties of the few fast type fibres became similar to the majority of slow fibres so that its fibre composition was homogeneously slow. The stimulated fast muscles also had higher capillary density and were more resistant to fatigue than normal. Despite the prolonged stimulation, the twitch duration of the fast muscles was little changed. This result differs from the findings obtained previously for the rabbit and cat, which show that slowing of contraction can be achieved by low-frequency activity of similar duration. Thus it may be that there is a species difference regarding the readiness with which the transformation of fast to slow muscles can be brought about.  相似文献   

12.
Neuromuscular junctions on fast and slow skeletal muscle fibers have different properties. Possible reasons for these differences were examined in adult rat soleus (SOL) muscle fibers reinnervated at new ectopic or old denervated sites by fast fibular (FIB) or slow SOL motoneurons. FIB motoneurons formed large ectopic junctions with a high density of nerve terminal varicosities (fast appearance), whereas SOL motoneurons formed small ectopic junctions with a low density of varicosities (slow appearance). Both FIB and SOL motoneurons formed small junctions with a slow appearance when reinnervating old SOL endplates. FIB nerves innervating ectopic sites and SOL nerves reinnervating old sites had the same appearance whether they contacted the SOL fibers alone (single innervation) or together (dual innervation). Continuous stimulation of the FIB nerve at 10 Hz for 3–4 months reduced the size of ectopic FIB and intact extensor digitorum longus (EDL) junctions and caused a modest reduction in density of terminal varicosities in EDL. Junction size and muscle fiber diameter were positively correlated, but the slope describing this relation was steeper for FIB junctions than for SOL junctions. It is concluded that in the present system (1) motoneuron type and not muscle fiber type determines the fast or slow character of the neuromuscular junction, (2) denervated endplates of one type place stable and severe constraints on the termination pattern of reinnervating axons of another type, (3) the appearance of fast EDL junctions undergoes a modest fast to slow transformation when exposed to long-term slow pattern stimulation, and (4) not only the size of the muscle fibers, but also the type and firing pattern of the motoneurons and the spatial constraints at preformed endplates influence the relation between junction size and muscle fiber diameter.  相似文献   

13.
Summary Recording of the force-time (f-t) characteristics of muscular contraction expresses the rate at which tension is developed. To further understand the problems involved in force production during voluntary contraction, the f-t curve was registered during maximal voluntary isometric extension of both legs performed in the sitting position with the knee angle at 107 degrees. 38 athletes representing various sport events, five pairs of monozygous, and ten pairs of dizygous twins were used as subjects. The reference group consisted of eight normal men. The data disclosed that the time to produce certain force levels showed good trial-to-trial and satisfactory day-to-day reproducibility below tension levels of 0.9×P 0. At these force levels the time of tension development was positively (p<0.05) related to the per cent distribution of slow twitch fibers in the vastus lateralis muscle. This result is consistent with animal experiments concerning the mechanical characteristics of slow and fast muscles. In addition, it was observed that the athletic groups had f-t curves different from the other subjects. Genetic factors had only slight influence on the f-t measurement.  相似文献   

14.
Summary The soleus (SOL) or extensor digitorum longus (EDL) muscles of month-old rats were denervated for 14 days and then cross-transplanted so that the fast muscle was placed into the bed of the slow muscle and vice versa. At 17, 30, 60, and 90 days the transplants were tested for certain contractile and histochemical properties. By 90 days the cross-transplanted SOL showed complete conversion of the full contraction time and nearly complete conversion of the half relaxation time to those of the normal EDL. In contrast, the contraction and relaxation times of the cross-transplanted EDL became considerably slowed, but did not attain the values of the normal SOL. Histochemical staining for ATPase and SDH activity demonstrated similar transformations of fiber types. The degree of transformation of twitch and histochemical characteristics in cross-transplanted muscles was greater than the values reported after cross-innervation of the same muscles. The cross-transplantation model has certain advantages over nerve cross-union experiments because the cross-transplanted muscle is placed in the normal functional environment of the other muscle.Supported by grants from the Muscular Dystrophy Associations of America and a scientific exchange between the Academies of Sciences of Czechoslovakia and the United States.  相似文献   

15.
The fibre-type specific expression patterns of fast and slow isoforms of essential (alkali) myosin light chains (ELC) was analysed in trained, untrained and pathological human muscles. Biopsies from m. vastus lateralis of moderately trained and untrained persons, as well as highly trained endurance and strength athletes were analysed, by in situ hybridization, for the expression of the `fast' ELC 1f/3f and the `slow' ELC 1sb. We wanted to investigate if changes in the fibre-type specific ELC mRNA pattern could be used as markers for training adaptation, especially, if the mRNA of the slow ELC 1sb isoform would appear in type IIA fibres as a result of endurance training (Baumann et al. 1987). We found the fast/slow ELC expression patterns in the fibre types to be remarkably stable. Physiological stress, even high training loads, did not affect it. No IIA fibres expressing ELC 1sb mRNA were found. They could be detected, however, in pathological muscle samples, where fast/slow ELC patterns not found in normal muscles were frequent. Our data suggest that in healthy muscles, only a subset of the theoretically possible combinations of myosin heavy and light chain isoforms are expressed at the level of their mRNAs.  相似文献   

16.
The semitendinosus, the gastrocnemius and the soleus muscle were stimulated in situ in young, female domestic pigs (Sus scrofa domestica, German Landrace) and in European wild pigs (Sus scrofa scrofa), by supramaximal impulses via the sciatic nerve. Fatigue indices of the whole muscles were registered during a continuous supramaximal stimulation with square wave impulses (0.3 ms) that were given for 10 s with a frequency of 100 Hz. In domestic pigs, fatiguc indices of all three muscles were significantly (p<0.001) lower than in wild pigs. The extremely rapid fatigue of domestic pig muscles was remarkably different from that measured in wild pigs, comparing either pigs of nearly the same body weight (FI: 22.7/58.6 for the semitendinosus muscle; 28.5/63.7 for the gastrocnemius muscle; 37.7/81.2 for the soleus muscle), or pigs of nearly the same age (FI: 23.1/58.8 for the semitendinosus muscle; 25.9/65.1 for the gastrocnemius muscle; 33.6/81.4 for the soleus muscle). Doses of anaesthetics needed for appropriate general anaesthesia of young wild pigs were two to three times higher than doses used for domestic pigs. Differences in fiber type composition of the muscles, and alterations in signal transmission characteristics at neuromuscular junctions are discussed as to be associated with the extremely low fatigue resistance of the domestic pig muscles.Abbreviations used FI fatigue index - DP domestic pig - WP wild pig - L o optimal length - P o maximum tetanic tension - P t twitch tension Supported by the DFG (Deutsche Forschungsgemeinschaft)  相似文献   

17.
Striated muscles exhibit a wide range of metabolic activity levels. Heart and diaphragm are muscles with continuous contractile performance, which requires life-long function. In contrast, skeletal muscles like longissimus muscle can adapt metabolism from resting to different stages of exercise. The aim of this study was to compare the morphological features of these three muscles and the expression of genes that are important for energy metabolism. Therefore, histochemical studies were performed for determination of muscle fibre type composition. Oxidative and glycolytic capacity was assessed by measuring isocitrate dehydrogenase (ICDH) and lactate dehydrogenase (LDH) activities. The mRNA expression of glucose transporter 4 (GLUT 4), growth hormone receptor (GHR) and AMP-activated kinase (AMPK) α1 and α2 subunits was studied by semiquantitative Northern blotting. Heart, and to a slightly lesser extent diaphragm were highly oxidative muscles characterised by high expression of oxidative muscle fibres and ICDH activity. Longissimus muscle exhibited the highest percentage of glycolytic fibres and LDH activity. GLUT 4 mRNA was lowest in heart reflecting the dependency of heart muscle on fatty acids as major energy source. Higher expression of GLUT 4 in diaphragm indicated that glucose is an important energy substrate in this oxidative muscle. Highest GLUT 4 expression in longissimus should be essential for the refilling of glycogen stores after exercise. AMPK subunits, which are important stimulators of GLUT 4 protein insertion into the sarcolemma, are also highest expressed in longissimus muscle indicating the strong capacity to adapt energy metabolism to large changes in energy demand. Interestingly, AMPK α1 subunit expression on protein level is strongly restricted to muscle fibres containing type I myosin in this muscle. GHR mRNA expression was also highest in longissimus muscle indicating that an enhanced effect of growth hormone, which is described to be diabetogenic, could be involved in the lower insulin sensitivity of glycolytic muscles.  相似文献   

18.
Summary The appearance of collagen around individual fast twitch (FT) and slow twitch (ST) muscle fibres was investigated in skeletal muscles with different contractile properties using endurance trained and untrained rats as experimental animals. The collagenous connective tissue was analyzed by measuring hydroxyproline biochemically and by staining collagenous material histochemically in M. soleus (MS), M. rectus femoris (MRF), and M. gastrocnemius (MG). The concentration of hydroxyproline in the ST fibres dissected from MS (2.72±0.35 g·mg–1 d.w.) was significantly higher than that of the FT fibres dissected from MRF (1.52±0.33 g·mg–1 d.w.). Similarly, the concentration of hydroxyproline was higher in ST (2.54±0.51 g·mg–1 d.w.) than in FT fibres (1.60±0.43 g·mg–1 d.w.), when the fibres were dissected from the same muscle, MG. Histochemical staining of collagenous material agreed with the biochemical evidence that MS and the slow twitch area of MG are more collagenous than MRF and the fast twitch area of MG both at the level of perimysium and endomysium. The variables were not affected by endurance training. When discussing the role of collagen in the function of skeletal muscle it is suggested that the different functional demands of different skeletal muscles are also reflected in the structure of intramuscular connective tissue, even at the level of endomysial collagen. It is supposed that the known differences in the elastic properties of fast tetanic muscle compared to slow tonic muscle as, e.g., the higher compliance of fast muscle could at least partly be explained in terms of the amount, type, and structure of intramuscular collagen.This study was supported by grants from the Finnish Research Council for Physical Education and Sport (Ministry of Education) and the Academy of Finnland  相似文献   

19.
Summary A simple model of the thorax, pelvis and three columns of the intrinsic lumbar back muscles (=ILBM) was constructed. The model was used to study the length of the ILBM during the different stages of the walking cycle. The length of the right ILBM (especially the lateral column) was largest at right toe off, exactly the stage of the walking cycle in which most force was needed to prevent the torso from falling forwards and laterally.  相似文献   

20.
Changes in glycogen metabolism with function have been explored in a fast (the extensor digitorum longus, EDL) and in a slow (the soleus, S) muscle of rat. The rate of glucose incorporation is not related to the glycogen levels. In the S glycogen levels are lower and glucose incorporation is higher than in EDL and differences almost disappear after denervation and increase with exercise. In the S, synthetic activities may be higher and glycogenolytic activities are lower than in the EDL. The levels are given of many substrates and cofactors which can affect glycogen enzymes in vivo.On the whole, the data indicate that the rate of glycogen turnover can change dramatically with muscle function even at very light work load and may be higher in the so called oxidative than in the glycolytic muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号