首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using horseradish peroxidase (HRP) bathing of either the intermediofacial nerve or the chorda tympani, the localization of the superior salivatory nucleus that gives rise to parasympathetic fibers to the submandibular and sublingual glands was identified in the cat. The superior salivatory nucleus demonstrated by this study does not exist in the pons but does exist in the dorsal part of the reticular formation of the rostral medulla oblongata. Neurons of this nucleus were generally medium-sized and multipolar, with densely stained Nissl substance.  相似文献   

2.
Multiple nuclei and fiber tracts in the adult rat brainstem and spinal cord were found to contain nerve growth factor receptor-related protein, as recognized by the monoclonal antibody 192-IgG. Both cholinergic and non-cholinergic sensory and motor regions demonstrated immunoreactive cell bodies and fibers. Nerve growth factor receptor-immunoreactive cells were seen in the mesencephalic nucleus of trigeminal nerve, superior colliculus, parabrachial, prepositus hypoglossal, raphe, dorsal and ventral cochlear, interstitial nucleus of the vestibular nerve, ambiguus and reticular nuclei, cerebellum and ventral spinal cord. Immunoreactive cells resembling neuroglia were distributed subpially along the superior colliculus. Intracerebroventricular injection of colchicine resulted in significantly increased nerve growth factor receptor immunoreactivity in all previously positive neurons and especially in certain neurons of the cochlear and ambiguus nuclei. It also resulted in the visualization of receptor immunoreactivity in certain neurons which were normally non-immunoreactive including cerebellar Purkinje cells, neurons of the central gray, locus coeruleus, facial, dorsal motor vagal and hypoglossal nuclei. In normal animals, nerve growth factor receptor-immunoreactive fibers and varicosities occurred in the trigeminal nerve nuclei, pontine, vestibular, parabrachial, facial, hypoglossal, dorsal motor vagal, solitary, gracile and cuneate nuclei and spinal cord. Although most fiber-like immunoreactive structures were probably axons and nerve terminals, neuroglial or extracellular localizations could not be excluded in some areas. For example, the medial nucleus of the inferior olive and most cerebellar nuclei contained diffuse non-fibrillar receptor immunoreactivity. The presence of nerve growth factor receptor-like immunoreactivity in cell bodies and fibers of several sensory and motor areas of the adult rat brainstem, cerebellum and spinal cord suggests multifocal actions of nerve growth factor or a nerve growth factor-like substance. Although the degree of overlap between nerve growth factor receptor- and choline acetyltransferase-containing regions in the brainstem is not as great as in the forebrain, our findings suggest a potential influence of nerve growth factor or nerve growth factor-like substances on cholinergic systems outside the forebrain. Furthermore, the disparities which occur imply that non-cholinergic nerve growth factor receptor-containing neurons of the brainstem, cerebellum and spinal cord may be affected by such trophic substances.  相似文献   

3.
Summary Correlation of the main peripheral branches of the facial nerve with morphological subdivisions of the facial nucleus was examined in the guinea pig by the retrograde horseradish peroxidase method. The facial nucleus of the guinea pig was divided cytoarchitectonically into the dorsolateral, lateral, intermediate, medio-intermediate, medial, and ventromedial divisions; the ventromedial division was further divided into the major, dorsal and lateral parts. Six main branches of the facial nerve were identified; the zygomatico-orbital, cervical, posterior auricular, anterior auricular, superior labial, and inferior labial branches. After applying HRP to the main branches of the facial nerve, the pattern of distribution of HRP-labelled neuronal cell bodies within the facial nucleus was examined: the dorsolateral division, dorsal part of the ventromedial division, major part of the ventromedial division, lateral part of the ventromedial division, or medial division contained the cell bodies of respectively the zygomatico-orbital, cervical, posterior auricular, anterior auricular, or superior labial branches, while each of the lateral, intermediate, and medio-intermediate divisions contained the cell bodies of both the superior labial and inferior labial branches.  相似文献   

4.
Summary Immunocytochemistry of fetal and adult monkey thalamus reveals a dense concentration of tachykinin immunoreactive fibers and terminals in the dorsolateral part of the VPM nucleus in which the contralateral side of the head, face and mouth is represented. The immunoreactive fibers enter the VPM nucleus from the thalamic fasciculus and electron microscopy reveals that they form large terminals resembling those of lemniscal axons and terminating in VPM on dendrites of relay neurons and on presynaptic dendrites of interneurons. Double labeling strategies involving immunostaining for tachykinins after retrograde labeling of brainstem neurons projecting to the VPM failed to reveal the origin of the fibers. The brainstem trigeminal nuclei, however, are regarded as the most likely sources of the VPM-projecting, tachykinin positive fibers.Abbreviations AB ambiguus nucleus - AN abducens nucleus - C cuneate nucleus - CD dorsal cochlear nucleus - CL central lateral nucleus - CM centre médian nucleus - D dendrite - DR dorsal raphe - DV dorsal vagal nucleus - EC external cuneate nucleus - FM medial longitudinal fasciculus - FN facial nucleus - G gracile nucleus - Gc gigantocellular reticular formation - HN hypoglossal nucleus - ICP inferior cerebellar peduncle - IO inferior olivary complex - LC locus coeruleus - LL lateral lemniscus - LM medial lemniscus - M5 motor trigeminal nucleus - NS solitary nucleus - OS superior olivary complex - P dendritic protrusion - Pb parabrachial nucleus - Pc parvocellular reticular formation - PLa anterior pulvinar nucleus - Pp prepositus hypoglossi nucleus - Ps presynaptic region - Py pyramidal tract - P5 principal sensory trigeminal nucleus - R reticular nucleus - RF reticular formation - RL lateral reticular nucleus - S5 spinal trigeminal nucleus - T terminal - T5 spinal trigeminal tract - VL lateral vestibular nucleus - VM medial vestibular nucleus - VMb basal ventral medial nucleus - VPI ventral posterior inferior nucleus - VPL ventral posterior lateral nucleus - VPM ventral posterior medial nucleus - VR ventral raphe - VS superior vestibular nucleus - VSp spinal vestibular nucleus - ZI zona incerta - 5 trigeminal nerve - 6 abducens nerve - 7 facial nerve  相似文献   

5.
1. Recordings were made from single nerve fibers in barbiturate-anesthetized cats in the midline trapezoid body, a location that permits selective sampling of efferent cells of the ventral cochlear nucleus. Single units were localized to either the dorsal or ventral components of the trapezoid body. The fibers were physiologically classified on the basis of their peristimulus time histograms (PSTH) and receptive-field properties. In addition, low characteristic frequency (CF) units were probed for rapid rate and phase shifts with increases in intensity. The projection patterns of some fibers were traced by iontophoresing horseradish peroxidase (HRP) into their axons. 2. HRP-labeled fibers most likely originated from globular bushy cells of the ventral cochlear nucleus in that they sent a large branch into the contralateral medial nucleus of the trapezoid body which terminated in a calyceal ending and an ipsilateral branch into the lateral nucleus of the trapezoid body. A thin branch, usually starting from the large branch, wound its way through the medial nucleus of the trapezoid body to its termination in the ventral nucleus of the trapezoid body. Additional branches from the parent axon could pass through medial periolivary groups throughout the rostrocaudal extent of the superior olivary complex. The parent fiber was traced as far as the ventral lateral lemniscus where it faded before reaching its termination. 3. The majority of units were recorded in the ventral component of the trapezoid body. Although the ventral component is comprised of both large and small diameter fibers, our sample was biased to the larger diameter fibers representing the activity of axons originating from globular bushy cells in the ventral cochlear nucleus. Ventral component units were not tonotopically arrayed and had CFs that spanned the audible range for cats. HRP labeling of ventral component axons revealed that the section of the axon traveling through the midline shifted its dorsal-ventral location. This pattern was compatible with the lack of tonotopy found in the ventral component. Recordings were also made from the dorsal component of the trapezoid body, which contained medium diameter axons. These axons originated from spherical bushy cells in the ventral cochlear nucleus. Dorsal component units were tonotopically arrayed and had CFs less than 7 kHz. 4. Cells were characterized by their PSTH at CF. Primary-like and phase-locked units constituted most of the dorsal component units.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
20 ICR mice (adult females) were used for analyzing the axonal projection of the trigeminal mesencephalic tract neurons and 10 Japanese shrew-moles for analyzing that of the snout proprioceptive neurons. The HRP-labeled axons were found to be ipsilaterally terminated in the trigeminal motor nucleus, supratrigeminal nucleus and trigeminal main and spinal tract nuclei, lateral pontine-medullary reticular formation, vagal dorsal motor and hypoglossal nuclei and the lamina V of the C2 spinal cord segments. No HRP-labeled axons were found in the facial and solitary nuclei and the cerebellum. Also, the functional localization of the trigeminal mesencephalic tract neurons was analyzed with the retrograde tracers of fluorescent compounds injected into the jaw-closing muscles having spindles. The fluorescent-labeled neurons were found to be intermingled throughout the nucleus and clustered at the caudal level of the nucleus. Also, double or triple fluorescent-labeled neurons were not observed in the nucleus. The HRP-labeled axon bundle of the facial proprioceptive neurons are divided rostro-caudally into the shorter ascending and the longer descending roots, both running closely dorsal to the trigeminal spinal tract nucleus. The ascending root lies adjacently dorsal to the spinal tract nucleus, giving off the terminal fibers to it, to the wider area of the dorso-medial pontine nuclei and finally to the cerebellar nuclei. At the level of the facial inner genu, it turns medially to meet the facial nerve root, giving off the terminal fibers to the facial motor nucleus and to the raphe nuclei and to the opposite nuclei bilaterally. The HRP-labeled descending root takes the course caudally at least down to the C3 segment of the spinal cord, giving off the terminal fibers to the spinal tract nucleus, the nuclei of the IXth, Xth and XIIth cranial nerves and the pontine-medullary reticular formation. In the spinal cord, it descends bilaterally through the posterior fascicles, giving off the terminal fibers to the dorsal and ventral horns.  相似文献   

7.
Summary Using double immunogold staining procedures, calcitonin gene-related peptide (CGRP)-like and substance P (SP)-like immunoreactivities were localized at the ultrastructural level to guinea pig trigeminal ganglia, dorsal root ganglia and peripheral nerve fibres associated with the vascular system. CGRP-like and SP-like immunoreactivities were found consistently in large granular secretory vesicles (70–100 nm in diameter), and both peptide immunoreactivities were co-localized to the same vesicle in both sensory ganglion cells and within axons and their terminals in the adventitia and adventitial-medial border of the superior mesenteric artery. These results suggest that CGRP and SP are co-stored and may be released together from peripheral axons in the guinea pig.  相似文献   

8.
目的 研究鸡舌咽神经传出神经元在脑干的分布。方法 选用13只健康来抗鸡,分离暴露舌咽神经干,在岩神经节处注射4ulCB-HRP,动物存活约35h,灌注固定,取延髓作冰冻连续切片,TMB法呈色,光镜下观察。结果 舌咽神经传出神经元主要位于舌咽神经背运动核,部分位于迷走神经背运动核的前端和面神经腹侧核。结论 鸡舌咽神经背运动核和迷走神经背运动核有相互重叠的现象,其位置与哺乳类的明显不同。  相似文献   

9.
Motoneurons innervating the posterior belly of the digastric muscle were identified in the monkey, cat, dog, guinea pig and rat by the HRP method. After injections of horseradish peroxidase (HRP) into the posterior belly of the digastric muscle, two groups of HRP-labeled motoneurons were observed; the rostral group was seen as a small cluster of neurons in the lateral reticular area along the medial border of the descending root of the facial nerve, and the neurons of the caudal group were distributed among the ascending root fibers of the facial nerve. The distribution pattern of these neurons corresponded to that of the accessory facial nucleus neurons. The accessory facial nucleus was lacking in the rabbit in which the posterior digastric (PD) muscle is nonexistent.  相似文献   

10.
We describe the distribution of axons immunoreactive for dopamine in pons and medulla oblongata of rat under normal conditions or after inhibition of monoamine oxidase or dopamine beta-hydroxylase. In the pons of non-treated animal, fairly dense plexuses of dopamine-immunoreactive varicose fibers were found in the locus coeruleus, dorsal parabrachial and dorsal raphe nuclei, central gray and reticular formation dorsal to the superior olive. In the medulla oblongata, the immunoreactive fibers were abundant in the dorsal vagal complex, lateral paragigantocellular nucleus, midline raphe nuclei and spinal trigeminal nucleus. Monoamine oxidase inhibition made it possible to increase the intensity of immunoreactivity and consequently the number of labeled fibers in these areas, indicating that dopamine is perpetually oxidized by monoamine oxidase, and consequently in low concentration under normal conditions. Sparse dopamine-immunoreactive fibers were observed in the pontine gray, motor trigeminal nucleus, inferior olive and major axon bundles such as the dorsal and ventral tegmental bundles, where numerous noradrenergic fibers have been reported. In axons of these areas, intense dopamine-immunoreactivity was seen only after inhibition of dopamine-beta-hydroxylase. It appears that dopamine is released and oxidized in response to autonomic changes such as hypoxia, hemorrhage, and cardiovascular variation in the caudal brainstem, as we have described elsewhere.  相似文献   

11.
The endogenous opioid system, in particular the enkephalins, has been implicated in a vast array of neurological functions. The dog could be a suitable model for the study of complex interactions between behavioral state and regulatory physiology in which the opioid system appeared to be implicated. Moreover, opiate derivatives are currently used in veterinary clinic and sometimes pharmacologically tested in the dog. However, there are no anatomical data regarding the organization of the opioid system in this species. The present work represents the first attempt to map the distribution of Met5-enkephalin-like-immunoreactive (Met-enk-li) cell bodies and fibers in the diencephalon and the brainstem of the dog. In the diencephalon, labeled cells were present in all the mid-line and intralaminar thalamic nuclei; the lateral posterior, pulvinar and suprageniculate nuclei; the ventral nucleus of the lateral geniculate body and the medial geniculate body. Additionally, Met-enk-li cells were seen in every hypothalamic nucleus except in the supraoptic. Variable densities of labeled fibers were also seen in all these nuclei except in the medial geniculate body and in most areas of the lateral posterior and pulvinar nuclei. In the mesencephalon, positive cells were found in the periaqueductal gray, the Edinger–Westphal and interpeduncular nuclei, delimited areas of the superior and inferior colliculi and the ventral tegmental area. In the rhombencephalon, labeled cells were seen in the majority of the nuclei in the latero-dorsal pontine tegmentum, the nuclei of the lateral lemniscus, the trapezoid, vestibular medial, vestibular inferior and cochlear nuclei, the prepositus hypoglossal, the nucleus of the solitary tract and the dorsal motor nucleus of the vagus, the infratrigeminal nucleus and the caudal part of the spinal trigeminal nucleus and in the rhombencephalic reticular formation. The distribution of fibers included additionally the substantia nigra, all the trigeminal nerve nuclei, the facial nucleus and a restricted portion of the inferior olive. These results are discussed with regard to previous reports on the distribution of Met-enk in other species.  相似文献   

12.
Injection of the fluorescent tracers, Evans Blue (EB) and 4'-6-Diamidino-2-phenylindole dihydrochloride hydrate (DAPI) or Fluoro-Gold (FG) into the dorsal nucleus of the lateral geniculate body (dLGN) and the ipsilateral superior colliculus (SC) of adult cats demonstrated the existence of double-labeled optic nerve cells in the retina denoting that their axons bifurcate and project to both of these structures. These cells were seen in the temporal half and dorsal-dorsonasal and ventral-ventronasal octants of the ipsilateral retina and accounted for 11.5% of all the labeled cells. On the contralateral side, they were seen in the entire retina and accounted for 13.7% of all the labeled cells.  相似文献   

13.
The localization of the inferior salivatory nucleus that gives rise to parasympathetic fibers to the parotid gland was identified by means of horseradish peroxidase (HRP) method in the cat. The inferior salivatory nucleus does exist in the medulla oblongata and is situated in the dorsal part of the reticular formation. The nucleus is well-circumscribed caudally but rostrally the nucleus becomes scattered within the wide area of the dorso-lateral reticular formation. The inferior salivatory nucleus, demonstrated by the present study is composed of medium-sized multipolar neurons with well-developed slender dendrites and densely stained Nissl substance.  相似文献   

14.
Hu J  Chen T  Li M  He G  Meng J  Ma X  Wu Y  Jia M  Luo X 《Neuroscience research》2007,59(2):231-236
Previous studies have demonstrated that histamine (HA) acts as a neurotransmitter in the cardiac sympathetic nervous system of the guinea pig. The aim of the current study was to examine whether HA widely exists in the sympathetic nervous systems of other species and the subcellular localization of HA in sympathetic terminals. An immunofluorescence histochemical multiple-staining technique and anterograde tracing method were employed to visualize the colocalization of HA and norepinephrine (NE) in sympathetic ganglion and nerve fibers in different species. Pre-embedding immunoelectron microscopy was used to observe the subcellular distribution of HA in sympathetic nerve terminals. Under the confocal microscope, coexistence of NE and HA was displayed in the superior cervical ganglion and celiac ganglion neurons of the mouse and dog as well as in the vas deferens, mesenteric artery axon, and varicosities of the mouse and guinea pig. Furthermore, colocalization of NE and HA in cardiac sympathetic axons and varicosities was labeled by biotinylated dextranamine injected into the superior cervical ganglion of the guinea pig. By electron microscopy, HA-like high-density immunoreactive products were seen in the small vesicles of the guinea pig vas deferens. These results provide direct cellular and subcellular morphological evidence for the colocalization of HA and NE in sympathetic ganglion and nerve fibers, and support that HA is classified as a neurotransmitter in sympathetic neurons.  相似文献   

15.
16.
大鼠运动核内5-羟色胺1A、2A、5A受体的定位分布   总被引:4,自引:1,他引:3  
为了阐明5 羟色胺在中枢神经系统内与运动神经元结合的精确部位,本研究用免疫细胞化学技术分别观察了大鼠躯体运动核和内脏运动核内5 羟色胺1A、2A、5A 受体的定位分布。在躯体运动核内观察到:(1)5 羟色胺1A 受体样阳性神经元和纤维主要分布于动眼神经核、滑车神经核、三叉神经运动核、面神经核、舌下神经核和脊髓前角;(2)5 羟色胺2A 受体样阳性神经元主要见于动眼神经核、三叉神经运动核、面神经核、舌下神经核和脊髓前角,但阳性纤维和终末却密集地分布于三叉神经运动核、面神经核、舌下神经核和脊髓前角等处,除此之外动眼神经核、滑车神经核、展神经核和疑核内也能见到中等密度的阳性纤维和终末,纤维和终末的分布范围和染色浓度、密度都较神经元为明显;(3)少量淡染的5 羟色胺5A 受体样阳性神经元和稀疏的阳性纤维及终末主要见于三叉神经运动核、面神经核、舌下神经核和脊髓前角。在内脏运动核内观察的结果是:(1)动眼神经副交感核(E W 核)、上涎核、迷走神经背核、骶髓副交感核和胸髓侧角内仅有少量5 羟色胺1A 受体样阳性神经元、纤维和终末分布;(2)5 羟色胺2A 受体样阳性神经元和较密集的阳性纤维和终末见于E W 核、迷走神经背核、骶?  相似文献   

17.
Summary The central projections of primary afferent fibers of the greater splanchnic nerve of the rat were investigated using the transganglionic horseradish peroxidase transport technique. In addition, the corresponding spinal ganglion cells and the preganglionic sympathetic neurons were demonstrated. For comparing visceral and somatic afferents, intercostal nerve afferents were labelled by the same technique.Splanchnic afferent dorsal root ganglion cells were found at segments T3 to T13 ipsilaterally, with the greatest density at T8 to T12. Labelled cells represented about 10%–15% of all neurons in the ganglia at maximal projection levels. They were randomly distributed within individual ganglia. The great majority were medium to small sized and round to slightly oval in shape.In the spinal cord, labelled visceral afferent axons were found maximally at T8 to T11, but could be detected in decreasing density up to T1 and down to L1. They were distributed over Lissauer's tract and the dorsal funiculus to a medial and lateral collateral pathway (MCP and LCP, respectively). The MCP, somewhat more prominent than the LCP, was destined primarily to clustered presumptive terminal fields in medial lamina I and outermost lamina IIa. Only a few axons continued further to laminae V and X. Splanchnic afferent axons, most likely derived from the MCP, formed a longitudinal bundle ventral to the central canal. The LCP consisted of more or less well-defined axon bundles emanating from the lateral Lissauer's tract and curving round the lateral edge of the dorsal horn and through the dorsolateral funiculus. Presumptive terminal sites of LCP axons are the lateral laminae I and IIa, the nucleus of the dorsolateral funiculus and the dorsal part of lamina V. A few LCP axons were seen in the vicinity of lateral dendrites of preganglionic sympathetic axons. Visceroafferent terminals were absent from laminae IIb–IV and VII. The possible consequences of the MCP/LCP duality for the central connections of splanchnic afferents are discussed. Some splanchnic afferents ascended to the gracile and cuneate nuclei, and rarely to the spinal trigeminal nucleus.These results fit into the general concept of visceroafferent terminal organization that has emerged during the last few years. Differences to other reports in the detailed arrangement of fibers and terminals are discussed.Somatoafferent cell bodies represented the vast majority of neurons in the respective spinal ganglia. Cell sizes encompassed the whole range from very small to very large without a clear predominance of one particular size class. Cell shapes of somatic neurons were more variable than those of visceral afferent neurons. Somatic afferent fibers and presumptive terminals in the spinal cord are distributed ipsilaterally to dorsal horn laminae I–V, most heavily II–IV, to the nucleus dorsalis Clarke, to the ventral horn, and also sparsely to the dorsal horn contralaterally.Labelled preganglionic sympathetic neurons were found in segments T3–T13. The vast majority was located in the intermediolateral nucleus. Fewer neurons occurred in the intercalated nucleus, and occasionally a neuron was labelled in the dorsal grey commissure.Parts of this study have been presented in abstract form at the 8th ENA meeting in Den Haag, September 1984Dedicated to Prof. Dr. W. Zenker on occasion of his 60th birthday  相似文献   

18.
Using the horseradish peroxidase-technique, the myotopical arrangement of motoneurons innervating the transverse palatine muscle in the rat was studied. It appears that this muscle is innervated by axons from cells located in the ipsilateral intermediate subnucleus of the facial motor nucleus. By nerve transection and electrophysiological experiments it is shown that the transverse palatine muscle is innervated by the inferior as well as the superior buccolabial branch of the facial nerve.  相似文献   

19.
Neurons in the dorsal cochlear nucleus of the guinea pig were classified according to their positivity to the inhibitory neurotransmitter glycine, ultrastructure and projections to the inferior colliculus as indicated by tract-tracing and ultrastructural immunocytochemistry. Only some pyramidal and few giant cells, surrounded by glycinergic boutons containing flat and pleomorphic vesicles, projected to the inferior colliculus as glycine-negative excitatory cells. Smaller neurons in superficial layers of the dorsal cochlear nucleus did not project to the inferior colliculus, and were recognized as glycine-negative granule and unipolar brush cells. Few glycinergic, inhibitory neurons among granule cells were indicated as Golgi-stellate neurons. All small neurons associated to the granule cell areas received few, mainly glycinergic synapses, and their dendrites contacted large boutons (mossy fibers). Other medium-large glycine positive neurons in the superficial (cartwheel) and deep layers (tuberculo-ventral and large-giant) of the dorsal cochlear nucleus did not project to the inferior colliculus. Giant-large glycinergic neurons surrounded by sparse axo-somatic, mostly glycinergic synapses, probably represent commissural neurons projecting to the contralateral cochlear nucleus. Rare boutons, possibly descending from the inferior colliculus, were seen onto pyramidal cells or their dendrites, and these boutons mainly stored glycine positive pleomorphic vesicles or glycine negative round vesicles. No descending mossy fibers storing round vesicles were labelled from the central nucleus of the inferior colliculus. These observations suggest that very few terminals in the dorsal cochlear nucleus of the guinea pig are derived from the inferior colliculus.  相似文献   

20.
Projection of the superior laryngeal nerve (SLN) afferent fibers into the nucleus tractus solitarius (NTS) was investigated using a fluorescent tracer in guinea pigs. High density of fluorescence was detected in the ipsilateral NTS extending from 0.5 mm caudal to 1.2 mm rostral to the obex. At coronal slices, the fluorescent granules, lines and patches were located in the interstitial, medial and dorsal regions of NTS. Fluorescence was also found in the dorsal region of contralateral commissural NTS. Microstimulation of the rostral NTS, which corresponded to the region showing the strong fluorescence, induced an increase in the inspiratory discharge of phrenic nerve that was immediately followed by a large burst discharge of the iliohypogastric nerve in decerebrate, paralyzed and artificially ventilated guinea pigs. This serial response of the two nerves was identical to that induced by electrical stimulation of the SLN. Intravenous injection of codeine suppressed both NTS and SLN-induced responses. The SLN-induced response was inhibited by microinjection of codeine into the ipsilateral NTS and abolished by lesion of the ipsilateral NTS. These results suggest that the NTS has an integrative function in production of cough reflex and is possible sites of action of central antitussive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号