首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The purpose of this investigation was to compare cardiac output ( c ) in paraplegic subjects (P) with wheelchair-confined control subjects (C) at high intensities of arm exercise. At low and moderate exercise intensity c was the same at a given oxygen uptake ( O2) in P and C. A group of 11 athletic male P with complete spinal-cord lesions between T6 and T12 and a group of 5 well-matched athletic male C performed maximal arm-cranking exercise and submaximal exercise at 50%, 70% and 80% of each individual's maximal power output (Wmax) . Maximal O2 ( O2max) was significantly lower, O2max per kilogram body mass was equal and maximal heart rate (f c) was significantly higher in P compared to C. At O2 of 1.3, 1.5 and 1.7 1-min–1, and for P 65%–90% of the O2max, c was not significantly different between the groups, although, c in P was achieved with a significantly lower stroke volume (SV) and a significantly higherf c. Although the SV was lower in P, it followed the same pattern as SV in C during incremental exercise, i.e. an increase in SV until about 45%W max and thereafter a stable SV. The similar c at a given O2 in both groups indicated that, even at high exercise intensities, circulation in P can be considered isokinetic with a complete compensation byf c for a lower SV.  相似文献   

2.
The ventilatory response to CO2 in rats under sodium pentobarbital anesthesia has been measured using the rebreathing technique. The animal rebreathed through a tracheal cannula for a period of 4 min from an apparatus of 200–400 ml capacity, containing 5–6% CO2 in O2. in the rebreathing apparatus (PappCO2), instantaneousV T,f, and were monitored before, during, and after rebreathing. During the rebreathing run,PappCO2 andPa CO2 rose linearly from 35–40 to 65–70 mm Hg; there was no significant difference betweenPappCO2 andPa CO2 at any time during rebeathing.V T and increased almost linearly with the rise inPappCO2, whilef increased to a maximum within 2 min of rebreathing. In the rat,V T regulation seemed to operate exclusively as a proportional control system in response to linearly increasing CO2 stimulus. The slopes ofPappCO2,V T or response curves varied considerably during the time course of the experiment, depending upon the level of anesthesia, even though there was no large change in in the control periods which were under hyperoxic conditions. However, a significant linear relationship was seen betweenf in the respective control period and the slope ofPappCO2-V T response at various levels of anesthesia. We concluded that the rebreathing technique can be applied in small experimental animals and that changes in the sensitivity of the respiratory control system to a CO2 stimulus by anesthesia can be easily monitored by repeating the rebreathing test.  相似文献   

3.
Summary The aim of this study was to determine whether the greater ventilation in children at rest and during exercise is related to a greater CO2 ventilatory response. The CO2 ventilatory response was measured in nine prepubertal boys [10.3 years (SD 0.1)] and in 10 adults [24.9 years (SD 0.8)] at rest and during moderate exercise ( CO2 = 20 ml·kg–1·min–1) using the CO2-rebreathing method. Three criteria were measured in all subjects to assess the ventilatory response to CO2: the CO2 sensitivity threshold (Th), which was defined as the value of end titalPCO2 (P ETCO2) where the ventilation increased above its steady-state level; the reactivity slope expressed per unit of body mass (SBM), which was the slope of the linear relation between minute ventilation ( E) andP ETCO2 above Th; and the slope of the relationship between the quotient of tidal volume (V T) and inspiration time (t I) andP ETCO2 (V T ·t I –1 ·P ETCO2 –1) values above Th. The E,V T, breathing frequency (f R), oxygen uptake ( O2), and CO2 production ( CO2) were also measured before the CO2-rebreathing test. The following results were obtained. First, children had greater ventilation per unit body weight than adults at rest (P<0.001) and during exercise (P<0.01). Second, at rest, onlyV T ·t I –1 ·P ETCO2 –1 was greater in children than in adults (P<0.001). Third, during exercise, children had a higher SBM (P < 0.02) andV T ·t I –1 ·P ETCO2 –1 (P<0.001) while Th was lower (P<0.02). Finally, no correlation was found between E/ CO2 and Th while a significant correlation existed between E/ CO2 and SBM (adults,r=0.79,P<0.01; children,r=0.73,P<0.05). We conclude that children have, mainly during exercise, a greater sensitivity of the respiratory centres than adult. This greater CO2 sensitivity could partly explain their higher ventilation during exercise, though greater CO2 production probably plays a role at rest.  相似文献   

4.
Cardiac output measurements were performed during 50 exercise tests in 16 normal subjects employing the indirect Fick principle for CO2. During sub-maximal steady state exercise the plateau CO2 tension ( ) was estimated with a rebreathing procedure. The mixed venous CO2 tension ( ) was calculated by subtracting the alveolocapillary CO2 tension difference from the . Compared with data from the literature the most valid calculation of the cardiac output was obtained by using the . Cardiac output values, calculated via the turned out to be too low.The reproducibility was tested by repitition of 18 exercise tests at least after 5 days. The relative standard error of a single observation was 4.1% for the cardiac output, which was found to be as good as that of invasive measurements.  相似文献   

5.
Summary The interrelationship between whole body maximum O2 uptake capacity ( O2 max), skeletal muscle respiratory capacity, and muscle fiber type were examined in 20 physically active men. The capacity of homogenates of vastus lateralis muscle biopsy specimes to oxidize pyruvate was significantly related to O2 max (r=0.81). Correlations of 0.75 and 0.74 were found between % slow twitch fibers (%ST) and O2 max, and between % ST fibers and muscle respiratory capacity, respectively (P<0.01). Multiple correlation analysis (R=0.85) indicated that 72% (R 2=0.72) of the variance in CO2 max could be accounted for by the combined effect of muscle respiratory capacity and the % ST fibers. When the % ST fibers was correlated with O2 max, with the effect of respiratory capacity statistically removed, the relationship became insignificant (r=0.38). These data suggest that muscle respiratory capacity plays an important role in determining O2 max, and that the relationship between % ST fibers and O2 max is due primarily to the high oxidative capacity of this muscle fiber type.This research was supported by NIH grant (HL 20408-02)  相似文献   

6.
Oxygen consumption ( O2), heart rate, ventilation and central rating of perceived exertion (RPE) in repetitive lifting while executing squat and stoop techniques were investigated in ten male forestry workers. In all five mass/frequency combinations studied, O2 was significantly higher for the squat than for the stoop technique. No differences were found in RPE between the techniques. The O2 and RPE recordings were also related to those obtained during maximal repetitive lifting (same lifting technique) and maximal treadmill running. The O2 expressed as a percentage of that obtained during maximal repetitive lifting with the same lifting technique was defined as relative aerobic intensity (% O2max, lifting). The % O2max, lifting was not significantly different between the techniques except for the lowest mass lifted (1 kg). This study therefore would support the hypothesis that RPE is more closely related to % O2max, lifting than to absolute aerobic intensity. Related to maximal treadmill running, it was demonstrated for both lifting techniques that relative RPE (percentage of the RPE during maximal running) was more accurate than relative O2 (percentage of maximal O2 during maximal running) for determining the % O2max, lifting in repetitive lifting. The study showed that the higher O2 during squat. lifting compared to stoop lifting was caused by the O2 expended in lifting and lowering the body rather than the O2 expended lifting and lowering the external mass. It was concluded that the stoop technique was not superior to the squat technique in terms of central RPE. Based on % O2max, lifting, there may be a rationale for choosing the stoop technique during repetitive lifting with light masses, but not with heavy masses.  相似文献   

7.
Summary Using an open circuit system (Douglas bag method), measurement of the anaerobic threshold (AT) was performed on ten healthy male college students during an incremental exercise test on a bicycle ergometer in an attempt to determine the validity of this method as compared with arterial blood lactate AT measurement.Blood samples were taken from either the radial or brachial artery through a Teflon catheter (3 ml/each time) every minute until the subject's maximal exercise tolerance was reached. Blood lactate was analyzed by the enzymatic method.Differences in work rate, O2, % O2 max, E, HR, and R at AT LA (AT determined by the increase in blood lactate) and at AT GE (gas exchange AT based on the non-linear increases in E, CO2, and other respiratory parameters), respectively, were all found to be statistically insignificant. There was a significant correlation (r=0.866, p<0.01) between AT LA and AT GE when expressed in O2 values (l/min). There was also a significant correlation between AT LA and O2 max (r=0.778, p<0.01). These results indicate that the commonly used Douglas bag method could provide a valid non-invasive measure of anaerobic threshold.  相似文献   

8.
A method to estimate the CO2 derived from buffering lactic acid by HCO3 during constant work rate exercise is described. It utilizes the simultaneous continuous measurement of O2 uptake ( O2) and CO2 output ( CO2), and the muscle respiratory quotient (RQm). The CO2 generated from aerobic metabolism of the contracting skeletal muscles was estimated from the product of the exercise-induced increase in O2 and RQm calculated from gas exchange. By starting exercise from unloaded cycling, the increase in CO2 stores, not accompanied by a simultaneous decrease in O2 stores, was minimized. The total CO2 and aerobic CO2 outputs and, by difference, the millimoles (mmol) of lactate buffered by HCO3 (corrected for hyperventilation) were estimated. To test this method, ten normal subjects performed cycling exercise at each of two work rates for 6 min, one below the lactic acidosis threshold (LAT) (50 W for all subjects), and the other above the LAT, midway between LAT and peak O2 [mean (SD), 144 (48) W]. Hyperventilation had a small effect on the calculation of mmol lactate buffered by HCO3 [6.5 (2.3)% at 6 min in four subjects who hyperventilated]. The mmol of buffer CO2 at 6 min of exercise was highly correlated (r = 0.925, P < 0.001) with the increase in venous blood lactate sampled 2 min into recovery (coefficient of variation = ±0.9 mmol·l–1). The reproducibility between tests done on different days was good. We conclude that the rate of release of CO22 from HCO3 can be estimated from the continuous analysis of simultaneously measured CO2, O2, and an estimate of muscle substrate.  相似文献   

9.
Summary The purpose of this study was to measure the cardiac output using the CO2 rebreathing method during submaximal and maximal arm cranking exercise in six male paraplegic subjects with a high level of spinal cord injury (HP). They were compared with eight able bodied subjects (AB) who were not trained in arm exercise. Maximal O2 consumption ( O2max) was lower in HP (1.1 1·min–1, SD 0.1; 17.5 ml·min·kg, SD 4) than in AB (2.5 1·min–1, SD 0.6; 36.7 ml·min–1·kg, SD 10.7). Maximal cardiac output was similar in the groups (HP, 141·min–1 SD 2.6; AB, 16.81·min–1 SD 4). The same result was obtained for maximal heart rate (f c,max (HP, 175 beats·min–1, SD 18; AB, 187 beats·min, SD 16) and the maximal stroke volume (HP, 82 ml, SD 13; AB, 91 ml, SD 27). The slopes of the relationshipf c/ O2 were higher in HP than AB (P<0.025) but when expressed as a % O2max there were no differences. The results suggests a major alteration of oxygen transport capacity to active muscle mass in paraplegics due to changes in vasomotor regulation below the level of the lesion.  相似文献   

10.
Summary Ventilation versus alveolar relationships were determined by the steady-state method in 6 normal male subjects at rest and during positive and negative work at one load in both normoxic and hyperoxic condition. In 5 subjects the slopes of the lines during positive and negative work increased in normoxia as compared with rest. This effect was less evident in hyperoxia. It was also found that the slopes of the lines in positive and in negative work were about the same in both normoxic and hyperoxic conditions. Oxygen uptake and CO2 production during positive work is higher than during negative work.These results suggest that: 1) the disagreement between various authors on the change of the slope of the line may be due to the differences in the method of calculation of the slope or the method of the determination of lines; 2) the stimuli from the muscle spindles in the working muscle during exercise probably do not contribute to the increase in ventilatory response to CO2; 3) the increased slope of the normoxic line during exercise may be due to the interaction of several factors such as impulses from working muscles, chemosensitivity of central or peripheral chemoreceptors, adrenal-sympathetic pathways or temperature; 4) respiratory oscillations of or do not seem to influence the respiratory response to CO2.This study was supported in part by a grant from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.)  相似文献   

11.
Summary 5 conscious, well trained, female dogs kept on a high sodium intake (14 meq Na/kg bw) were used to measureeft atrial pressure (LAP), urine volume ( ), sodium and potassium excretion (UNa , UK ) as well as plasma osmolality (Posm) before and up to 180 minafter food intake. The dogs were fitted with a catheter in the left atrium (thoracotomy). In all experiments (n=23) LAP increased postprandially (pp) above fasting controls. The mean peak increase range from 4 to 6 cm H2O and was observed as early as 61–80 and as late, as 161–180 min pp. Increase in LAP was closely correlated to V which rose from 36±28 to 160±51 ul/min·kg. pp was also correlated to pp UNa which increased from 4.8±3.3 to 34.0±8.5 ueq/min·kg.The pp increase in LAP and its close relation to pp and pp UNa emphasize the assumption that intrathoracic receptors are involved in the regulation of body fluids.  相似文献   

12.
Summary The purpose of this study was to determine oxygen uptake O2) at various water flow rates and maximal oxygen uptake ( O2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m · s–1 and was increased by 0.05 m· s–1 every 2 min up to 1.00 m · s–1 and then by 0.05 m · s–1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production ( CO2), pulmonary ventilation ( E) and tidal volume (V T) were significantly greater in H than in N. There were no significant differences in the response of submaximal O2, heart rate (f c) or respiratory frequency (f R) between N and H. Maximal E,f R,V T,f c blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l · min–1] was significantly lower by 12.0% (SD 3.4) % than that in N [4.15 (SD 0.18) l · min–1] . This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.  相似文献   

13.
Summary Fourteen Subjects (6 male, 8 female) participated in a training program upon a bicycle ergometer for 7 weeks. Group CT followed a continuous training regimen 4 days per week at 70% O2 max. Group IT trained by an interval method at 100% O2 max. The duration of each training session was assigned so that each subject would complete 10,000 kpm of work per session during the first week. Each subsequent week, the work load was increased 3000 kpm. Pretraining tests included O2 max, standard 7 min tests at 80% O2 and 90% O2, an endurance test at 90%, and an intense anaerobic work bout at 2400 kpm. Variables assessed were O2, HR, and blood lactic acid concentrations. The mean increase in O2 max was 5.1 ml/kg min (15%) for both groups with a corresponding increase in maximal lactate of 20 mg-%. The response to the post-training tests was nearly identical for both groups: submaximal heart rate at the same absolute work load declined 17 beats/min (CT) and 15 beats/min (IT), submaximal lactate levels declined significantly, endurance ride duration increased 26 min. Continuous and interval training at 70% and 100% O2 max respectively produce identical changes in heart rate response, blood lactic acid concentration and O2 max when the total work load is equated per training session.  相似文献   

14.
We attempted to analyze how is regulated during progesterone-induced hyperventilation in the luteal phase. A model for the CO2 control loop was constructed, in which the function of the CO2 exchange system was described as and that of the CO2 sensing system as . Using this model, we estimated (1) the primary increase in produced by progesterone stimulation and (2) the effectiveness (E) of the loop to regulateP A CO 2, defined as P A CO 2 (op)/P A CO 2 (cl) in which op signifies open-loop and cl, closed-loop. These respiratory variables were investigated throughout the menstrual cycle in 8 healthy women. During the luteal phase, on average, increased by 9.4% andP A CO 2,B andH decreased by 0.33 kPa (2.5 mm Hg), 0.47 kPa (3.5 mm Hg) and 13.6%, respectively, whileS and did not change significantly. (op) increased progressively on successive days of the luteal phase whileE remained unchanged at a value of 7.9, thus there was a progressive decrease inP A CO 2. The decrease inH was considered to lessen P A CO 2 (op) and so reduce the final deviation ofP A CO 2 (P A CO 2 (cl)) during the luteal phase. The decrease inB was found to be dependent on (op).  相似文献   

15.
Criteria for maximum oxygen uptake in progressive bicycle tests   总被引:1,自引:0,他引:1  
Summary Different criteria for O2 max in a progressive bicycle exercise were studied in 115 healthy subjects. In the repeated progressive tests performed on 16 men, aged 25–35 years, three types of O2 response against work load were noticed: a linear increase, an unexpectedly high increase, and a plateau; the last two only appearing when O2 max was achieved. The last three O2 values at least were required to define the plateau. Most commonly, subjective exhaustion was achieved, respiratory quotient (R) was over 1.15 and maximal heart rate (HR) at the estimated level for age, though O2 max was not achieved. No significant differences were found between peak O2 in the first progressive test (mean=2.95 l/min), the second progressive test (mean=3.14 l/min), or the constant-load test (mean=3.05 l/min). In the progressive test performed once on 55 men and 44 women, aged 35–62 years, subjective exhaustion was achieved by most of the subjects, but the plateau in O2 was shown only in 17 subjects, and the peak O2 values were somewhat lower than expected. Moreover, R max did not correlate with peak O2, and was over 1.15 only in 9 subjects, and HR max was often below the estimated level. Thus, the progressive test appeared to be convenient in testing the physical work capacity of the subjects, but the establishment of the physiological maximum was more difficult: the relatively uncommon plateau in O2 was the only useful criterion for O2 max, the value of other criteria being unacceptable.  相似文献   

16.
Summary To investigate the effect of hyperthyroidism on the pattern and time course of O2 uptake ( O2) following the transition from rest to exercise, six patients and six healthy subjects performed cycle exercise at an average work rate (WR) of 18 and 20 W respectively. Cardiorespiratory variables were measured breath-by-breath. The patients also performed a progressively increasing WR test (1-min increments) to the limit of tolerance. Two patients repeated the studies when euthyroid. Resting and exercise steady-state (SS) O2 (ml·kg–1·min–1) were higher in the patients than control (5.8, SD 0.9 vs 4.0, SD 0.3 and 12.1, SD 1.5 vs 10.2, SD 1.0 respectively). The increase in O2 during the first 20 s exercise (phase I) was lower in the patients (mean 89 ml·min, SD 30) compared to the control (265 ml·min–1, SD 90), while the difference in half time of the subsequent (phase 11) increase to the SS O2 (patient 26 s, SD 8; controls 17 s, SD 8) were not significant (P = 0.06). The OZ cost per WR increment ( O2/WR) in ml·min–1·–1, measured during the incremental period (mean 10.9; range 8.3–12.2), was always within two standard deviations of the normal value (10.3, SD 1). In the two patients who repeated the tests, both the increment of O2 from rest to SS during constant WR exercise and the O2/WRs during the progressive exercise were higher in the hyperthyroid state than during the euthyroid state. While both resting and exercise O2 are increased in the hyperthyroid patients, the O2 cost of a given increment of WR is within the normal range. However, a small reduction in the O2 requirement to perform exercise following treatment of the hyperthyroid state suggests a subtle change O2 cost of muscle work in this disease.  相似文献   

17.
Summary The time course of changes in blood lactate concentration and ventilatory gas exchange was studied during an incremental exercise test on a cycle ergometer to determine if the lactate accumulation threshold (LT2) could be accurately estimated by the use of respiratory indices (VT2) in young athletes. LT2 was defined as the starting point of accelerated lactate accumulation. VT2 was identified by the second exponential increase in E and the ventilatory equivalent for O2 uptake with a concomitant nonlinear increase in the ventilatory equivalent for CO2 output. Twelve trained subjects, aged 18–22 years, participated in this study. The initial power setting was 30 W for 3 min with successive increases of 30 W every minute except at the end of the test when the increase was reduced. Ventilatory flow ( E), oxygen uptake ( O2), carbon dioxide output ( CO2), and ventilatory equivalents of O2 and CO2 were determined during the last 30 s of every minute. Venous blood samples were drawn at the end of each stage of effort and analysed enzymatically for lactate concentration. After each test, LT2 and VT2 were determined visually by two investigators from the graphic results using a double-blind procedure. The results [mean (SEM)] indicate no significant difference between LT2 and VT2 expressed as O2 [43.98 (1.70) vs 44.93 (2.39) ml - min - kg], lactataemia [4.01 (0.28) vs 4.44 (0.37) mM - 1], or heart rate [171 (3.36) vs 173 (3.11) min]. In addition, strong correlations were noted between the two methods for O2 (r=0.90,P<0.001), lactataemia (r=0.75,P<0.01), and heart rate (r=0.96,P<0.001). It is concluded that VT2 coincides with LT2 determination and that the ventilatory gas exchange method can thus satisfactorily evaluate the lactate accumulation threshold in young athletes.  相似文献   

18.
Electrical stimulation of perivascular portal nerves leads to rapid, transient increase of renal glomerular filtration rate (GFR) and of urinary flow rate ( ). In contrast, perivascular stimulation at the vena cava inferior does not significantly alter GFR and . Spinal transfection at the thoracocervical junction does not significantly modify the effect of periportal nerve stimulation. Infusion of the -adrenergic agonist phenylephrine (20 nmol/min) into the superior mesenteric vein increases GFR and , whereas infusion of identical amounts of phenylephrine (20 nmol/min) into the jugular vein does not significantly alter GFR or . The observations indicate that -adrenergic innervation of the liver modifies renal function.  相似文献   

19.
To investigate pulmonary gas exchange and ventilatory responses to brief intense intermittent exercise and to study the effects of physical fitness on thes responses, nine trained and nine untrained healthy male subjects aged 18–33 years performed the force-velocity (F-) exercise test. This test consisted of 6-s sprints against increasing braking forces (F) separated by 5-min recovery periods. Oxygen uptake ( ), carbon dioxide output ( CO2), and ventilation E) were continuously measured during the test and the magnitudes of their responses to the sprints were then calculated.For all subjects CO2 increased rapidly after beginning the sprints, and the peaks of the responses (F = 13.4;P < 0.001), end of recovery values (F = 6.5;P < 0.01), and O2 magnitudes of response (F = 12.4;P < 0.001) rose significantly with the repetition of the sprints. The O2 magnitudes of response correlated with the corresponding sprint power outputs (r = 0.55;P < 0.001) and with the sprint repetitions (r = 0.51,P < 0.001). The CO2 (F = 7.1;P < 0.01) and {ie442-8} (F = 5.0;P < 0.01) peaks of response increased with the initial load incrementation, then stabilized when the subjects attained peak power output. End of recovery CO2 (F = 18.0;P < 0.001) and E (F = 14.1;P < 0.001) values rose with increasingF. TheF- peak O2, CO2, E, tidal volume and respiratory frequency responses attained 53%, 40%, 44%, 66%, and 82% of the peak values measured at exhaustion of maximal graded exercise, respectively.Trained and untrained subjects had the same first sprint power output and braking, force. Nevertheless, the trained subjects had higher O2 peaks (F = 35.2;P < 0.001) and CO2 magnitudes of response (F = 30.0;P < 0.001) than the untrained subjects for all sprints. The higher peak O2 values represented similar percentages of maximal oxygen uptake in the trained and untrained subjects. In summary, the present study showed that in brief intense intermittent exercise, i.e. theF- test, the O2, CO2, and ventilatory responses in young subjects were submaximal with respect to the peak values attained at exhaustion of maximal graded exercise. The CO2 magnitude of response increase was related to the power output rise in the corresponding sprints and to the repetition of sprints. Moreover, the trained subjects presented higher CO2 peaks and magnitudes of response to the sprints than the untrained subjects.  相似文献   

20.
Cardiac output ( ) was measured by a rebreathing technique, using acetylene and a mass-spectrometer for analyzing. In addition the rate of pulmonary uptake of O2 ( ) during the rebreathing period and during a preceding steady-state period were determined. Measurements were made on 8 adult humans at rest and at different levels of exercise up to maximum at two occasions. The ratio ( ) during steady-state/ during rebreathing) was found to be significantly below 1 when the was below about 21·min–1 and to be about 0.55 for subjects at rest. This indicates that , and hence is increased by the rebreathing procedure when this involves deeper and more frequent respirations than those of the preceding period. Accordingly, when was below about 21·min–1, the value, calculated exclusively from acetylene concentrations recorded during rebreathing, was multiplied by the above-mentioned -ratio. It is shown that this correcting procedure gives more reasonable values than those obtained by acetylene data alone. It is pointed out in what respects this correcting procedure of calculation deviates from that originally used by Grollman, and it is shown that there are only moderate differences between the results obtained by the two procedures.List of Symbols Ac Acetylene - Ac B Bunsen solubility coefficient for Ac in blood (0.700 ml·ml–1·atm–1, Chapman et al. 1950) - PT Ac Solubility coefficient for Ac in pulmonary tissue (0.768 ml·ml–1·atm–1, Cander and Forster 1959) - Mixed end-capillary to mixed venous oxygen difference per ml blood - F AC Fractional (dry) concentration of a gas (Ac) in the gas mixture during rebreathing (s) or in the initial mixture in the bag (b) - Alveolar oxygen tension (mm Hg) - pB Barometric pressure (mm Hg) - Pulmonary capillary blood flow (cardiac output), (ml·min–1) - t Time (s) - V b Initial gas volume (ml STPD) in the rebreathing bag (b) - V L Initial gas volume in lungs and airways after a deep expiration - V PT Volume of pulmonary tissue and blood in the pulmonary capillaries - V Ac s (t O) Distribution compartment (system volume) of a gas (Ac) at timet O - Oxygen uptake (ml·min–1) during rebreathing (RB) or steady-state (SS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号