首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 This study was undertaken to reassess the set of voltage-dependent Ca2+ channel subtypes expressed by bovine adrenal chromaffin cells maintained in primary cultures. Previous views on the pharmacology of such channels had to be revised in the light of the novel data which arose from the use in this study of low and high micromolar concentrations of ω-agatoxin IVA, and low (2 mM) and high (10 mM) concentrations of the charge carrier Ba2+. Whole-cell Ba2+ currents (IBa) through Ca2+ channels were elicited in voltage-clamped chromaffin cells, with a holding potential of –80 mV and depolarising pulses to 0 mV. Mean peak I Ba was 425 pA in 2 mM Ba2+ (59 cells) and 787 pA in 10 mM Ba2+ (42 cells). In 2 mM Ba2+, ω-conotoxin MVIIC (3 μM) inhibited I Ba by 79%; in 10 mM Ba2+, the blockade developed much more slowly and reached only 44%. A low concentration of ω-agatoxin IVA (20 nM) inhibited I Ba by 9%; 2 μM inhibited I Ba by 60%. This blockade was similar in low and high Ba2+ concentrations. After giving furnidipine (3 μM) and ω-conotoxin GVIA (1 μM), 2 μM ω-agatoxin IVA inhibited the remaining current (about 40–45%); this blockade was independent of the Ba2+ concentration. The current could be fully blocked by the cocktail furnidipine/ω-conotoxin GVIA/high ω-agatoxin IVA, both in low and high Ba2+ concentrations. The large Q-type channel component of I Ba is blocked by micromolar concentrations of ω-agatoxin IVA and ω-conotoxin MVIIC. While solutions with a high Ba2+ concentration strongly delayed the development of blockade by ω-conotoxin MVIIC, the blockade by high concentrations of ω-agatoxin IVA was equally effective in solutions with a low or a high Ba2+ concentration. Hence, the use of appropriate Ba2+ and toxin concentrations in this study reveals that P-type Ca2+ channels are poorly expressed in bovine chromaffin cells; in contrast, a robust component of the current depends on Q-type Ca2+ channels. An R-type residual current is not present in these cells. Received: 22 April 1996 / Received after revision: 11 June 1990 / Accepted: 11 June 1996  相似文献   

2.
 This study uses a new strategy to investigate the hypothesis that, of the various Ca2+ channels expressed by a neurosecretory cell, a given channel subtype is coupled more tightly to the exocytotic apparatus than others. The approach is based on the prediction that the degree of inhibition of the secretory response by various Ca2+ channel blockers will differ at low (0.5 mM) and high (5 mM) extracellular Ca2+ concentrations ([Ca2+]o). So, at low [Ca2+]o the K+-evoked catecholamine release from superfused bovine chromaffin cells was depressed 60–70% by 2 μM ω-agatoxin IVA (P/Q-type Ca2+ channel blockade), by 3 μM ω-conotoxin MVIIC (N/P/Q-type Ca2+ channel blockade), or by 3 μM lubeluzole (N/P/Q-type Ca2+ channel blockade); in high [Ca2+]o these blockers inhibited the responses by only 20–35%. At 1–3 μM ω-conotoxin GVIA (N-type Ca2+ channel blockade) or 3 μM furnidipine (L-type Ca2+ channel blockade), secretion was inhibited by 30 and 50%, respectively; such inhibitory effects were similar in low or high [Ca2+]o. Combined furnidipine plus ω-conotoxin MVIIC, ω-agatoxin IVA or ω-conotoxin GVIA exhibited additive blocking effects at both Ca2+ concentrations. The results suggest that Q-type Ca2+ channels are coupled more tightly to exocytotic active sites, as compared to L-type channels. This hypothesis if founded in the fact that external Ca2+ that enters the cell through a Ca2+ channel located near to chromaffin vesicles will saturate the K+ secretory response at both [Ca2+]o, i.e. 0.5 mM and 5 mM. In contrast, Ca2+ ions entering through more distant channels will be sequestered by intracellular buffers and, thus, will not saturate the secretory machinery at lower [Ca2+]o. Received: 23 September 1997 / Received after revision: 29 October 1997 / Accepted: 30 October 1997  相似文献   

3.
 This study was carried out to characterize the set of voltage-dependent Ca2+ channel subtypes expressed by mouse adrenal chromaffin cells superfused with solutions containing low (2 mM) or high (10 mM) Ba2+ concentrations. Using 50-ms test pulses at 0 mV from a holding potential of –80 mV, averaged peak current in 10 mM Ba2+ was around 1 nA, and in 2 mM Ba2+ 0.36 nA. When using 2 mM Ba2+ as the charge carrier, nifedipine (3 μM) blocked I Ba by 40–45%. ω-Conotoxin GVIA (1 μM) caused 26% inhibition, while ω-conotoxin MVIIC (3 μM) produced a 48% blockade. At low concentrations (20 nM), ω-agatoxin IVA caused 5–15% of current inhibition, while 2 μM gave rise to a 35–40% blockade. In 10 mM Ba2+, the blocking effects of nifedipine (40%) and ω-conotoxin GVIA (25%) were similar to those seen in 2 mM Ba2+. In contrast, blockade by ω-conotoxin MVIIC was markedly reduced in 10 mM Ba2+ (20–25%) as compared to 10 mM Ba2+ (48%). The blocking actions of ω-agatoxin IVA (2 μM) were also slowed down in 10 mM Ba2+, though the final blockade was unaffected. In 2 mM Ba2+, I Ba was quickly inhibited by over 94% with combined nifedipine + ω-conotoxin MVIIC + ω-conotoxin GVIA; in 10 mM Ba2+, I Ba was blocked by 70% with this combination. The data suggest that mouse chromaffin cells express L-type (40%) as well as non-L-type (60%) high-threshold voltage-dependent Ca2+ channels. The current carried by non-L-type Ca2+ channels consists of about 25% N-type and 35% P/Q-type; P-type channels, if anything, are poorly expressed. The data also indicate that the fraction of current blocked by ω-conotoxin MVIIC and ω-agatoxin IVA might considerably change as a function of the Ba2+ concentration of the extracellular solution; taking this fact into consideration, it seems that a residual R-type current is not expressed in mouse chromaffin cells. Received: 21 January 1998 / Received after revision and accepted: 20 February 1998  相似文献   

4.
 The characteristics of the binding sites for the Conus magus toxins ω-conotoxin MVIIC and ω-conotoxin MVIID, as well as their effects on K+-evoked 45Ca2+ entry and whole-cell Ba2+ currents (I Ba), and K+-evoked catecholamine secretion have been studied in bovine adrenal chromaffin cells. Binding of [125I] ω-conotoxin GVIA to bovine adrenal medullary membranes was displaced by ω-conotoxins GVIA, MVIIC and MVIID with IC50 values of around 0.1, 4 and 100 nM, respectively. The reverse was true for the binding of [125I] ω-conotoxin MVIIC, which was displaced by ω-conotoxins MVIIC, MVIID and GVIA with IC50 values of around 30, 80 and 1.200 nM, respectively. The sites recognized by ω-conotoxins MVIIC and MVIID in bovine brain exhibited higher affinities (IC50 values of around 1 nM). Both ω-conotoxin MVIIC and MVIID blocked I Ba by 70–80%; the higher the [Ba2+]o of the extracellular solution the lower the blockade induced by ω-conotoxin MVIIC. This was not the case for ω-conotoxin MVIID; high Ba2+ (10 mM) slowed down the development of blockade but the maximum blockade achieved was similar to that obtained in 2 mM Ba2+. A further difference between the two toxins concerns their reversibility; washout of ω-conotoxin MVIIC did not reverse the blockade of I Ba while in the case of ω-conotoxin MVIID a partial, quick recovery of current was produced. This component was irreversibly blocked by ω-conotoxin GVIA, suggesting that it is associated with N-type Ca2+ channels. Blockade of K+-evoked 45Ca2+ entry produced results which paralleled those obtained by measuring I Ba. Thus, 1 μM of each of ω-conotoxin GVIA and MVIIA inhibited Ca2+ uptake by 25%, while 1 μM of each of ω-conotoxin MVIIC and MVIID caused a 70% blockade. K+-evoked catecholamine secretory responses were not reduced by ω-conotoxin GVIA (1 μM). In contrast, at 1 μM both ω-conotoxin MVIIC and MVIID reduced the exocytotic response by 70%. These data strengthen the previously established conclusion that Q-type Ca2+ channels that contribute to the regulation of secretion and are sensitive to ω-conotoxins MVIIC and MVIID are present in bovine chromaffin cells. These channels, however, seem to possess binding sites for ω-conotoxins MVIIC and MVIID whose characteristics differ considerably from those described to occur in the brain; they might represent a subset of Q-type Ca2+ channels or an entirely new subtype of voltage-dependent high-threshold Ca2+ channel. Received: 16 April 1997 / Received after revision: 10 July 1997 / Accepted: 23 July 1997  相似文献   

5.
Simultaneous whole-cell patch-clamp and fura-2 fluorescence [Ca2+]i measurements were used to characterize Ca2+-activated K+ currents in cultured bovine chromaffin cells. Extracellular application of histamine (10 M) induced a rise of [Ca2+]i concomitantly with an outward current at holding potentials positive to –80 mV. The activation of the current reflected an increase in conductance, which did not depend on membrane potential in the range –80 mV to –40 mV. Increasing the extracellular K+ concentration to 20 mM at the holding potential of –78 mV was associated with inwardly directed currents during the [Ca2+]i elevations induced either by histamine (10 M) or short voltage-clamp depolarizations. The current reversal potential was close to the K+ equilibrium potential, being a function of external K+ concentration. Current fluctuation analysis suggested a unit conductance of 3–5 pS for the channel that underlies this K+ current. The current could be blocked by apamin (1 M). Whole-cell current-clamp recordings snowed that histamine (10 M) application caused a transient hyperpolarization, which evolved in parallel with the [Ca2+]i changes. It is proposed that a small-conductance Ca2+-activated K+ channel is present in the membrane of bovine chromaffin cells and may be involved in regulating catecholamine secretion by the adrenal glands of various species.  相似文献   

6.
Calcium channel subtypes in porcine adrenal chromaffin cells   总被引:3,自引:0,他引:3  
 The effects of nifedipine, ω-conotoxin GVIA (ω-CgTx) and ω-agatoxin IVA (ω-AgTx) on Ca2+ currents, a 60-mM-K+-induced increase in intracellular Ca2+ concentration ([Ca2+]i) and catecholamine secretion were examined to clarify the subtypes of Ca2+ channels in cultured adrenal chromaffin cells from the pig. Nifedipine, ω-CgTx, and ω-AgTx inhibited Ca2+ currents in a dose-dependent manner, suggesting the presence of L-, N- and P-type Ca2+ channels. The maximal doses of nifedipine (10 μM), ω-CgTx (1 μM), and ω-AgTx (0.1 μM) inhibited Ca2+ currents to 85%, 22%, and 94% of control currents, respectively. The inhibitory effects of these three blockers were observed in the same cell, indicating that at least three subtypes of Ca2+ channels are present in porcine chromaffin cells. The increase in [Ca2+]i and catecholamine secretion induced by 60 mM K+ were inhibited equally by nifedipine (10 μM) and ω-CgTx (1 μM), but not by ω-AgTx (0.1 μM). These results suggest that L-, N- and P-type Ca2+ channels are present in porcine adrenal chromaffin cells, and that the major pathways of Ca2+ entry evoked by a high concentration of K+ are L- and N-type Ca2+ channels. Received: 6 September 1996 / Received after revision: 3 February 1997 / Accepted: 18 February 1997  相似文献   

7.
Involvement of ATP in the regulation of slow (L-type) Ca2+ channels of vascular smooth muscle cells was investigated by recording single Ca2+ channel currents (single-channel conductance of 18 pS) using a patch clamp technique. In the cell-attached configuration, intracellular composition was modified by permeabilizing the cell membrane with mechanical disruption at one end of the cell. Single cells were freshly isolated from guinea-pig portal vein by collagenase treatment. For the channel recordings, the pipette solution contained 100 mM Ba2+ and the bath contained K+-rich solution (with 5 mM EGTA) to depolarize the membrane to near 0 mV. The channel activity decreased usually within 3 min after permeabilizing the cell end and exposure to ATP-free bath solution. If ATP (1–5 mM) was applied to the bath (access to cell interior) before complete disappearance of channel activity, channel activity was partially recovered. ATP did not change the current amplitude (i) or the mean open time of the channels, whereas the number of channels available for opening and/or the probability of their being open (NP o) were increased by ATP. A non-hydrolyzable analogue of ATP, AMP-PNP, did not exert an ATP-like effect; ATP--S had a weak effect. With 1 M Bay-K-8644 (Ca2+ channel agonist) in the pipette, the activity of the Ca2+ channel was high; such activity persisted for more than 10 min after permeabilizing the cell and exposting to ATP-free solution containing KCN (1 mM) and 2-deoxy-d-glucose (10 mM). These results indicate that activation of slow Ca2+ channels requires ATP. The effect of ATP may be exerted by phosphorylation and/or an energy-requiring step. Bay-K-8644 may change the nature of the slow Ca2+ channel, making it resistant to rundown.  相似文献   

8.
Ca2+ -induced inactivation of L-type Ca2+ channels is proposed as an important negative feedback mechanism regulating Ca2+ entry. Here, for the first time, evidence for modification of heart L-type Ca2+ channel activity by cytoplasmic calcium is provided from excised insideout membrane patches. Ba2+ currents through cardiac L-type Ca2+ channels exhibited only modest inactivation in the absence of cytoplasmic Ca2+. Elevation of cytoplasmic Ca2+ to micromolar concentrations strikingly affected L-type Ca2+ channel activity as evaluated from ensemble average Ba2+ currents. Inactivation was markedly increased concomitant with a reduction of peak inward current, which was almost completely eliminated at about 15 M cytoplasmic Ca2+ concentration. Half maximal suppression of Ba2+ currents was observed at 2.3 M Ca2+. The observed modifications of L-type Ca2+ channel activity show that cytoplasmic Ca2+ induces channel closure. Below 4 M Ca2+, channels can be reversibly reactivated during repetitive depolarizations, while at high Ca2+ concentrations (15 M) most Ca2+ channels reside in a closed state. This may allow for a delicate regulation of Ca2+ entry, and consequently of heart contraction.  相似文献   

9.
We investigated the effects of cAMP-dependent phosphorylation on the voltage- and time-dependent gating properties of Ca2+ channel currents recorded from bovine adrenal chromaffin cells under whole-cell voltage clamp. Extracellular perfusion with the membrane-permeant activator of cAMP-dependent protein kinase, 8-bromo(8-Br)-cAMP (1 mM), caused a 49%, 29%, and 21% increase in Ca2+ current (I Ca) amplitudes evoked by voltage steps to 0, +10, and +20 mV respectively (mean values from eight cells, p0.05). Analysis of voltage-dependent steady-state activation (m ) curves revealed a 0.70±0.27 charge increase in the activation-gate valency (z m) following 8-Br-cAMP perfusion. Similar responses were observed when Ba2+ was the charge carrier, where z m was increased by 1.33±0.34 charges (n=8). The membrane potential for half activation (V 1/2) was also significantly shifted 6 mV more negative for I Ba (mean, n=8). The time course for I Ba (and I Ca) activation was well described by second-order m 2 kinetics. The derived time constant for activation (m) was voltage-dependent, and the m/V relation shifted negatively after 8-Br-cAMP treatment. Ca2+ channel gating rates were derived from the (m) and m 2 values according to a Hodgkin-Huxley type m 2 activation process. The forward rate ( m) for channel activation was increased by 8-Br-cAMP at membrane potentials 0 mV, and the backward rate (m) decreased at potentials +10 mV. Time-dependent inactivation of I Ca consisted of a slowly decaying component (h 300 ms) and a non-inactivating steady-state component. The currents contributed by the two inactivation processes displayed different voltage dependences, the effects of 8-Br-cAMP being exclusively on the slowly inactivating L-type component.  相似文献   

10.
 To clarify the role of P-type Ca2+ channels in catecholamine release from adrenal chromaffin cells we examined the concentration dependence of the effect of ω-agatoxin IVA on the release both of adrenaline and noradrenaline induced by a K+-evoked depolarization. ω-Agatoxin IVA caused a biphasic dose-dependent inhibition of secretion with a high-potency component (IC50<1 nM), responsible for 10–15% of catecholamine release evoked by 70 mM K+, and a low-potency component that accounted for about 40% of release, with IC50 values of 57 nM and 48 nM for noradrenaline and adrenaline release, respectively. The release of catecholamines from chromaffin cells was also inhibited dose dependently by ω-conotoxin MVIIC with IC50 values of 182 and 218 nM for noradrenaline and adrenaline release, respectively. The effects of 3 nM ω-agatoxin IVA and 3 μM ω-conotoxin MVIIC were additive, indicating that at the concentrations used the toxins were acting at independent sites, presumably, P- and Q-type Ca2+ channels. The blockade of Q-type channels inhibited the release of adrenaline (72 ± 4.1%) significantly more than the release of noradrenaline (50 ± 2.7%), suggesting a higher density or a closer coupling of these channels to exocytosis in adrenergic chromaffin cells. The blockade of P-type channels caused a greater inhibition of catecholamine secretion at low levels of K+-evoked depolarization and shorter times of stimulation than that observed at higher levels of stimulation. The contribution of Q-type channels to catecholamine secretion did not change significantly with the intensity of stimulation. The data show that two types of ω-agatoxin IVA-sensitive Ca2+ channels are coupled to catecholamine release in chromaffin cells, and that the contribution of P-type channels to secretion is larger at low levels of depolarization. Received: 6 March 1997 / Received after revision and accepted: 28 April 1997  相似文献   

11.
Transient inward currents (I ti) during oscillations of intracellular [Ca2+] ([Ca2+]i) in ventricular myocytes have been ascribed to Na/Ca exchange. We have investigated whether other Ca2+-dependent membrane currents contribute to I ti in single guinea-pig ventricular myocytes, by examining membrane currents during [Ca2+]i oscillations and during caffeine-induced Ca2+ release from the sarcoplasmic reticulum in the absence of Na+. Membrane currents were recorded during whole-cell voltage clamp and [Ca2+]i measured simultaneously with fura-2. In the absence of Na/Ca exchange, i.e., with Li+, Cs+ or N-methyl-D-glucamine (NMDG+) substituted for Na+, the cell could be loaded with Ca2+ by repetitive depolarizations to +10 mV, resulting in spontaneous [Ca2+]i oscillations. During these oscillations, no inward currents were seen, but instead spontaneous Ca2+ release was accompanied by a shift of the membrane current in the outward direction at potentials between –40 mV and +60 mV. This [Ca2+]i-dependent outward current shift was not abolished when NMDG+ was substituted for internal monovalent cations, nor was it sensitive to substitution of external Cl. It was however, sensitive to the blockade of ICa by verapamil. These results suggest that the transient outward current shift observed during spontaneous Ca2+ release represents [Ca2+]idependent transient inhibition of I Ca. Similarly, during the [Ca2+]i transients induced by brief caffeine (10 mM) applications, we could not detect membrane currents attributable to a Ca2+-activated nonselective cation channel, or to a Ca2+-activated Cl channel; however, transient Ca2+-dependent inhibition of I Ca was again observed. We conclude that neither the Ca2+-activated nonselective cation channel nor the Ca2+-activated Cl channel contribute significantly to the membrane currents during spontaneous [Ca2+]i oscillations in guineapig ventricular myocytes. However, in the voltage range between –40 mV and +60 mV Ca2+-dependent transient inhibition of I Ca will contribute to the oscillations of the membrane current.  相似文献   

12.
Multiple calcium channel subtypes in isolated rat chromaffin cells   总被引:6,自引:2,他引:6  
By using the whole-cell configuration of the patch-clamp technique we have investigated the pharmacological properties of Ca2+ channels in short-term cultured rat chromaffin cells. In cells held at a membrane potential of –80 mV, using 10 mM Ba2+ as the charge carrier, only high-voltage-activated (HVA) Ca2+ channels were found. Ba2+ currents (I Ba) snowed variable sensitivity to dihydropyridine (DHP) Ca2+ channel agonists and antagonists. Furnidipine, a novel DHP antagonist, reversibly blocked the current amplitude by 22% and 48%, at 1 M and 10 M respectively, during short (15–50 ms) depolarizing pulses to 0 mV. The L-type Ca2+ channel agonist Bay K 8644 (1 M) caused a variable potentiation of HVA currents that could be better appreciated at low rather than at high depolarizing steps. Increase of I Ba was accompanied by a 20-mV shift in the activation curves for Ca2+ channels towards more hyperpolarizing potentials. Application of the conus toxin -conotoxin GVIA (GVIA; 1 M) blocked 31% of I Ba; blockade was irreversible upon removal of the toxin from the extracellular medium, -Agatoxin IVA (IVA; 100 nM) produced a 15% blockade of I Ba. -Conotoxin MVIIC (MVIIC; 5 M) produced a 36% blockade of I Ba; such blockade seems to be related to both GVIA-sensitive (N-type) and GVIA-resistant Ca2+ channels. The sequential addition of supramaximal concentrations of furnidipine (10 M), GVIA (1 M), IVA (100 nM) and MVIIC (3 M) produced partial inhibition of I Ba, which were additive. Our data suggest that the whole cell I Ba in rat chromaffin cells exhibits at least four components. About 50% of I Ba is carried by L-type Ca2+ channels, 30% by N-type Ca2+channels and 15% by P-type Ca2+ channels. These figures are close to those found in cat chromaffin cells. However, they differ considerably from those found in bovine chromaffin cells where P-like Ca2+channels account for 45% of the current, N-type carry 35% and L-type Ca2+ channels are responsible for only 20–25% of the current. These drastic differences might have profound physiological implications for the relative contribution of each channel subtype to the regulation of catecholamine release in different animal species.  相似文献   

13.
 Membrane currents and capacitance were measured to examine the effects of extracellular ATP on exocytosis in voltage-clamped rat adrenal chromaffin cells. ATP reversibly inhibited Ca2+ current (I Ca) and exocytosis. The dependency of exocytosis on I Ca evoked by 1-s depolarizations was determined. However, inhibition of exocytosis was 2.6 times larger than that estimated from the reduction of I Ca, implying the existence of a Ca2+-channel-independent pathway. This inhibition did not rely on a further reduction of the intracellular Ca2+ concentration spike. ATP reduced the rate of exocytosis induced by clamping the intracellular Ca2+ concentration. Pertussis toxin blocked the inhibitory effects of ATP on I Ca and exocytosis. Although RB-2, a P2Y antagonist, blocked the inhibitory effect of ATP on I Ca, RB-2 itself produced large increase or decrease in membrane capacitance. Adenosine inhibited I Ca via a pertussis-toxin-sensitive pathway but did not significantly inhibit exocytosis. Our data show that extracellular ATP inhibits exocytosis via inhibition of I Ca by activation of a pertussis-toxin-sensitive G-protein linked to P2Y receptors. Furthermore, our data strongly suggest that ATP activates another pathway, which is also G-protein dependent and accounts for the majority of the inhibitory effect of ATP on exocytosis. Received: 20 February 1997 / Received after revision: 10 July 1997 / Accepted: 23 July 1997  相似文献   

14.
 Applying 10-s pulses of 10 mM Ba2+ to resting or K+-depolarized (70 mM) bovine adrenal chromaffin cells superfused with a nominal 0Ca2+ solution produced a large catecholamine secretory peak. In contrast, pulses of 10 mM Sr2+ or Ca2+ did not induce secretion from polarized resting cells, and induced smaller and narrower secretory peaks from depolarized cells; the areas of the secretory peaks from depolarized cells were 1.87, 3.06 and 27.4 nA s, respectively, for Ca2+, Sr2+ and Ba2+. Ca2+ channel currents in isolated cells or in cells surrounded by other unpatched cells (cell cluster) were studied with either the continuous-flow or the flow-stop method. When applied to an isolated cell, flow-stop reduced the amplitude of I Ca by 19%, I Sr by 31%, and I Ba by 53%, compared with the current amplitude measured under continuous-flow conditions. This decrease in current amplitude was accompanied by a pronounced slowing down of current activation and could be largely relieved by applying strong depolarizing prepulses (facilitation). Under continuous-flow conditions, 10 μM exogenous ATP reduced (about 50%) I Ca, I Sr and I Ba similarly. On the other hand, the use of Na+ as a charge carrier through Ca2+ channels, or intracellular dialysis with 1 mM BAPTA prevented the modulation of current by flow-stop. In cell clusters, activating secretion from unpatched cells, by either 10 mM Ba2+, 100 μM acetylcholine or 70 mM K+, caused a pronounced slowing down of current activation, as well as a decrease of its magnitude in the voltage-clamped cell immersed in the cluster. Such modulation of isolated cells was not observed. These data are compatible with the idea that the secretory activity of adrenal medullary chromaffin cells ”in situ” controls the activity of their Ca2+ channels through autocrine/paracrine mechanisms. Received: 29 June 1998 / Received after revision: 20 August 1998 / Accepted: 1 September 1998  相似文献   

15.
Voltage-gated Ca2+ channels play an important role in the central processing of nociceptive information. Recently, it has been shown that L- and N-type voltage-gated Ca2+ channels are also present on peptidergic, fine afferent nerve fibers in the knee joint capsule. Therefore, the influence of specific blockers for L-type (verapamil) or N-type (ω-conotoxin GVIA) Ca2+ channels on the mechanosensitivity of slowly conducting afferents was tested in the rat knee joint. Topical application of 100 μM verapamil onto the receptive field reduced the mean response to knee joint rotation to 67±8% (SEM, n=12), obtained by outward rotations with a torque of 10 mNm above the mechanical threshold and compared with control movements. In the presence of 50 μM ω-conotoxin GVIA, the mean response decreased to 44±5% (n=12), a reduction that was also observed during rotations of other intensities. Simultaneous application of both substances further reduced the response to 25±11% (n=6). In additional experiments it was shown that L- and N-type voltage-gated Ca2+ channels do not influence activity-dependent changes of the mechanical excitability. In conclusion, the data of the present study indicate that voltage-gated Ca2+ channels may also be involved in the regulation of the mechanosensitivity of nociceptive nerve fiber endings. Electronic Publication  相似文献   

16.
The kinetics of exocytosis and membrane retrieval (endocytosis) were examined in bovine chromaffin cells using membrane capacitance measurement during whole-cell recording. At early times after breakthrough to the whole-cell recording mode, depolarisation for 1 s resulted in a fast (600 vesicles per s) exocytotic response and efficient membrane retrieval with a time constant of 25 s. The ability to activate fast exocytosis and retrieval was lost during intracellular dialysis, with a time constant of 40 s. At later times, a slow exocytotic response could be elicited with no membrane retrieval following single depolarisations. The wash-out of the responses appeared to be due to a rapid loss of a portion of the Ca2+ current. Trains of depolarisation at late times after breakthrough could elicit a fast (time constant 4 s) retrieval. These data show that in addition to a previously studied slow Ca2+-independent retrieval mechanism, chromaffin cells also possess an efficient and rapid retrieval pathway coupled to exocytosis that can be activated following depolarisation. The fast endocytosis appears to have a higher threshold for activation than exocytosis, probably due to a higher Ca2+ requirement. Rapid membrane retrieval appears to occur via a clathrin-independent pathway in chromaffin cells.  相似文献   

17.
 The mechanisms of depolarizing-prepulse-induced facilitation of Ca2+ channel current were investigated in a study of porcine chromaffin cells. The Ba2+ current evoked by a pulse to 0 mV was increased by a strong depolarizing prepulse (conditioning pulse), termed ”facilitation”. This facilitation increased with an increase in either the duration or the voltage of the conditioning pulse, and decreased with an increase in the interpulse interval. For example, the Ba2+ current was increased to 1.14 times the control (facilitation ratio) by a 150-ms conditioning pulse to +100 mV followed by a 10-ms interpulse interval. Forskolin, 8-bromo-adenosine 3′,5′-cyclic monophosphate (8-bromo-cAMP) and Rp-adenosine 3′,5′-cyclic monophosphothioate (Rp-cAMPS) did not affect the facilitation of the Ba2+ current, suggesting that a cAMP-dependent mechanism is not involved. Intracellular guanosine 5′-O-(3-thiotriphosphate) (GTPγS) decreased the Ba2+ current to 0.59 times the control and GDPβS increased it to 1.19. However, neither GTPγS nor guanosine 5′-O-(2-thiodiphosphate) (GDPβS) changed the amplitude of the Ba2+ current that was facilitated by the conditioning pulse. Thus, GTPγS increased the facilitation ratio to 2.05 and GDPβS decreased it to 1.05. Furthermore, the facilitation of the Ba2+ current was abolished by ω-conotoxin GVIA but not by either ω-agatoxin IVA or nifedipine. These results suggest that, in porcine chromaffin cells, there is a ω-conotoxin GVIA-sensitive N-type Ca2+ channel that is under the inhibitory control of a G protein, which can be relieved by a conditioning pulse. Received: 25 September 1997 / Received after revision: 14 November 1997 / Accepted: 16 December 1997  相似文献   

18.
The free intracellular calcium ion concentration ([Ca2+]i) was measured simultaneously with isometric force in strips of guinea-pig mesotubarium using the Fura-2 technique. During the relaxed period (5–15 min) between spontaneous contractions [Ca2+]i continues to decrease after full mechanical relaxation to reach a minimal level of 86±8 nM (n=9) just before the start of the next contraction. During the spontaneous contractions (5–15 min) [Ca2+]i reached a maximum of 211±19 nM and then oscillated between 155±16 nM and 194±9 nM. Increased extracellular Ca2+ concentration to 10 mM from the standard concentration of 1.5 mM caused a decreased frequency of spontaneous contractions and an increase in [Ca2+]i both in the relaxed and contracted states. In 10 mM extracellular Ca2+, addition of AlF4 , as 1 mM NaF + 10 M AlCl3, caused a sustained increase in [Ca2+]i and maintained force. Addition of verapamil (10 M) in this situation decreased [Ca2+]i to the resting level. The results suggest that the cyclic appearance of trains of action potentials is related to variation in [Ca2+]i, possibly via inactivation of Ca2+-dependent K+ channels.  相似文献   

19.
Effects of glutamate and kainate (KA) on Bergmann glial cells were investigated in mouse cerebellar slices using the whole-cell configuration of the patch-clamp technique combined with SBFI-based Na+ microfluorimetry. l-Glutamate (1 mM) and KA (100 μM) induced inward currents in Bergmann glial cells voltage-clamped at −70 mV. These currents were accompanied by an increase in intracellular Na+ concentration ([Na+]i) from the average resting level of 5.2 ± 0.5 mM to 26 ± 5 mM and 33 ± 7 mM, respectively. KA-evoked signals (1) were completely blocked in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/KA ionotropic glutamate receptors; (2) reversed at 0 mV, and (3) disappeared in Na+-free, N-methyl-D-glucamine (NMDG+)-containing solution, but remained almost unchanged in Na+-free, Li+-containing solution. Conversely, l-glutamate-induced signals (1) were marginally CNQX sensitive (∼10% inhibition), (2) did not reverse at a holding potential of +20 mV, (3) were markedly suppressed by Na+ substitution with both NMDG+ and Li+, and (4) were inhibited by d,l-threo-β-benzyloxyaspartate. Further, d-glutamate, l-, and d-aspartate were also able to induce Na+-dependent inward current. Stimulation of parallel fibres triggered inward currents and [Na+]i transients that were insensitive to CNQX and MK-801; hence, we suggested that synaptically released glutamate activates glutamate/Na+ transporter in Bergmann glial cells, which produces a substantial increase in intracellular Na+ concentration.  相似文献   

20.
Summary Dispersed brain cells from 12–14 day old mouse embryos were loaded with the Ca2+-sensitive fluorescent probe, quin2 and shown to have a resting intracellular Ca2+ concentration ([Ca2+]i) of 158 nM (SE ± 5) in the presence of 1 mM [Ca2+]o. When external [Ca2+] was raised from 0 to 1 mM there was an increase of [Ca2+]i of 70 nM; with further additions of Ca to >10 mM [Ca2+]o the level of [Ca2+]i increased by <25 nM. Releasable intracellular Ca2+ stores, estimated from the increase in [Ca2+] produced by 4Br A23187 in the absence of extracellular Ca2+, were 24 fmol/106 cells. A small increase in [Ca2+]i could be produced by the mitochondrial inhibitor, carbonyl cyanide m-chlorophenylhydrazone (CCCP). When extracellular K+ was raised by 10–20 mM, intracellular Ca2+ levels increased from 152 (SE ± 7) to 204 nM (SE ± 10). These K+-induced increases in [Ca2+]i were blocked by verapamil, did not occur in the absence of extracellular Ca2+, and presumably reflect the activation of voltage-dependent Ca2+ channels. N-methyl-D-aspartic acid (NMDA) evoked an increase in [Ca2+]i, while the kainate-like lathyrus sativus neurotoxin, L-3-oxalyl-amino-2aminopropionic acid (L-3,2-OAP) did not; this is consistent with previous observations of different and respectively Ca2+-dependent and -independent mechanisms of action of these excitatory amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号