首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously reported that basic fibroblast growth factor (FGF-2) stimulates the release of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of platelet-derived growth factor-BB (PDGF-BB) on FGF-2-induced VEGF release in MC3T3-E1 cells. PDGF-BB significantly enhanced the FGF-2-stimulated VEGF release. The amplifying effect of PDGF-BB was dose dependent in the range between 0.1 and 30 ng/ml. AG1295, a selective inhibitor of PDGF receptor kinase, which reduced the autophosphorylation of PDGF receptor-(R), suppressed the enhancement by PDGF-BB without affecting the FGF-2 effect. PDGF-BB failed to strengthen the FGF-2-induced phosphorylation of p44/p42 MAP kinase or SAPK/JNK. The amplification by PDGF-BB of FGF-2-stimulated VEGF release was reduced by PD98059, a specific inhibitor of MEK, or SP600125, a specific inhibitor of SAPK/JNK. These results strongly suggest that PDGF-BB potentiates FGF-2-stimulated VEGF release at a point downstream from p44/p42 MAP kinase and SAPK/JNK in osteoblasts.  相似文献   

2.
3.
Marrony S  Bassilana F  Seuwen K  Keller H 《BONE》2003,33(3):426-433
Bone-forming osteoblasts differentiate from pluripotent mesenchymal stem cells (MSCs) in a multistage process that can be modeled in vitro using MSCs isolated from adult human trabecular bone or bone marrow. To identify new genes involved in osteoblast differentiation, we have performed large-scale gene expression profiling using high-density cDNA microarrays in primary human MSCs treated with the known osteogenic agent bone morphogenetic protein 2 (BMP-2). The vascular endothelial growth factor (VEGF) family member placental growth factor (PlGF) was found as an early regulated gene whose induction was already detected after 2 h treatment with BMP-2. Tissue distribution analysis of PlGF mRNA expression using microarrays revealed a very restricted expression of PlGF only in BMP-2-treated MSCs and in placenta as expected. Ribonuclease protection assay (RPA) confirmed the induction of PlGF and showed preferential expression of the PlGF-1 isoform over PLGF-2 in MSCs and MG63 cells. BMP-2 stimulated PlGF expression in MG63 cells with an EC50 of about 50 ng/ml and mRNA levels peaked between 24 and 32 h after stimulation. Furthermore, induction of PlGF by BMP-2 appeared specific, as other osteogenic agents including vitamin D3, transforming growth factor beta, and basic fibroblast growth factor were inactive. BMP-2 stimulated PlGF secretion from MG63 and MSC cells, but PlGF had no effect on MSC proliferation and osteoblastic differentiation. Based on the known function of PlGF in the recruitment of endothelial and hematopoietic stem cells, these results suggest a paracrine role for MSC-derived PlGF in the angiogenesis and hematopoiesis that accompany BMP-2-induced bone formation.  相似文献   

4.
Allografts are important alternatives to autografts for treating defects after major bone loss. Bone growth factors have both local autocrine and paracrine effects and regulate the growth, proliferation, and differentiation of osteoprogenitor cells. To study the effects of prolonged, continuous, local delivery of growth factors on bone growth, we developed a new microelectromechanical system (MEMS) drug delivery device. Bone marrow cells from mice were seeded on mouse allograft discs and cultured in osteogenic media with osteogenic protein 1 (OP-1) and/or basic fibroblast growth factor (FGF-2) delivered from MEMS devices for 6 weeks. We monitored bone formation by changes of bone volume using micro-CT scanning and release of osteocalcin using ELISA. The data suggest the MEMS devices delivered constant concentrations of OP-1 and FGF-2 to the media. Bone marrow cells grew on the allografts and increased bone volume. Addition of OP-1 increased bone formation whereas FGF-2 decreased bone formation. Local delivery of growth factors over a prolonged period modulated the differentiation of osteoprogenitor cells on allograft bone. One of more of the authors (SBG) have received funding from the Musculoskeletal Transplant Foundation. Each author certifies that his or her institution has approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.  相似文献   

5.
The purpose of this study was to investigate the role of bone morphogenetic proteins (BMPs), such as BMP-7, growth factors, and cytokines, in the accumulation of superficial zone protein (SZP) in bovine articular cartilage. Calf superficial articular cartilage discs and chondrocytes were obtained for explant and monolayer culture systems, respectively. Dose- and time-dependent actions of BMP-7 on SZP accumulation were investigated in both explant and monolayer culture systems. In addition, actions of various morphogens and growth factors [BMP-2, BMP-4, fibroblast growth factor 2 (FGF-2), insulin-like growth factor 1 (IGF-1), platelet-derived growth factor (PDGF), and transforming growth factor beta (TGF-beta1)], and cytokines [interleukin (IL)-1alpha, IL-1beta, and tumor necrosis factor (TNF-alpha)] alone, and in combination with BMP-7, on SZP accumulation were investigated in monolayer culture systems. SZP accumulation was quantified in both the cartilage and the medium using SDS-PAGE and subsequent immunoblotting. In both explant and monolayer cultures, BMP-7 increased SZP accumulation in a dose- and time-dependent fashion (p < 0.05). Furthermore, SZP accumulation was significantly increased in monolayer cultures by FGF-2, IGF-1, PDGF, and TGF-beta1 (p < 0.05). Both IL-1alpha and TNF-alpha significantly reduced SZP accumulation (p < 0.05). The inhibition of SZP accumulation by TNF-alpha was partially alleviated by concurrent treatment with BMP-7. The results of this investigation provide novel insights into the role of morphogens, especially BMP-7, growth factors, and cytokines in the accumulation of SZP in articular cartilage. This information has clinical implications because stimulation of SZP may ameliorate the pathology of joint function in arthritis. Furthermore, tissue engineering approaches to articular cartilage may depend on the optimal synthesis and assembly of SZP in the superficial zone to ensure functional tissue architecture.  相似文献   

6.
Systemically administered fibroblast growth factors (FGFs) show anabolic effects on bone formation in animals, whereas in vitro cell culture studies have demonstrated that FGFs block mineralized bone nodule formation. These apparently contradictory outcomes indicate that the nature of FGF action is complex and that the biological effect of FGFs may depend on the differentiation stage of osteoblasts, interaction with other cytokines, or the length and mode of exposure to factors. Thus, we have utilized primary calvarial bone cell populations at different maturation phases to determine their responses to 2, FGF-9, and BMP-2, the factors expressed in bone. FGF-2 and FGF-9 stimulated proliferation of the cell populations consisting of more mature osteoblasts, but not those with undifferentiated precursor cells. Continuous treatment with FGF-2/-9 inhibited expression of several osteoblast marker genes and mineralization. However, brief pretreatment with FGF-2/-9 or sequential treatment with FGF-2/-9 followed by BMP-2 led to marked stimulation of mineralization, suggesting that FGFs enhance the intrinsic osteogenic potential. Furthermore, FGF-2 and FGF-9 increased expression of other osteogenic factors BMP-2 and TGFbeta-1. Meanwhile, blocking endogenous FGF signaling, using a virally transduced dominant-negative FGF receptor (FgfR), resulted in drastically reduced expression of the BMP-2 gene, demonstrating for the first time that endogenous FGF/FgfR signaling is a positive upstream regulator of the BMP-2 gene in calvarial osteoblasts. In contrast, expression of a BMP antagonist noggin was inhibited by FGF-2 and FGF-9. Thus, collective data from this study suggest that FGF/FgfR signaling enhances the intrinsic osteogenic potential by selectively expanding committed osteogenic cell populations as well as inversely regulating BMP-2 and noggin gene expression.  相似文献   

7.
Bone metabolism is influenced by systemic and local acting hormons. Bone morphogenetic proteins (BMPs) as representatives of the latter substances are known to have the ability for ectopic bone formation. Within this study, we investigated the influence of different growth factors on the proliferation- and differentiation rate of osteoblast-like cells. For that purpose, human osteoblast-like cells (HPOC) were incubated in the presence of either recombinant BMP-4 of the genome of xenopus laevis (rxBMP-4), recombinant human BMP 2 (rhBMP-2), transforming growth factor-beta (TGF-beta) or basic fibroblast growth factor (rh-bFGF) in two different concentrations each (10 ng/ml and 50 ng/ml). Cell proliferation was measured within a MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromid] assay, the amount of cell differentiation by the activity of alcaline phosphatase. Rx-BMP-4 induced a differentiation of HPOC to almost the same extent as rhBMP-2, whereas the addition of rh-bFGF, applied at the same concentration, failed to have any influence on cell differentiation. However, rh-bFGF provoked an increase in cell proliferation when compared with unstimulated HPOC, while rhBMP-2 and rxBMP-4 showed no effect on proliferation. TGF-beta influenced bone proliferation as well as differentiation significantly. The equipotent effect of recombinant human BMP-2 and recombinant BMP-4 obtained from Xenopus laevis with regard to differentiation and proliferation of human primary osteoblast-like cells originates either in the fact that target cells have receptors for BMP 2 as well as BMP 4, or that both BMP's link to the same receptor with almost the same affinity.  相似文献   

8.
Osteoblast phenotypic expression in monolayer culture depends on surface microtopography. Here we tested the hypothesis that mineralized bone nodule formation in response to osteotropic agents such as bone morphogenetic protein-2 (BMP-2) and dexamethasone is also influenced by surface microtopography. Fetal rat calvarial (FRC) cells were cultured on Ti implant materials (PT [pretreated], Ra = 0.6 microm; SLA [course grit blasted and acid etched], Ra = 4.0 microm; TPS [Ti plasma sprayed], Ra = 5.2 microm) in the presence of either BMP-2 (20 ng/ml) or 10(-8) M dexamethasone (Dex). At 14 days post-confluence, a homogenous layer of cells covered the surfaces, and stacks of cells that appeared to be nodules emerging from the culture surface were present in some areas on all three Ti surfaces. Cell proliferation decreased while alkaline phosphatase specific activity (ALPase) and nodule number generally increased with increasing surface roughness in both control and treated cultures. There was no difference in cell number between the control and Dex-treated cultures for a particular surface, but BMP-2 significantly reduced cell number compared with control or Dex-treated cultures. Treatment with Dex or BMP-2 further increased ALPase on all surfaces except for PT cultures with Dex. Dex had no effect on nodule area in cultures grown on PT or SLA disks, yet increased nodule number by more than 100% in cultures on PT disks. Though the effect of BMP-2 on nodule number was the same as Dex, BMP-2 increased nodule area on all surfaces except TPS, where area was decreased. Ca and P content of the cell layers in control cultures did not vary with surface roughness. However, cultures treated with Dex had increased Ca content on all surfaces, but the greatest increase was seen on SLA and TPS. BMP-2 increased Ca content in cultures on all surfaces, with the greatest increase on the PT surface. BMP-2 treatment increased P content on all surfaces, whereas Dex only increased P on rough surfaces. Of all cultures examined, the Ca/P weight ratio was 2:1 only on rough surfaces with BMP-2, indicating the presence of bone-like apatite. This was further validated by Fourier transform infrared (FTIR) imaging showing a close association between mineral and matrix on TPS and SLA surfaces with BMP-2-treated cells, and individual spectra indicated the presence of an apatitic mineral phase comparable to bone. In contrast, mineral on the smooth surface of BMP-2-treated cultures and on all surfaces where cultures were treated with Dex was not associated with the matrix and the spectra, not typical of bone apatite, implying dystrophic mineralization. This demonstrates that interactions between growth factor or hormone and surface microtopography can modulate bone cell differentiation and mineralization.  相似文献   

9.
目的 研究骨形态发生蛋白融合基因-4/7(BMP-4/7)和碱性成纤维细胞生长因子(bFGF)联合应用对体外培养兔骨髓基质干细胞(BMSCs)增殖和成骨活性的影响.方法 体外培养BMSCs,在第3代细胞培养液中加入不同浓度的BMP-4/7和bFGF,依据加入不同基因浓度组合的不同分为5个实验组(A组:80 ng/mL BMP-4/7,B组:80 ng/mL bFGF,C组:30 ng/mL BMP-4/7+30ng/mL bFGF,D组:50 ng/mL BMP-4/7+50 ng/mL bFGF,E组:80 ng/mL BMP-4/7+80 ng/mL bFGF)和对照组(不加任何因子),采用绘制生长曲线,甲基噻唑基四唑(MTT)比色法检测细胞增殖活力,碱性磷酸酶(ALP)和降钙素(OC)活性检测法比较各组间差异,观察不同浓度的BMP-4/7和bFGF联合应用对兔BMSCs增殖和成骨活性的影响. 结果 传代后第5天对照组个别单核细胞贴壁,呈长梭形;A组细胞增殖,呈旋涡状排列;B组细胞较为密集,部分融合成片;C组细胞呈集落式生长,生长旺盛;D组细胞生长密集,可见明显的钙结节;E组细胞密集,可见细胞性钙结节形成.各组OD值、ALP含量、OC含量随着作用时间的延长而增加,各组不同培养时间的OD值差异均有统计学意义(P<0.01);且C、D、E组均高于A、B组,差异均有统计学意义(P<0.05).C、D、E组内随着作用浓度的增加,细胞增殖及成骨活性增强,呈浓度依赖关系,差异均有统计学意义(P<0.05). 结论 合理的联合应用BMP-4/7和bFGF可促进BMSCs细胞增殖,促进成骨活性,两者对BMSCs有明显的协同增强效应.  相似文献   

10.
We investigated the effects of insulin (1–1,000 nM), insulin-like growth factor (IGF)-I, and IGF-II (3–100 nM each) alone or together with 10 nM dexamethasone (DEX) or 10 nM 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) on proliferation and differentiation of adipocyte and osteoblast progenitors in bone cell populations derived from fetal rat calvaria. The effects on differentiation were evaluated by counting the number of bone or osteoid nodules and adipocyte colonies and the effects on proliferation, by measuring their size by image analysis. The types of cells studied were 1,25(OH)2D3- and DEX-responsive adipocyte progenitors and DEX-dependent and independent osteoprogenitors. Both IGF-I and IGF-II stimulated osteoprogenitor differentiation both alone and in the presence of DEX, while insulin stimulated osteoprogenitor differentiation only in the absence of DEX. Neither IGF-I/-II nor insulin affected proliferation of osteoprogenitors. Insulin had little effect on adipocyte differentiation by itself but strongly stimulated differentiation in the presence of either 1,25(OH)2D3 or DEX, while IGF-II stimulated adipocyte differentiation in both the absence and presence of 1,25(OH)2D3 or DEX. IGF-I by itself or in the presence of DEX strongly stimulated adipocyte cell differentiation but had little effect in the presence of 1,25(OH)2D3. Our results demonstrate that insulin, IGF-II, and IGF-I have specific and different effects on the differentiation and proliferation of different groups of progenitor cells.  相似文献   

11.
Normal bone formation is a prolonged process that is carefully regulated and involves sequential expression of growth regulatory factors by osteoblasts as they proliferate and ultimately differentiate. Since this orderly sequence of gene expression by osteoblasts suggests a cascade effect, and BMP-2 is capable of initiating and maintaining this effect, we examined the effects of BMP-2 on expression of other BMPs and compared these effects with the expression pattern of bone cell differentiation marker genes in primary cultures of fetal rat calvarial (FRC) osteoblasts. To examine the gene expression profile during bone cell differentiation and bone formation, we also examined the effects of rBMP-2 on bone formation in vivo and in vitro. rBMP-2 stimulated bone formation on the periosteal surface of mice when 500 ng/day rBMP-2 was injected subcutaneously. When rBMP-2 was added to primary cultures of FRC osteoblasts, it accelerated mineralized nodule formation in a time and concentration-dependent manner (10–40 ng/ml). rBMP-2 (40 ng/ml) enhanced BMP-3 and -4 mRNA expression during the mineralization phase of primary cultures of FRC osteoblasts. Enhancement of BMP-3 and -4 mRNA expression by rBMP-2 was associated with increased expression of bone cell differentiation marker genes, alkaline phosphatase (ALP), type I collagen, osteocalcin (OC), osteopontin (OP), and bone sialoprotein (BSP). These results suggest that BMP-2 enhances expression of other BMP genes during bone cell differentiation. BMP-2 may act in a paracrine fashion in concert with other BMPs it induces to stimulate bone cell differentiation and bone formation during remodeling. Received: 27 November 1995 / Accepted: 19 July 1996  相似文献   

12.
Nakamura Y  Tensho K  Nakaya H  Nawata M  Okabe T  Wakitani S 《BONE》2005,36(3):399-407
To examine how fibroblast growth factor-2 (FGF-2) affects the BMP signaling pathway during bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation, we implanted type I collagen disks containing constant amounts of BMP-2 (5 micrograms) and varying amounts of FGF-2 onto the back muscles of adult male mice. We then performed histological analyses and histomorphometry, and measured bone mineral density and radiopaque area on the discs 1, 2, and 3 weeks after implantation. We also determined the expression profiles of several genes involved in bone formation and the BMP signaling pathway in the muscle that had been adjacent to the implanted disc and in muscle-derived primary culture cells that had similarly been treated with a constant concentration of BMP-2 and a varying concentration of FGF-2. In the presence of a constant amount of BMP-2, we confirmed that low doses of FGF-2 increased ectopic bone formation in vivo and high doses inhibited bone formation. Northern and/or Western blots of recovered muscle from the in vivo experiment and treated muscle-derived primary culture cells from the in vitro experiment revealed that low doses of FGF-2, but not high doses, increased the expression BMP receptor (BMPR)-1B, phosphorylated Smad1, Noggin, and Osteocalcin. Our results indicate that low-dose FGF-2 may facilitate BMP-2-induced ectopic bone formation by altering the expression of BMPRs on the surface of bone forming progenitor cells. They also indicate that the inhibitory effect of high-dose FGF-2 is not mediated via increased expression of the BMP inhibitor Noggin.  相似文献   

13.
BACKGROUND: Healing of segmental bone defects can be induced experimentally with genetically modified osteoprogenitor cells, an ex vivo strategy that requires two operative interventions and substantial cost. Direct transfer of osteogenic genes offers an alternative, clinically expeditious, cost-effective approach. We evaluated its potential in a well-established, critical-size, rat femoral defect model. METHODS: A critical-size defect was created in the right femur of forty-eight skeletally mature Sprague-Dawley rats. After twenty-four hours, each defect received a single, intralesional, percutaneous injection of adenovirus carrying bone morphogenetic protein-2 (Ad.BMP-2) or luciferase cDNA (Ad.luc) or it remained untreated. Healing was monitored with weekly radiographs. At eight weeks, the rats were killed and the femora were evaluated with dual-energy x-ray absorptiometry, micro-computed tomography, histological analysis, histomorphometry, and torsional mechanical testing. RESULTS: Radiographically, 75% of the Ad.BMP-2-treated femora showed osseous union. Bone mineral content was similar between the Ad.BMP-2-treated femora (0.045 +/- 0.020 g) and the contralateral, intact femora (0.047 +/- 0.003 g). Histologically, 50% of the Ad.BMP-2-treated defects were bridged by lamellar, trabecular bone; the other 50% contained islands of cartilage. The control (Ad.luc-treated) defects were filled with fibrous tissue. Histomorphometry demonstrated a large difference in osteogenesis between the Ad.BMP-2 group (mean bone area, 3.25 +/- 0.67 mm(2)) and the controls (mean bone area, 0.65 +/- 0.67 mm(2)). By eight weeks, the Ad.BMP-2-treated femora had approximately one-fourth of the strength (mean, 0.07 +/- 0.04 Nm) and stiffness (mean, 0.5 +/- 0.4 Nm/rad) of the contralateral femora (0.3 +/- 0.08 Nm and 2.0 +/- 0.5 Nm/rad, respectively). CONCLUSIONS: A single, percutaneous, intralesional injection of Ad.BMP-2 induces healing of critical-size femoral bone defects in rats within eight weeks. At this time, the repair tissue is predominantly trabecular bone, has normal bone mineral content, and has gained mechanical strength.  相似文献   

14.
15.
The distribution and staining intensity of bone morphogenetic proteins (BMPs) 2, 4, 6, and 7 were assessed by immunohistochemistry in ectopic bone induced in Nu/Nu mice by Saos-2 cell derived implants. Devitalized Saos-2 cells or their extracts can induce endochondral bone formation when implanted subcutaneously into Nu/Nu mice. BMP staining was mostly cytoplasmic. The most intense BMP staining was seen in hypertrophic and apoptotic chondrocytes, osteoprogenitor cells such as periosteal and perivascular cells, and osteoblasts. BMP staining in osteocytes and osteoclasts was variable, ranging from undetectable to intensely stained, and from minimal to moderately stained in megakaryocytes of the induced bone marrow. BMP-2, 4, 6, and 7 staining in Saos-2 implant-induced bone indicates the following: (1) Saos-2 cell products promote expression of BMPs by host osteoprogenitor cells, which in turn, leads to bone and marrow formation at ectopic sites; (2) strong BMP staining is seen in maturing chondrocytes, and thus may play a role in chondrocyte differentiation and/or apoptosis; (3) BMP expression in perivascular and periosteal cells indicates that osteoprogenitor cells also express BMP; (4) BMP release by osteoclasts may promote osteoblastic differentiation at sites of bone remodeling. These new data can be useful in understanding the role of BMPs in promoting clinical bone repair and in various pathologic conditions.  相似文献   

16.
Bone morphogenetic protein-4 (BMP-4), a member of the transforming growth factor-beta superfamily, is capable of initiating differentiation of uncommitted mesenchymal cells into a chondro/osteogenic pathway. This study reports the effects of pentoxifylline (PTX), a nonspecific inhibitor of phosphodiesterases (PDEs), that causes elevation of the intracellular cyclic adenosine monophosphate (cAMP) level on the BMP-4-induced chondro/osteogenic differentiation of a mesenchymal cell line, C3H10T1/2; a bone marrow stromal cell line, ST2; and an osteoblastic cell line, MC3T3-E1. It was found that PTX enhanced BMP-4-induced chondro/osteogenic differentiation in C3H10T1/2 and ST2 cells. Similar effects were observed when adding dibutyryl-cAMP and forskolin. These results indicate that cAMP may potentiate the action of BMP-4 on osteoprogenitor cells, highlighting the possibility that PDE inhibitors could be used as therapeutic agents to enhance bone formation through this effect.  相似文献   

17.
We tested whether FS secretion might modulate BMP-2 actions by measuring FS levels and counting bone numbers of rat mandibular cells. In the presence of Dex, BMP-2 stimulated FS secretion at the early phase and augmented bone nodule by neutralizing with FS antibody. We concluded that BMP-2 facilitates FS secretion, and the FS restricts BMP-2 action on osteoblastogenesis. INTRODUCTION: Bone morphogenetic proteins (BMPs) promote the differentiation of osteoprogenitor cells into osteoblasts. Activin A is involved in the regulation of bone formation. Follistatin (FS) antagonizes the bioactivities of BMP and activin A extracellularly. MATERIALS AND METHODS: In this study, we tested whether the induction of FS secretion might modulate the effects of BMP-2 on osteoblast development, using the bone nodule-forming cultures of fetal rat mandibular cells. RESULTS AND CONCLUSIONS: In the presence of dexamethasone (Dex), BMP-2 stimulated the secretion of FS at the early phase (days 3-9) of the culture. Dex alone had no effect, and BMP-2 alone was less effective than the combination of the two. BMP-4 and -6 had little effect on FS secretion. Activin A inhibited the early upregulation of FS secretion when added with BMP-2 and Dex. In the presence of Dex, BMP-2 increased bone nodule numbers when added to early cultures. The addition of anti-FS antibody to cultures with BMP-2 and Dex augmented bone nodule formation. These results show that BMP-2 facilitates the secretion of FS in the presence of Dex, and the increased FS secretion restricts the action of BMP-2 on osteoblast differentiation.  相似文献   

18.
OBJECTIVE: To determine the effects of bone morphogenetic proteins (BMP)-2 and -7, and serum, on extracellular matrix production by human septal chondrocytes in alginate. STUDY DESIGN: Human nasal septal chondrocytes were expanded, suspended in alginate, and cultured in BMP-2 or 7, with and without serum. The optimal concentration of each growth factor was determined based on matrix production. Next, the synergistic effects of BMP-2 and -7 at optimal concentrations were determined on separate beads, based on matrix quantity and histology. RESULTS: Matrix content was highest with concentrations of BMP-2 and -7 of 100 ng/ml and 20 ng/ml, respectively, with serum. Adding both BMP-2 and -7, with serum, increased matrix content by factors of 5.1 versus serum-only cultures, 2.7 versus only BMP-2 with serum, and 2.4 versus only BMP-7 with serum. All comparisons were statistically significant. CONCLUSION: BMP-2 and -7 significantly increase production of extracellular matrix by septal chondrocytes suspended in alginate. The presence of serum improves matrix production. SIGNIFICANCE: BMP-2 and -7 have great potential for use in cartilage tissue engineering.  相似文献   

19.
Chen TL 《BONE》2004,35(1):83-95
Primary cultures of bone marrow stromal cells (BMSC) from long bones of young (4-5 months) and old (22-25 months) C57BL/6 male mice were used to study how donor age affects growth and differentiation of osteoblasts and their sensitivity to dexamethasone (DEX). We assessed changes in the number and area of alkaline phosphatase-positive bone-forming osteolastic colonies (CFU-ALP) and in the total number of colonies (CFU-F) that include ALP negative colonies. Cell proliferation and apoptosis, specific activity of ALP, were also measured for growth and differentiation. We found that the number of nucleated cells harvested from old mice was significantly higher (approximately 20% more) than that from young mice. However, the number of colonies formed by old cells was fewer and the total area less than those formed by young cells plated at the same density. Young and old cells responded similarly to DEX showing a dose-dependent decrease in colony number and area with more inhibition for area than number. DEX affected CFU-ALP more than CFU-F indicating a greater inhibition for osteoprogenitor cells than other cell types. Inhibition of cell attachment at early culture was the major cause for the DEX reduction of colony number and the major cause of area reduction was inhibition of cell proliferation. This was demonstrated by a severe dose-dependent lowering of bromodeoxyuridine (BrdU) incorporation to less than 40% of the control. Although the number of apoptotic cells in the DEX-treated cultures was higher, apoptosis was not a major factor since the number of apoptotic cells was less than 5% even with DEX treatment. Despite these negative effects on colony number and size, DEX-enhanced osteoblastic differentiation activity by stimulating ALP activity of the colonies up to 25-fold in the young and 5-fold in the old. Our data suggest that increased age lowered the number of osteoprogenitor cells and their growth in BMSC cultures. DEX decreased the attachment and proliferation of BMSC in culture. These changes reflect age-related and glucocorticoid-induced osteopenia. Mouse BMSC cultures therefore may serve as a useful in vitro model to study the mechanisms of type II osteoporosis.  相似文献   

20.
BACKGROUND: Platelet-derived growth factor (PDGF) has been consistently implicated in the cell proliferation and extracellular matrix accumulation, which characterize progressive glomerular disease. In the present study, the effects of a potent and selective inhibitor of PDGF receptor tyrosine kinase, STI 571, were examined in vitro and in vivo. METHODS: Cultured mesangial cells were incubated with PDGF (50 ng/mL) and fibroblast growth factor-2 (FGF-2; 50 ng/mL) and treated with STI 571 (0.13 to 2.0 micromol/L). Experimental mesangial proliferative glomerulonephritis was induced in male Wistar rats with monoclonal OX-7, anti-rat Thy-1.1 antibody with rats randomized to receive either STI 571 (50 mg/kg intraperitoneally daily) or vehicle. Animals were examined six days later. RESULTS: In vitro, both PDGF and FGF-2 induced a threefold increase in mesangial cell 3H-thymidine incorporation. STI 571 reduced PDGF but not FGF-2-stimulated mesangial cell proliferation in a dose-dependent manner, with complete abolition at 0.4 micromol/L. In animals with Thy-1.1 glomerulonephritis, PDGF receptor tyrosine kinase blockade was associated with significant reductions in mesangial cell proliferation (P < 0.001), the number of activated (alpha-smooth muscle positive) mesangial cells, and glomerular type IV collagen deposition (P < 0.001). CONCLUSION: The amelioration of the pathological findings of experimental mesangial proliferative glomerulonephritis by blockade of PDGF receptor activity suggests the potential clinical utility of this approach as a therapeutic strategy in glomerular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号