首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low brain intracellular free magnesium in mitochondrial cytopathies.   总被引:2,自引:0,他引:2  
The authors studied, by in vivo phosphorus magnetic resonance spectroscopy (31P-MRS), the occipital lobes of 19 patients with mitochondrial cytopathies to clarify the functional relation between energy metabolism and concentration of cytosolic free magnesium. All patients displayed defective mitochondrial respiration with low phosphocreatine concentration [PCr] and high inorganic phosphate concentration [Pi] and [ADP]. Cytosolic free [Mg2+] and the readily available free energy (defined as the actual free energy released by the exoergonic reaction of ATP hydrolysis, i.e., deltaG(ATPhyd)) were abnormally low in all patients. Nine patients were treated with coenzyme Q10 (CoQ), which improved the efficiency of the respiratory chain, as shown by an increased [PCr], decreased [Pi] and [ADP], and increased availability of free energy (more negative value of deltaG(ATPhyd)). Treatment with CoQ also increased cytosolic free [Mg2+] in all treated patients. The authors findings demonstrate low brain free [Mg2+] in our patients and indicate that it resulted from failure of the respiratory chain. Free Mg2+ contributes to the absolute value of deltaG(ATPhyd). The results also are consistent with the view that cytosolic [Mg2+] is regulated in the intact brain cell to equilibrate, at least in part, any changes in rapidly available free energy.  相似文献   

2.
The pathophysiological mechanism linking the nucleotide expansion in the DMPK gene to the clinical manifestations of myotonic dystrophy type 1 (DM1) is still unclear. In vitro studies demonstrate DMPK involvement in the redox homeostasis of cells and the mitochondrial dysfunction in DM1, but in vivo investigations of oxidative metabolism in skeletal muscle have provided ambiguous results and have never been performed in the brain. Twenty-five DM1 patients (14M, 39 ± 11years) underwent brain proton MR spectroscopy (1H-MRS), and sixteen cases (9M, 40 ± 13 years old) also calf muscle phosphorus MRS (31P-MRS). Findings were compared to those of sex- and age-matched controls. Eight DM1 patients showed pathological increase of brain lactate and, compared to those without, had larger lateral ventricles (p < 0.01), smaller gray matter volumes (p < 0.05) and higher white matter lesion load (p < 0.05). A reduction of phosphocreatine/inorganic phosphate (p < 0.001) at rest and, at first minute of exercise, a lower [phosphocreatine] (p = 0.003) and greater [ADP] (p = 0.004) were found in DM1 patients compared to controls. The post-exercise indices of muscle oxidative metabolism were all impaired in DM1, including the increase of time constant of phosphocreatine resynthesis (TC PCr, p = 0.038) and the reduction of the maximum rate of mitochondrial ATP synthesis (p = 0.033). TC PCr values correlated with the myotonic area score (ρ = 0.74, p = 0.01) indicating higher impairment of muscle oxidative metabolism in clinically more affected patients. Our findings provide clear in vivo evidence of multisystem impairment of oxidative metabolism in DM1 patients, providing a rationale for targeted treatment enhancing energy metabolism.  相似文献   

3.
Mitochondrial bioenergetics were investigated in newborn, neonatal and adult dog brains during normoxia and hypoxia. The ratio of the rate of ATP synthesis to the maximum synthesis rate (V/Vmax), phosphorylation potential, [ADP] and PCr/Pi, were used to evaluate age related mitochondrial hypoxic tolerance. These indicators were calculated from the phosphorus compounds measured by in vivo 31P MRS quantitatively using ATP as an internal reference. Indicators and substrates of mitochondrial function, V/Vmax, ADP, and Pi reached a peak value during the neonatal (3-21 days) period of development, suggesting that the oxidative metabolism of the neonate is more vulnerable to stress when compared to newborns and adults. Distinction among newborns and neonates became apparent during hypoxia. Newborns (0-2 days old) showed substantial tolerance by maintaining V/Vmax until exposure to severe hypoxia. Older neonates (3-21 days old) showed increases in V/Vmax, [Pi] and [ADP] under less than severe conditions of hypoxia. Adults exhibited low V/Vmax values even during exposure to severe hypoxia, further indicating that mitochondrial oxidative processes are more stable in adults than in newborns and neonates. This study provides evidence that newborns and adults are more capable of maintaining mitochondrial function under conditions of minimal to moderate hypoxia than 3-21 day old neonates.  相似文献   

4.
The relationships between in vivo (31)P magnetic resonance spectroscopy (MRS) and in vitro markers of oxidative capacity (mitochondrial function) were determined in 27 women with varying levels of physical fitness. Following 90-s isometric plantar flexion exercises, calf muscle mitochondrial function was determined from the phosphocreatine (PCr) recovery time constant, the adenosine diphosphate (ADP) recovery time constant, the rate of change of PCr during the initial 14 s of recovery, and the apparent maximum rate of oxidative adenosine triphosphate (ATP) synthesis (Q(max)). Muscle fiber type distribution (I, IIa, IIx), citrate synthase (CS) activity, and cytochrome c oxidase (COX) activity were determined from a biopsy sample of lateral gastrocnemius. MRS markers of mitochondrial function correlated moderately (P < 0.05) with the percentage of type IIa oxidative fibers (r = 0.41 to 0.66) and CS activity (r = 0.48 to 0.64), but only weakly with COX activity (r = 0.03 to 0.26, P > 0.05). These results support the use of MRS to determine mitochondrial function in vivo.  相似文献   

5.
We report a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes treated with riboflavin and nicotinamide for 18 months, during which time previously frequent encephalopathic spells ceased. To confirm clinical benefit, we withdrew treatment and monitored response with muscle 31P magnetic resonance spectroscopy (MRS) and sural nerve conduction studies. Of three prospectively chosen MRS variables, two changed coincidentally with clinical end points; phosphocreatine (PCr)/adenosine triphosphate recovery rates fell in parallel with sural nerve sensory amplitudes, and a drop in muscle bioenergetic efficiency (relationship of inorganic phosphate/PCr to the accelerating force of contracting muscle) coincided with development of encephalopathy. Investigations revealed a deficiency of respiratory complex I and mutation of the mitochondrial tRNA(Leu)(UUR). We suggest that a defective cellular energy state in mitochondrial disease may be partially treatable and that changes seen in appropriate muscle spectroscopy studies may parallel improvement in brain and peripheral nerve function.  相似文献   

6.
Brain and muscle energy metabolism was assessed in vivo in five patients with progressive supranuclear palsy (PSP) using phosphorous magnetic resonance spectroscopy (31P MRS). 31P MRS disclosed a reduced phosphocreatine (PCr) and an increased calculated free adenosine diphosphate (ADP) in the occipital lobes of all patients. In our patients with PSP, inorganic phosphate (Pi) was significantly increased and Mg2+ was reduced. In the gastrocnemius muscle, Pi at rest was increased in four patients, and the three patients who were able to perform an incremental exercise showed a rate of PCr postexercise recovery slower than control subjects. Our findings show that multisystemic deficit of energy metabolism occurs in PSP and suggest that it may play a role in the pathogenesis of this disorder.  相似文献   

7.
Phosphorus magnetic resonance spectroscopy (31P-MRS) was used to study in vivo the energy metabolism of brain and skeletal muscle in two members of an Italian pedigree with NARP syndrome due to a point mutation at bp 8993 of mtDNA. In the youngest patient, a 13 year old girl with retinitis pigmentosa, ataxia, and psychomotor retardation, there was an alteration of brain energy metabolism shown by a decreased phosphocreatine content, increased [ADP] and decreased phosphorylation potential. The energy metabolism of her skeletal muscle was also abnormal, as shown by resting higher inorganic phosphate and lower phosphocreatine concentrations than in normal subjects. Her mother, a 41 year old woman with minimal clinical involvement, showed a milder derangement of brain energy metabolism and normal skeletal muscle. Findings with MRS showed that this point mutation of mtDNA is responsible for a derangement of energy metabolism in skeletal muscle and even more so in the brain.  相似文献   

8.
A 16-year-old girl presented with early-onset cerebellar ataxia, myoclonus, elevated lactic acidosis and hypogonadotropic hypogonadism. Muscle biopsy specimens revealed fibres with a ragged appearance with increased mitochondria and lipid droplets. Biochemical investigation revealed a deficiency of complexbc 1 (complex III) of the mitochondrial respiratory chain. Genetic analysis did not show either deletions or known mutations of mitochondrial DNA (mtDNA). Phosphorus magnetic resonance spectroscopy (31P-MRS) showed defective energy metabolism in brain and gastrocnemius muscle. A decreased phosphocreatine (PCr) content was found in the occipital lobes accompanied by normal inorganic phosphate (Pi) and cytosolic pH. These findings represented evidence of a high cytosolic adenosine diphosphate concentration and a relatively high rate of metabolism accompanied by a low phosphorylation potential. Muscle31P-MRS showed a high Pi content at rest, abnormal exercise transfer pattern and a low rate of PCr post-exercise recovery. These findings suggested a deficit of mitochondrial function. Therapy with vitamins K3 and C normalized brain31P-MRS indices, whereas it did not affect muscle bioenergetic metabolism. In this patient, the endocrinological disorder is putatively due to a mitochondrial cytopathy. Although an unknown mtDNA mutation cannot be ruled out, the genetic defect may lie in the nuclear genome.  相似文献   

9.
The phosphate metabolites, PCr, ATP, ADP and inorganic phosphate (Pi), were quantitated in the brain of the newborn, neonatal, juvenile and adult dog to investigate the potential control mechanisms responsible for increased ATP demands during development. The concentrations of PCr and Pi were measured in vivo by MRS using the enzymatic-measured ATP as the internal standard. Phosphocreatine values increased during development from 2.08 mmol/kg wet weight in the 0-2 day newborn to 5.11 mmol/kg wet weight in the adult brain and paralleled the increases in the total creatine pool (PCr + Cr) from 4.12 to 10.05 mmol/kg wet weight. Brain ATP concentrations increased approximately 40% during postnatal development; however, when expressed as intracellular concentration, no increase in ATP was apparent due to the age-dependent decrease in extracellular space. The Pi concentration, estimated by MRS, increased significantly during postnatal development with a range of 1.78 to 2.52 mmol/kg wet wt, then decreased to 1.97 mmol/kg wet weight at adulthood. In those developmental stages where total Pi was measured enzymatically on freeze-clamped tissue, the NMR visible Pi comprised about 48 to 93% of the total, with the highest percentage being visible in the newborn brain. The intracellular pH decreased from 7.21 in the newborn to 7.10 in the adult. With development, the free ADP concentration, calculated from the components of the creatine kinase equilibrium, ranged from 27 to 34 microM. These values are close to the apparent in vitro Km of ADP for oxidative phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Metabolic and mechanical properties of female rat skeletal muscles, submitted to endurance training on a treadmill, were studied by a 60-min in vivo multistep fatigue test. 31P-NMR was used to follow energy metabolism and pH. Mechanical performance was greatly improved in trained muscles. The oxidative capacity of the skeletal muscles was evaluated from the relationship between ADP calculated from the creatine kinase equilibrium and work and from the measure of the rate of phosphocreatine (PCr) resynthesis following exercise. In trained muscles, ADP production was lower per unit of mechanical performance, showing an improvement of oxidative metabolism. However, the PCr resynthesis rate was not modified. Slight acidosis and ATP depletion were observed from the beginning of the fatigue test. These modifications suggest changes of the creatine kinase equilibrium favoring mitochondrial ATP production. Our results indicate that muscle status improvement could be accompanied by ATP depletion and minimal acidosis during contraction; this would be of particular importance for objective evaluation of muscle regeneration processes and of gene therapy in muscle diseases. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
The aim of this study was to determine if muscle energy metabolism, as measured by 31P‐magnetic resonance spectroscopy (MRS), is a metabolic marker for the efficacy of treatment of Machado‐Joseph disease (MJD). We obtained 31P‐MRS in the calf muscle of 8 male patients with MJD and 11 healthy men before, during, and after a 4 minute plantar flexion exercise in a supine position. The data showed that there was a significant difference between the groups in terms of the PCr/(Pi + PCr) ratio at rest (P = 0.03) and the maximum rate of mitochondrial ATP production (Vmax) (P < 0.01). In addition, Vmax was inversely correlated with the scale for the assessment and rating of ataxia score (r = ?0.34, P = 0.04). The MJD group also showed a reduction in Vmax over the course of 2 years (P < 0.05). These data suggest that this noninvasive measurement of muscle energy metabolism may represent a surrogate marker for MJD. © 2010 Movement Disorder Society  相似文献   

12.
OBJECTIVE: To determine whether a multisystemic bioenergetic deficit is an underlying feature of familial hypobetalipoproteinaemia. METHODS: Brain and skeletal muscle bioenergetics were studied by in vivo phosphorus MR spectroscopy (31P-MRS) in two neurologically affected members (mother and son) and in one asymptomatic member (daughter) of a kindred with familial hypobetalipoproteinaemia. Plasma concentrations of vitamin E and coenzyme Q10 (CoQ10) were also assessed. RESULTS: Brain 31P-MRS disclosed in all patients a reduced phosphocreatine (PCr) concentration whereas the calculated ADP concentration was increased. Brain phosphorylation potential was reduced in the members by about 40%. Skeletal muscle was studied at rest in the three members and during aerobic exercise and recovery in the son and daughter. Only the mother showed an impaired mitochondrial function at rest. Both son and daughter showed an increased end exercise ADP concentration whereas the rates of postexercise recovery of PCr and ADP were slow in the daughter. The rate of inorganic phosphate recovery was reduced in both cases. Plasma concentration of vitamin E and CoQ10 was below the normal range in all members. CONCLUSIONS: Structural changes in mitochondrial membranes and deficit of vitamin E together with reduced availability of CoQ10 can be responsible for the multisystemic bioenergetic deficit. Present findings suggest that CoQ10 supplementation may be important in familial hypobetalipoproteinaemia.  相似文献   

13.
In vivo phosphorus magnetic resonance spectroscopy (MRS) was used to investigate markers of the cerebral energy status in two patients with glutaric aciduria type I (GA-I). Besides an increased concentration of phosphomonoesters in one patient, no other significant alterations from controls were found. This might indicate increased resynthesis of dendritic processes secondary to preceding metabolic crises. In contrast to previous cell-culture studies, no cerebral depletion of phosphocreatine (PCr) was observed. In conclusion, a severe global and permanent depletion of cerebral energy supplies must be ruled out. The benefit of a permanent creatine substitution to stabilize mitochondrial energy metabolism seems thus questionable. However, as MRS was performed during stable clinical conditions, the possibility of a PCr decrease during acute metabolic crises cannot be assessed.  相似文献   

14.
The phosphocreatine/creatine kinase (PCr/CK) system in the brain is defined by the expression of two CK isozymes: the cytosolic brain-type CK (BCK) and the ubiquitous mitochondrial CK (uMtCK). The system plays an important role in supporting cellular energy metabolism by buffering adenosine triphosphate (ATP) consumption and improving the flux of high-energy phosphoryls around the cell. This system is well defined in muscle tissue, but there have been few detailed studies of this system in the brain, especially in humans. Creatine is known to be important for neurologic function, and its loss from the brain during development can lead to mental retardation. This study provides the first detailed immunohistochemical study of the expression pattern of BCK and uMtCK in the human brain. A strikingly dissociated pattern of expression was found: uMtCK was found to be ubiquitously and exclusively expressed in neuronal populations, whereas BCK was dominantly expressed in astrocytes, with a low and selective expression in neurons. This pattern indicates that the two CK isozymes are not widely coexpressed in the human brain, but rather are selectively expressed depending on the cell type. These results suggest that the brain cells may use only certain properties of the PCr/CK system depending on their energetic requirements.  相似文献   

15.
Congenital lactic acidosis with neurological symptoms may be due to a variety of disorders of energy metabolism. We investigated whether positron emission tomography (PET) and proton magnetic resonance spectroscopy (1H MRS) are capable of demonstrating specific changes to facilitate diagnosis. A corresponding increase of cerebral lactate (with MRS) and rate of glycolysis (with PET) was observed in 2 children with biochemical evidence of defective mitochondrial respiration. No such increase was noted in a child with lactic acidosis due to stress and exercise but normal respiratory chain activity, and in a control case with an epilepsy syndrome without evidence of primary changes of energy metabolism. The results suggest that defects of oxidative phosphorylation may cause a massive increase of glycolysis to cover energy requirements, with corresponding accumulation of lactate in brain tissue. This mechanism can now be demonstrated in vivo and, with further experience, may potentially be used as a diagnostic marker of respiratory chain disorders in brain tissue.  相似文献   

16.
The creatine kinase (CK) reaction is thought to be important in coupling ATP metabolism and regulating ADP concentration in tissues with high and variable ATP turnover, including cerebral gray matter (GM). There is low phosphocreatine (PCr), low CK reaction rates, and high mitochondrial CK (MiCK) isoenzyme activity in GM compared to white matter (WM). To compare the CK reaction in GM and WM when ATP metabolism is high, CK reactants and reaction rates were measured in predominantly GM and WM slices in vivo in 2 and 14-day old piglets during pentylenetetrazole (PTZ) seizures using 31P nuclear magnetic resonance (NMR) 1-dimensional chemical shift imaging (CSI). Arterial pressure, temperature, and blood gasses were stable at both ages. Before seizures, the PCr/nucleoside triphosphate (NTP) ratio was higher in WM than GM at both ages with a developmental increase seen in WM. The CK reaction rate constant increased in both regions between 2 and 14 days. During seizures, PCr/NTP increased in GM at 14 days due to increased PCr while the ratio and PCr decreased in WM. The NTP was more stable in WM and GM at both ages. The CK reaction rate decreased in both regions more at 2 than at 14 days. Thus, brain ATP, deduced from NTP, is stable during seizures in the piglet. In GM stable ATP is associated with a unique increase in PCr concentration.  相似文献   

17.
Boska MD  Welch KM  Barker PB  Nelson JA  Schultz L 《Neurology》2002,58(8):1227-1233
BACKGROUND: Previous single voxel (31)P MRS pilot studies of migraine patients have suggested that disordered energy metabolism or Mg(2+) deficiencies may be responsible for hyperexcitability of neuronal tissue in migraine patients. These studies were extended to include multiple brain regions and larger numbers of patients by multislice (31)P MR spectroscopic imaging. METHODS: Migraine with aura (MWA), migraine without aura (MwoA), and hemiplegic migraine patients were studied between attacks by (31)P MRS imaging using a 3-T scanner. RESULTS: Results were compared with those in healthy control subjects without headache. In MwoA, consistent increases in phosphodiester concentration [PDE] were measured in most brain regions, with a trend toward increase in [Mg(2+)] in posterior brain. In MWA, phosphocreatine concentration ([PCr]) was decreased to a minor degree in anterior brain regions and a trend toward decreased [Mg(2+)] was observed in posterior slice 1, but no consistent changes were found in phosphomonoester concentration [PME], [PDE], inorganic phosphate concentration ([Pi]), or pH. In hemiplegic migraine patients, [PCr] had a tendency to be lower, and [Mg(2+)] was significantly lower than in the posterior brain regions of control subjects. Trend analysis showed a significant decrease of brain [Mg(2+)] and [PDE] in posterior brain regions with increasing severity of neurologic symptoms. CONCLUSIONS: Overall, the results support no substantial or consistent abnormalities of energy metabolism, but it is hypothesized that disturbances in magnesium ion homeostasis may contribute to brain cortex hyperexcitability and the pathogenesis of migraine syndromes associated with neurologic symptoms. In contrast, migraine patients without a neurologic aura may exhibit compensatory changes in [Mg(2+)] and membrane phospholipids that counteract cortical excitability.  相似文献   

18.
We measured brain energy phosphate metabolism and intracellular pH (pHi) in a cross-sectional study of migraine patients by in vivo phosphorus 31 NMR spectroscopy. During a migraine attack the ratio ATP/total phosphate signal (mole % ATP) was preserved, but there was a decrease in mole % phosphocreatine (PCr) and an increase in mole % inorganic phosphate (Pi) resulting in a decrease of the PCr/Pi ratio, an index of brain phosphorylation potential. This was found in classic but not common migraine. Mole % Pi was also increased in combined brain regions between attacks. There was no alteration in brain pHi during or between attacks. Energy phosphate metabolism but not pHi appears disordered during a migraine attack.  相似文献   

19.
Cerebral metabolism and neuronal function of prefrontal brain cortex were studied in 6 dog litters from birth to 3 months of age. Noninvasive phosphorus magnetic resonance spectroscopy (31P-MRS) was used to observe longitudinal biochemical changes in the phosphorus compounds associated with cerebral metabolism. Neurological tests, examining reflex, motor and sensory nerve function, were performed in conjunction with the 31P-MRS study. During the neonatal period, exponential increases in PCr, Pi, and phophodiesters preceded neurological changes. Phosphomonoesters showed an exponential, nearly linear, decrease and PCr/Pi was maintained during the 3-month period. Developmental increases in high energy phosphates and the maintenance of PCr/Pi indicate that the increased energy demands of the developing animal are met by increased mitochondrial function (ATP turnover).  相似文献   

20.
Magnetic resonance spectroscopy (MRS) was performed on a superficial part of the brain containing a large multiple sclerosis (MS) lesion. Reduced levels of phosphocreatine (PCr) relative to adenosine triphosphate (ATP) were found suggesting an abnormality in energy metabolism, with an increase in the phosphodiester (PDE) peak. A follow up study 16 months later revealed reduction in size of the lesion on MRI and normal intracellular biochemistry by MRS. Four MS patients without visible superficial cerebral lesions showed no significant changes in phosphorus metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号