首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by l -NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release of PG. Compared to control, combined blockade resulted in a 5- to 10-fold lower muscle interstitial PG level. During control incremental knee extension exercise, mean blood flow in the quadriceps muscles rose from 10 ± 0.8 ml (100 ml tissue)−1 min−1 at rest to 124 ± 19, 245 ± 24, 329 ± 24 and 312 ± 25 ml (100 ml tissue)−1 min−1 at 15, 30, 45 and 60 W, respectively. During inhibition of NOS and PG, blood flow was reduced to 8 ± 0.5 ml (100 ml tissue)−1 min−1 at rest, and 100 ± 13, 163 ± 21, 217 ± 23 and 256 ± 28 ml (100 ml tissue)−1 min−1 at 15, 30, 45 and 60 W, respectively ( P < 0.05 vs. control). In conclusion, combined inhibition of NOS and PG reduced muscle blood flow during dynamic exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction.  相似文献   

2.
Metabolic effects of interleukin-6 in human splanchnic and adipose tissue   总被引:7,自引:4,他引:7  
Interleukin-6 (IL-6) was infused intravenously for 2.5 h in seven healthy human volunteers at a dose giving rise to a circulating IL-6 concentration of ≈35 ng l−1. The metabolic effects of this infusion were studied in subcutaneous adipose tissue on the anterior abdominal wall and in the splanchnic tissues by the Fick principle after catheterizations of an artery, a subcutaneous vein draining adipose tissue, and a hepatic vein, and measurements of regional adipose tissue and splanchnic blood flows. In control studies without IL-6 infusion subcutaneous adipose tissue metabolism was studied by the same technique in eight healthy subjects. The net release of glycerol and fatty acids from the subcutaneous abdominal adipose tissue remained constant in the control experiment. IL-6 infusion gave rise to increase in net glycerol release in subcutaneous adipose tissue while the net release of fatty acids did not change significantly. In the splanchnic region IL-6 elicited a pronounced vasodilatation, and the uptake of fatty acids and the gluconeogenic precursors glycerol and lactate increased significantly. The splanchnic net output of glucose and triacylglycerol did not change during the IL-6 infusion. It is concluded that IL-6 elicits lipolytic effects in human adipose tissue in vivo , and that IL-6 also has effects on the splanchnic lipid and carbohydrate metabolism.  相似文献   

3.
It has been reported that endurance exercise-trained men have decreases in cardiac output with no change in systemic vascular conductance during post-exercise hypotension, which differs from sedentary and normally active populations. As inadequate hydration may explain these differences, we tested the hypothesis that fluid replacement prevents this post-exercise fall in cardiac output, and further, exercise in a warm environment would cause greater decreases in cardiac output. We studied 14 trained men (     4.66 ± 0.62 l min−1) before and to 90 min after cycling at 60%     for 60 min under three conditions: Control (no water was consumed during exercise in a thermoneutral environment), Fluid (water was consumed to match sweat loss during exercise in a thermoneutral environment) and Warm (no water was consumed during exercise in a warm environment). Arterial pressure and cardiac output were measured pre- and post-exercise in a thermoneutral environment. The fall in mean arterial pressure following exercise was not different between conditions ( P = 0.453). Higher post-exercise cardiac output (Δ 0.41 ± 0.17 l min−1; P = 0.027), systemic vascular conductance (Δ 6.0 ± 2.2 ml min−1 mmHg−1 ; P = 0.001) and stroke volume (Δ 9.1 ± 2.1 ml beat−1; P < 0.001) were seen in Fluid compared to Control, but there was no difference between Fluid and Warm (all P > 0.05). These data suggest that fluid replacement mitigates the post-exercise decrease in cardiac output in endurance-exercise trained men. Surprisingly, exercise in a warm environment also mitigates the post-exercise fall in cardiac output.  相似文献   

4.
The capacity of the vascular endothelium locally to release tissue-type plasminogen activator (t-PA) is critical for effective endogenous fibrinolysis. We determined the influence of ageing and regular aerobic exercise on the net release of t-PA across the human forearm in vivo using both cross-sectional and intervention approaches. First, we studied 62 healthy men aged 22-35 or 50-75 years of age who were either sedentary or endurance exercise-trained. Net endothelial release rates of t-PA were calculated as the product of the arteriovenous concentration gradient and forearm plasma flow to intra-arterial bradykinin and sodium nitroprusside. Second, we studied 10 older (60 ± 2 years) healthy sedentary men before and after a 3 month aerobic exercise intervention. Net endothelial t-PA release was significantly blunted with age in the sedentary men. At the highest dose of bradykinin the increase in t-PA antigen release was ≈35 % less (   P < 0.05  ) in the older (from −1.0 ± 0.4 to 37.8 ± 3.8 ng (100 ml tissue)−1 min−1) compared with young (from 0.1 ± 0.6 to 56.6 ± 9.2 ng (100 ml tissue)−1 min−1) men. In contrast, the endurance-trained men did not demonstrate an age-related decline in the net release of t-PA antigen. After the exercise intervention, the capacity of the endothelium to release t-PA increased ≈55 % (   P < 0.05  ) to levels similar to those of the young adults and older endurance-trained men. Regulated endothelial t-PA release declines with age in sedentary men. Regular aerobic exercise may not only prevent, but could also reverse the age-related loss in endothelial fibrinolytic function.  相似文献   

5.
Resistance exercise is a potent stimulator of muscle protein synthesis and muscle cell growth, with the increase in protein synthesis being detected within 2–3 h post-exercise and remaining elevated for up to 48 h. However, during exercise, muscle protein synthesis is inhibited. An increase in AMP-activated protein kinase (AMPK) activity has recently been shown to decrease mammalian target of rapamycin (mTOR) signalling to key regulators of translation initiation. We hypothesized that the cellular mechanism for the inhibition of muscle protein synthesis during an acute bout of resistance exercise in humans would be associated with an activation of AMPK and an inhibition of downstream components of the mTOR pathway (4E-BP1 and S6K1). We studied 11 subjects (seven men, four women) before, during, and for 2 h following a bout of resistance exercise. Muscle biopsy specimens were collected at each time point from the vastus lateralis. We utilized immunoprecipitation and immunoblotting methods to measure muscle AMPKα2 activity, and mTOR-associated upstream and downstream signalling proteins, and stable isotope techniques to measure muscle fractional protein synthetic rate (FSR). AMPKα2 activity (pmol min−1 (mg protein)−1) at baseline was 1.7 ± 0.3, increased immediately post-exercise (3.0 ± 0.6), and remained elevated at 1 h post-exercise ( P < 0.05). Muscle FSR decreased during exercise and was significantly increased at 1 and 2 h post-exercise ( P < 0.05). Phosphorylation of 4E-BP1 at Thr37/46 was significantly reduced immediately post-exercise ( P < 0.05). We conclude that AMPK activation and a reduced phosphorylation of 4E-BP1 may contribute to the inhibition of muscle protein synthesis during resistance exercise. However, by 1–2 h post-exercise, muscle protein synthesis increased in association with an activation of protein kinase B, mTOR, S6K1 and eEF2.  相似文献   

6.
Effects of insulin on adipose tissue blood flow in man   总被引:4,自引:1,他引:4  
Adipose tissue blood flow (ATBF) rises after nutrient ingestion. It is not clear whether this is due to insulin. The aim of this study was to investigate the role of insulin in the regulation of subcutaneous ATBF. We have investigated the role of insulin in the regulation of ATBF in normal, healthy subjects in a three-step procedure to determine the functional level at which insulin may potentially exert its effect. Fifteen subjects were studied on two occasions. On the first visit, 75 g oral glucose was given. In the second, similar plasma concentrations of insulin and glucose were achieved by dynamic intravenous infusions of insulin and glucose. The increase in ATBF after oral glucose (4.2 ± 1.4 ml min−1 (100 g tissue)−1,   P = 0.01  ) was significantly greater (   P < 0.05  ) than that after intravenous infusions (1.5 ± 0.6 ml min−1 (100 g tissue)−1   P < 0.05  ). For the local delivery of potentially vasoactive substances and simultaneous measurement of ATBF, we describe a novel combination of methods, which we have called 'microinfusion'. We have used this technique to show that locally infused insulin, even at pharmacological concentrations, had no demonstrable effect on ATBF in nine subjects. We conclude that whilst insulin does not have a direct effect on ATBF, it is likely to be an important mediator, possibly acting via sympathetic activation. In the postprandial state, other candidate peptides and hormones are also likely to play important roles.  相似文献   

7.
Interleukin-6 (IL-6) is a cytokine involved in a number of immunological processes, but it is also linked to exercise and possibly energy status. During exercise, muscle IL-6 mRNA levels and plasma IL-6 levels are increased and further augmented when intramuscular glycogen levels are low. In contrast, the increase in plasma IL-6 is blunted if carbohydrate is administered, indicating a substrate-regulated induction of IL-6 in human skeletal muscle. Recent studies have demonstrated that IL-6 is also released from adipose tissue in response to an exercise bout. Furthermore, IL-6 has been demonstrated to have a lipolytic effect, thus possibly playing a role in mobilisation of energy as free fatty acids (FFA) in response to exercise. The purpose of the present study was to investigate the gene expression pattern of IL-6 in adipose tissue in response to exercise, and to determine whether gene expression was affected by the ingestion of carbohydrate. Eight male subjects performed 3 h of bicycling with ingestion of a carbohydrate drink or placebo. Fat biopsy samples and blood samples were obtained before, during and in the recovery phase of exercise. Both plasma IL-6 and adipose IL-6 mRNA levels increased in response to exercise. IL-6 gene expression was lower (   P < 0.05  ) in the CHO trial (1.98-fold increase, confidence interval (CI) 1.16–3.83) compared with the control (6.49-fold increase, CI 3.57–13.91) at end of exercise. Furthermore, CHO ingestion blunted the increase in plasma IL-6 levels (   P < 0.05  ) at end of exercise (26.0 ± 3.7 pg ml−1 in the control vs. 15.6 ± 2.4 pg ml−1 in the CHO trial). In conclusion, exercise results in an increase in IL-6 gene expression in adipose tissue in response to exercise, an effect that is significantly blunted by ingestion of carbohydrate.  相似文献   

8.
This study evaluates the relative importance of several mechanisms possibly involved in the natriuresis elicited by slow sodium loading, i.e. the renin-angiotensin-aldosterone system (RAAS), mean arterial blood pressure (MAP), glomerular filtration rate (GFR), atrial natriuretic peptide (ANP), oxytocin and nitric oxide (NO). Eight seated subjects on standardised sodium intake (30 mmol NaCl day−1) received isotonic saline intravenously (NaLoading: 20 μmol Na+ kg−1 min−1 or ≈11 ml min−1 for 240 min). NaLoading did not change MAP or GFR (by clearance of 51Cr-EDTA). Significant natriuresis occurred within 1 h (from 9 ± 3 to 13 ± 2 μmol min−1). A 6-fold increase was found during the last hour of infusion as plasma renin activity, angiotensin II (ANGII) and aldosterone decreased markedly. Sodium excretion continued to increase after NaLoading. During NaLoading, plasma renin activity and ANGII were linearly related ( R = 0.997) as were ANGII and aldosterone ( R = 0.999). The slopes were 0.40 p m ANGII (mi.u. renin activity)−1 and 22 p m aldosterone (p m ANGII)−1. Plasma ANP and oxytocin remained unchanged, as did the urinary excretion rates of cGMP and NO metabolites (NOx). In conclusion, sodium excretion may increase 7-fold without changes in MAP, GFR, plasma ANP, plasma oxytocin, and cGMP- and NOx excretion, but concomitant with marked decreases in circulating RAAS components. The immediate renal response to sodium excess appears to be fading of ANGII-mediated tubular sodium reabsorption. Subsequently the decrease in aldosterone may become important.  相似文献   

9.
Interleukin-6 release from the human brain during prolonged exercise   总被引:11,自引:2,他引:11  
Interleukin (IL)-6 is a pleiotropic cytokine, which has a variety of physiological roles including functions within the central nervous system. Circulating IL-6 increases markedly during exercise, partly due to the release of IL-6 from the contracting skeletal muscles, and exercise-induced IL-6 may be linked with central fatigue, which is enhanced by hyperthermia. Exercise-induced IL-6 may also stimulate hepatic glycogenolysis, which is important during prolonged and repeated exercise. Thus, in a randomised order and separated by 60 min of rest, eight young male subjects completed two 60 min exercise bouts: one bout with a normal (38 °C) and the other with an elevated (39.5 °C) core temperature. The cerebral IL-6 response was determined on the basis of internal jugular venous to arterial IL-6 differences and global cerebral blood flow. There was no net release or uptake of IL-6 in the brain at rest or after 15 min of exercise, but a small release of IL-6 was observed after 60 min of exercise in the first bout (0.06 ± 0.03 ng min−1). This release of IL-6 from the brain was five-fold greater at the end of the second bout (0.30 ± 0.08 ng min−1; P < 0.05) with no separate influence of hyperthermia. In conclusion, IL-6 is released from the brain during prolonged exercise in humans and it appears that the duration of the exercise rather than the increase in body temperature dictates the cerebral IL-6 response.  相似文献   

10.
In this study, we aimed to assess the ventilatory and cardiovascular responses to the combined activation of the muscle metaboreflex and the ventilatory chemoreflex, achieved by postexercise circulatory occlusion (PECO) and euoxic hypercapnia (end-tidal partial pressure of CO2 7 mmHg above normal), respectively. Eleven healthy subjects (4 women and 7 men; 29 ± 4.4 years old; mean ± s.d. ) undertook the following four trials, in random order: 2 min of isometric handgrip exercise followed by 2 min of PECO with hypercapnia; 2 min of isometric handgrip exercise followed by 2 min of PECO while breathing room air; 4 min of rest with hypercapnia; and 4 min of rest while breathing room air. Ventilation was significantly increased during exercise in both the hypercapnic (+3.17 ± 0.82 l min−1) and the room air breathing trials (+2.90 ± 0.26 l min−1; all P < 0.05). During PECO, ventilation returned to pre-exercise levels when breathing room air (+0.52 ± 0.37 l min−1; P > 0.05), but it remained elevated during hypercapnia (+3.77 ± 0.23 l min−1; P < 0.05). The results indicate that the muscle metaboreflex stimulates ventilation with concurrent chemoreflex activation. These findings have implications for disease states where effort intolerance and breathlessness are linked.  相似文献   

11.
We tested the hypothesis that an acute decrease in muscle TCA cycle intermediates during contraction would compromise aerobic energy delivery. Male Wistar rats were anaesthetized and the gastrocnemius–plantaris–soleus (GPS) muscle complex from one leg was isolated and perfused with a red cell medium containing either saline (Con) or cycloserine (Cyclo; 0.05 mg g−1), an inhibitor of alanine aminotransferase (AAT). After 1 h of perfusion, the GPS muscle was either snap frozen (Con-Rest, n = 11; Cyclo-Rest, n = 9) or stimulated to contract for 10 min (1 Hz, 0.3 ms, 2 V) with blood flow fixed at 30 ml min−1 (100 g)−1 and then snap frozen (Con-Stim, n = 10; Cyclo-Stim, n = 10). Maximal AAT activity was > 80% lower ( P < 0.001) in both Cyclo-treated groups (Rest: 0.61 ± 0.02; Stim: 0.63 ± 0.01 mmol (kg wet wt)−1 min−1; mean ± s.e.m. ) compared to Con (Rest: 3.56 ± 0.16; Stim: 3.92 ± 0.29). The sum of five measured TCAI (ΣTCAI) was reduced by 23% in Cyclo-Rest versus Con-Rest but this was not different ( P = 0.08). However, after 10 min of contraction, the ΣTCAI was 25% lower ( P = 0.006) in Cyclo-Stim compared to Con-Stim (1.88 ± 0.15 versus 2.48 ± 0.11 mmol (kg dry wt)−1). Despite the acute decrease in TCAI after Cyclo treatment, the contraction-induced changes in markers of non-oxidative energy provision (phosphocreatine, ATP and lactate) and the decline in tension after 10 min of stimulation were similar compared to Con. These data do not support the hypothesis that the total muscle concentration of TCAI is causally linked to the rate of mitochondrial respiration during contraction.  相似文献   

12.
Rapid Report     
Sympathetic vasoconstriction is blunted in the vascular beds of contracting skeletal muscles. We sought to determine whether this blunted vasoconstriction is specific for post-junctional α1- or α2-adrenergic receptors. We measured forearm blood flow (Doppler ultrasound) and calculated the vascular conductance (FVC) responses to brachial artery infusions of tyramine (which evokes endogenous noradrenaline release), phenylephrine (an α1 agonist) and clonidine (an α2 agonist) in 10 healthy men during rhythmic handgrip exercise (10-15 % of maximum) and during a control non-exercise vasodilator condition (intra-arterial adenosine). Steady-state FVC during exercise and adenosine was similar in all trials (range: 243-272 and 234-263 ml min−1 (100 mmHg)−1, respectively; P > 0.5). During exercise the percentage reductions in FVC in response to tyramine (−24 ± 7 vs. −55 ± 6 %), phenylephrine (−12 ± 8 vs. −37 ± 8 %) and clonidine (−17 ± 6 vs. −49 ± 4 %) were significantly less compared with adenosine (all P < 0.05). The magnitude of the blunted vasoconstrictor responses was similar for both receptor subtypes. These findings are in contrast to those from studies in animals demonstrating that α2-adrenergic receptor-mediated vasoconstrictor responses are much more sensitive to contraction-induced inhibition than α1-mediated responses. We conclude that vasoconstrictor responses mediated via both post-junctional α1- and α2-adrenergic receptors are blunted in contracting human skeletal muscles.  相似文献   

13.
Recent data from transgenic mice suggest that orexin plays an important role in the ventilatory response to CO2 during wakefulness. We hypothesized that orexin receptor-1 (OX1R) in the retrotrapezoid nucleus (RTN) contributes to chemoreception. In unanaesthetized rats, we measured ventilation using a whole-body plethysmograph, together with EEG and EMG. We dialysed the vehicle and then SB-334867 (OX1R antagonist) into the RTN to focally inhibit OX1R and studied the effects of both treatments on breathing in air and in 7% CO2. During wakefulness, SB-334867 caused a 30% reduction of the hyperventilation induced by 7% CO2 (mean ± S.E.M., 135 ± 10 ml (100 g)−1 min−1) compared with vehicle (182 ± 10 ml (100 g)−1 min−1) ( P < 0.01). This effect was due to both decreased tidal volume and breathing frequency. There was a much smaller, though significant, effect in sleep (9% reduction). Neither basal ventilation nor oxygen consumption was affected. The number and duration of apnoeas were similar between control and treatment periods. No effect was observed in a separate group of animals who had the microdialysis probe misplaced (peri-RTN). We conclude that projections of orexin-containing neurons to the RTN contribute, via OX1Rs in the region, to the hypercapnic chemoreflex control during wakefulness and to a lesser extent, non-rapid eye movement sleep.  相似文献   

14.
The cardiovascular response to exercise with several groups of skeletal muscle implies that work with the legs may reduce arm blood flow. This study followed arm blood flow ( arm) and oxygenation on the transition from arm cranking (A) to combined arm and leg exercise (A+L). Seven healthy male subjects performed A at ∼80 % of maximum work rate ( W max) and A at ∼80 % W max combined with L at ∼60 % W max. A transition trial to volitional exhaustion was performed where L was added after 2 min of A. The arm was determined by constant infusion thermodilution in the axillary vein and changes in biceps muscle oxygenation were measured with near-infrared spectroscopy. During A+L arm was lowered by 0.38 ± 0.06 l min−1 (10.4 ± 3.3 %,   P < 0.05  ) from 2.96 ± 1.54 l min−1 during A. Total (HbT) and oxygenated haemoglobin (HbO2) concentrations were also lower. During the transition from A to A+L arm decreased by 0.22 ± 0.03 l min−1 (7.9 ± 1.8 %,   P < 0.05  ) within 9.6 ± 0.2 s, while HbT and HbO2 decreased similarly within 30 ± 2 s. At the same time mean arterial pressure and arm vascular conductance also decreased. The data demonstrate reduction in blood flow to active skeletal muscle during maximal whole body exercise to a degree that arm oxygen uptake and muscle tissue oxygenation are compromised.  相似文献   

15.
Major cardiovascular changes occur at birth, including increased pulmonary blood flow (PBF) and closure of the ductus arteriosus (DA), which acts as a low resistance shunt between the fetal pulmonary and systemic circulations. Although the pressure gradient between these circulations reverses after birth, little is known about DA blood flow changes and whether reverse DA flow contributes to PBF after birth. Our aim was to describe the changes in PBF and DA flow before, during and after the onset of pulmonary ventilation at birth. Flow probes were implanted on the left pulmonary artery (LPA) and DA in preterm fetal sheep ( n = 8) ∼3 days before they were delivered and ventilated. Blood flow was measured in the LPA and DA, before and after umbilical cord occlusion (UCO) and for 2 h after ventilation onset. Following UCO, DA flow decreased from 534 ± 57 ml min−1 to 237 ± 29 ml min−1 which reflected a similar reduction in right ventricular output. Within 5 min of ventilation onset, PBF increased from 11 ± 6 ml min−1 to 230 ± 13 ml min−1 whereas DA flow decreased to −172 ± 54 ml min−1; negative values indicate reverse DA flow (left-to-right shunting). Reverse flow through the DA contributed up to 50% of total PBF at 30 min and a decrease in this contribution accounted for 71 ± 13% of the time-related decrease in PBF after birth. DA blood flow is very dynamic after birth and depends upon the pressure gradient between the pulmonary and systemic circulations. Following ventilation, reverse DA flow provided a significant contribution to total PBF after birth.  相似文献   

16.
We sought to quantify the contribution of cardiac output ( Q ) and total vascular conductance (TVC) to carotid baroreflex (CBR)-mediated changes in mean arterial pressure (MAP) during mild to heavy exercise. CBR function was determined in eight subjects (25 ± 1 years) at rest and during three cycle exercise trials at heart rates (HRs) of 90, 120 and 150 beats min−1 performed in random order. Acute changes in carotid sinus transmural pressure were evoked using 5 s pulses of neck pressure (NP) and neck suction (NS) from +40 to −80 Torr (+5.33 to −10.67 kPa). Beat-to-beat changes in HR and MAP were recorded throughout. In addition, stroke volume (SV) was estimated using the Modelflow method, which incorporates a non-linear, three-element model of the aortic input impedance to compute an aortic flow waveform from the arterial pressure wave. The application of NP and NS did not cause any significant changes in SV either at rest or during exercise. Thus, CBR-mediated alterations in Q were solely due to reflex changes in HR. In fact, a decrease in the carotid-HR response range from 26 ± 7 beats min−1 at rest to 7 ± 1 beats min−1 during heavy exercise (   P = 0.001  ) reduced the contribution of Q to the CBR-mediated change in MAP. More importantly, at the time of the peak MAP response, the contribution of TVC to the CBR-mediated change in MAP was increased from 74 ± 14 % at rest to 118 ± 6 % (   P = 0.017  ) during heavy exercise. Collectively, these findings indicate that alterations in vasomotion are the primary means by which the CBR regulates blood pressure during mild to heavy exercise.  相似文献   

17.
During dynamic exercise, there is reduced responsiveness to α1- and α2-adrenergic receptor agonists in skeletal muscle vasculature. However, it is desirable to examine the sympathetic responsiveness to endogenous release of neurotransmitter, since exogenous sympathomimetic agents are dependent upon their ability to reach the abluminal receptor. Therefore, to further our understanding of sympathetic control of vasomotor tone during exercise, we employed a technique that would elicit the release of endogenous noradrenaline (norepinephrine) during dynamic exercise. Mongrel dogs ( n = 8, 19-24 kg) were instrumented chronically with transit time ultrasound flow probes on both external iliac arteries. A catheter was placed in a side branch of the femoral artery for intra-arterial administration of tyramine, an agent which displaces noradrenaline from the nerve terminal. Doses of 0.5, 1.0 and 3.0 μg ml−1 min−1 of iliac blood flow were infused for 1 min at rest and during graded intensities of exercise. Dose-related decreases in iliac vascular conductance were achieved with these concentrations of tyramine. The reductions in iliac vascular conductance (means ± s.e.m .) were 45 ± 6 %, 30 ± 4 %, 26 ± 3 % and 17 ± 2 %, for the 1.0 μg ml−1 min−1 dose at rest, 3.0 miles h−1, 6.0 miles h−1 and 6.0 miles h−1, 10 % gradient, respectively. At all doses, the magnitude of vasoconstriction caused by administration of tyramine was inversely related to workload. We conclude that there is a reduced vascular responsiveness to sympathoactivation in dynamically exercising skeletal muscle.  相似文献   

18.
We tested the hypotheses that (1) nitric oxide (NO) contributes to augmented skeletal muscle vasodilatation during hypoxic exercise and (2) the combined inhibition of NO production and adenosine receptor activation would attenuate the augmented vasodilatation during hypoxic exercise more than NO inhibition alone. In separate protocols subjects performed forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 ( n = 12), subjects received intra-arterial administration of saline (control) and the NO synthase inhibitor N G-monomethyl- l -arginine ( l -NMMA). In protocol 2 ( n = 10), subjects received intra-arterial saline (control) and combined l -NMMA–aminophylline (adenosine receptor antagonist) administration. Forearm vascular conductance (FVC; ml min−1 (100 mmHg)−1) was calculated from forearm blood flow (ml min−1) and blood pressure (mmHg). In protocol 1, the change in FVC (Δ from normoxic baseline) due to hypoxia under resting conditions and during hypoxic exercise was substantially lower with l -NMMA administration compared to saline (control; P < 0.01). In protocol 2, administration of combined l -NMMA–aminophylline reduced the ΔFVC due to hypoxic exercise compared to saline (control; P < 0.01). However, the relative reduction in ΔFVC compared to the respective control (saline) conditions was similar between l -NMMA only (protocol 1) and combined l -NMMA–aminophylline (protocol 2) at 10% (−17.5 ± 3.7 vs. −21.4 ± 5.2%; P = 0.28) and 20% (−13.4 ± 3.5 vs. −18.8 ± 4.5%; P = 0.18) hypoxic exercise. These findings suggest that NO contributes to the augmented vasodilatation observed during hypoxic exercise independent of adenosine.  相似文献   

19.
In vivo biotelemetry studies have demonstrated that short-term streptozotocin (STZ)-induced diabetes is associated with a reduction in heart rate (HR) and heart rate variability (HRV) and prolongation of QT and QRS intervals. This study investigates the long-term effects of STZ-induced diabetes on the electrocardiogram (ECG), physical activity and body temperature. Transmitter devices were surgically implanted in the peritoneal cavity of young adult male Wistar rats. Electrodes from the transmitter were arranged in Einthoven bipolar lead II configuration. ECG, physical activity and body temperature data were continuously recorded with a telemetry system before and following the administration of STZ (60 mg kg−1) for a period of 22 weeks. HR, physical activity and body temperature declined rapidly 3–5 days after the administration of STZ. The effects became conspicuous with time reaching a new steady state approximately 1–2 weeks after STZ treatment. HR at 4 weeks was 268 ± 5 beats min−1 in diabetic rats compared to 347 ± 12 beats min−1 in age-matched controls. HRV at 4 weeks was also significantly reduced after STZ treatment (18 ± 3 beats min−1) compared to controls (33 ± 3 beats min−1). HR and HRV were not additionally altered in either diabetic rats (266 ± 5 and 20 ± 4 beats min−1) or age-matched controls (316 ± 6 and 25 ± 4 beats min−1) at 22 weeks. Reduced physical activity and/or body temperature may partly underlie the reductions in HR and HRV. In addition, the increased power spectral low frequency/high frequency ratio from 4 weeks after STZ treatment may indicate an accompanying disturbance in sympathovagal balance.  相似文献   

20.
This study characterizes the effects of shivering thermogenesis on metabolic fuel selection in Wistar rats. Because lipids account for most of the heat produced, we have investigated: (1) whether the rate of appearance of non-esterified fatty acids ( R a NEFAs) is stimulated by shivering, (2) whether mono-unsaturated (oleate) and saturated fatty acids (palmitate) are affected similarly, and (3) whether the partitioning between fatty acid oxidation and re-esterification is altered by cold exposure. Fuel oxidation was measured by indirect calorimetry and fatty acid mobilization by continuous infusion of 9,10-[3H]oleate and 1-[14C]palmitate. During steady-state cold exposure, results show that total heat production is unequally shared by the oxidation of lipids (52% of metabolic rate), carbohydrates (35%) and proteins (13%), and that the same fuel selection pattern is observed at all shivering intensities. All previous research shows that mammals stimulate R a NEFA to support exercise or shivering. In contrast, results reveal that the R a NEFA of the rat remains constant during cold exposure (∼55 μmol kg−1 min−1). No preferential use of mono-unsaturated over saturated fatty acids could be demonstrated. The rat decreases its rate of fatty acid re-esterification from 48.4 ± 6.4 to 19.6 ± 6.3 μmol kg−1 min−1 to provide energy to shivering muscles. This study is the first to show that mammals do not only increase fatty acid availability for oxidation by stimulating R a NEFA. Reallocation of fatty acids from re-esterification to oxidation is a novel, alternative strategy used by the rat to support shivering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号